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Abstract. A fully coupled two-dimensional kinematic and thermal model of a steady state 
accretionary wedge, constrained by an extensive data set of fission track and (U-Th)/He ages for 
apatite and zircon, is here used to investigate the development of the Olympic Mountains segment 
of the Cascadia accretionary wedge. The model has two main free parameters: £max. the maximum 
rate of erosion for a generic erosion function operating at the top of the wedge, and a, the 
distribution of sedimentary accretion into the wedge. The best fit values for £max and a and their 
confidence limits are determined through an iterative search of parameter space. This study 
represents the first time that such inversion methods have been used to quantify the thermal­
kinematic evolution of an accretionary wedge. Our results suggest that horizontal transport plays 
an important role in the exhumation trajectories experienced by material passing through the 
Cascadia wedge. At a 95% confidence interval, 80 to 100% of the sedimentary sequence from the 
subducting Juan de Fuca Plate has been accreted at the front of the wedge offshore of the 
Olympics over the past 14 m.y. This frontally accreted material must then traverse the entire width 
of the wedge prior to its eventual exposure in the Olympic forearc high. Assessed in this two­
dimensional framework, the fission track and (U-Th)/He age data sets from the Olympic 
Mountains are all best fit by £max of 0.9-1.0 mm yr·1, despite variation in the timescales relevant to 
the three chronometers. This result supports the hypothesis that the Olympic Mountains segment 
of the Cascadia accretionary wedge has been in a flux steady-state since -14 Ma. The 
demonstration of a flux balance across the Cascadia margin also suggests that margin-parallel 
transport has not had a significant role in driving uplift of the Olympic Mountains. 

1. Introduction 

The Olympic Mountains in northwest Washington are the 
topographically highest and most deeply exhumed segment of the 
coastal mountain range extending along the Cascadia margin 
from the Klamath Mountains of northern California to the Insular 
Range of Vancouver Island (Plate. 1). This high separates a 
relatively continuous forearc depression to the east (Willamette, 
Puget, and Georgia lowlands) from the accretionary wedge to the 
west. Dickinson and Seely [1979) refer to this arrangement as a 
ridged forearc and note that it is typical of mature continental 
convergent margins and ancient subduction complexes around the 
world. 
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Brandon and Vance [ 1992) and Brandon et al. [ 1998) use 
zircon and apatite fission track data from the Olympic subduction 
complex to investigate the late Cenozoic evolution of the 
Olympic Mountains. Fission track ages record the length of time 
that radiation damage caused by the spontaneous fission of 238U 
has been accumulating in the dated mineral [e.g., Price and 
Walker, 1962, 1963; Fleischer and Price, 1964; Price et al., 
1964). In deeply eroded regions this retention is generally linked 
to cooling of the sample during progressive exhumation, and thus 
fission track (and other isotopic) ages provide a measure of rates 
of material exhumation [e.g., Sardarov, 1957; Hurley et al., 1962; 
Clark and Jager, 1969; Doherty and Lyons, 1980). 

Brandon et al. [1998) derive broad patterns of exhumation 
across the Olympic Mountains and conclude that for the past 14 
m.y. the Cascadia wedge has been in a flux steady state, defined 
as a balance between the accretionary flux of material into the 
wedge and the flux of material removed by erosion of the forearc 
high. However, the significance of their analysis, which 
accounted only for vertical transport of material through the 
wedge, is questionable because both the thermal structure of the 

26,731 



26,732 BATT ET AL.: TECTONIC SYNTHESIS OF THE OLYMPIC MOUNTAINS 

49°N 

47°N 

Meters 
4200 

2000 

45°N 1750 

0 
� 1500 

£ 
9: 
Q.) 1250 
(/) 

43°N a 
0. 1000 
c: 
(') a. 
0 
::J 750 

� 
::l 
a> 500 

41°N 250 

0 
127°W 125°W 123°W 121°W 

Plate 1. Key geographical features of the Cascadia margin. Indicated plate velocity (arrow) is for motion of the 
Juan de Fuca Plate relative to continental North America at the latitude of the Olympic Peninsula [DeMets et al., 
1990; DeMets and Dixon, 1999]. 
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Cascadia wedge [Lewis et al., 1988; Hyndman and Wang, 1993] 
and the uplift and exhumation rates experienced in the Olympic 
Mountains [Brandon et al., 1998, Pazzaglia and Brandon, 2001] 
vary across the margin. The overall material path of a rock 
through the Cascadia wedge and the thermal consequences of that 
path may thus be strongly influenced by any horizontal 
component of motion. 

We build on the work of Brandon et al. [ 1998] by analyzing 
the tectonic significance of thermochronological data from the 
Olympic Mountains using a two-dimensional kinematic and 
thermal framework. The thermal evolution of the deforming 
wedge is modeled using a Lagrangian-Eulerian finite element 
method, which enables us to track the passage of selected 
material points through the model domain and to integrate their 
thermal histories. This modeling allows us to interpret 
thermochronological data in a context more consistent with the 
actual tectonic setting of the Cascadia wedge. 

This approach is used to investigate two issues. First, what is 
the primary deformation mode driving uplift in the Olympics? 
The three options are ( 1) frontal accretion of the incoming 
sedimentary section of the Juan de Fuca Plate at the toe of the 
Cascadia wedge [e.g. , Davis and Hyndman, 1989], (2) 
underplating of subducted material at depth beneath the orogen 
[e.g., Clowes et al., 1987; Brandon and Calderwood, 1990], and 
(3) margin-parallel deformation [e.g., Beck, 1991; McCaffrey and 
Goldfinger, 1995; McCaffrey, 1996; McCrory, 1996; Wang, 
1996]. The second issue concerns the long-term evolution of the 
Cascadia margin. More specifically, has the Olympic segment 
been in a flux steady state during the Late Cenozoic [Brandon et 
al., 1998]? The model allows the thermochronological data to be 
used as a direct test of the steady state hypothesis. 

2. Regional Setting 

The continental framework inboard of the Cascadia forearc 
(Figure 1) was assembled in the late Cretaceous. The forearc 
region itself was subsequently built by the accretion of the Coast 
Range terrane and the more outboard Cascadia wedge. The Coast 
Range terrane (CRT) consists of a thick fault-bounded slab of 
lower Eocene oceanic crust and overlying marine elastic 
sediments informally known as the Peripheral sequence. This 
assemblage extends 750 km from southwest Oregon to the 
continental shelf west of Vancouver Island [Wells et al., 1984; 
Clowes et al., 1987] (Plate 1 and Figure 1 ). The origin of the 
ophiolitic basement of the CRT is ambiguous and may relate to 
collision of an intra-Pacific seamount province or to either back 
arc or forearc rifting at the North American margin [Wells et al., 
1984; Clowes et al., 1987; Babcock et al., 1992]. The suture 
separating the basaltic CRT on its inboard side from the uplifted 
pre-Tertiary continental framework of North America is exposed 
only on southernmost Vancouver Island, where it is known as the 
Leech River Fault (Figure 1). Crosscutting relations broadly 
delimit suturing along this boundary to between 42 and 24 Ma 
[Brandon and Vance, 1992]. Conglomerates shed southwestward 
from pre-Tertiary rocks north of the Leech River Fault on 
Vancouver Island indicate that the fault may have been active 
during the late Eocene. These conglomerates are exposed in the 
Lyre Formation within the Peripheral sequence on the north side 
of the Olympic Peninsula, and detrital zircon fission track ages 
reported by Garver and Brandon [ 1994] suggest that they have a 
depositional age of circa 38 Ma. 

The modern configuration of the Cascadia margin, with hot 
young sediment-mantled oceanic lithosphere of the Juan de Fuca 
Plate being subducted west of the CRT, was considered by 
Brandon and Vance [ 1992] to have originated in latest Eocene 
time (circa 35 Ma). A late Eocene initiation is suggested by 
suturing of the CRT to the continental framework of North 
America between 42 and 24 Ma, as discussed above, initiation of 
the Cascade Volcanic Arc at circa 36 Ma [Armstrong and Ward, 
1991; Brandon and Vance, 1992], and the timing of slip on the 
Hurricane Ridge Fault in the Olympic Mountains [Brandon and 
Vance, 1992]. This interpretation contrasts with previous 
syntheses of the region that infer initiation of Cascadia 
subduction at circa 50 Ma [e.g., Wells et al., 1984; Heller et al., 
1987; Snaveley, 1987]. Plate reconstructions [Engebretson et al., 
1985; Lonsdale, 1988; Wilson, 1988] and the volcanic record of 
the Cascade arc [Smith, 1989; Sherrod and Smith, 1989] suggest 
that after initiation of the Cascadia subduction zone, plate 
convergence proceeded in a fairly steady and-continuous fashion. 

The Cascadia wedge formed outboard of the CRT and has 
grown by offscraping at the front of the wedge, and possibly 
underplating beneath the wedge as well [Clowes et al., 1987; 
Brandon and Calderwood, 1990]. Cascadia wedge sediments 
underlie most of the offshore continental margin [e.g., Clowes et 
al., 1987] but are only subaerially exposed in the Olympic 
Mountains. There, uplift and erosion have tilted the Peripheral 
sequence into a steep east plunging anticline (Figure 1), exposing 
the Cascadia wedge sediments underlying the Hurricane Ridge 
Fault in the interior of the massif [Stewart, 1970; Rau, 1973 ; 
Tabor and Cady, 1978a, l 978b] where they are known as the 
Olympic subduction complex (OSC) [Brandon and Vance, 1992] 
(Figure 1). 

The anomalous uplift (Plate 1) and deep exhumation (Figure 
1) of the Olympic Mountains are attributed by Brandon and 
Calderwood [ 1990] to the presence of a 10-km-high arch in the 
underlying Juan de Fuca Plate beneath the orogen. They argue 
that the low angle of slab dip beneath the Olympics resulted in a 
correspondingly early emergence of the region and rapid uplift of 
the Olympic massif, relative to adjacent regions of the subduction 
zone (see Pazzaglia and Brandon [2001] for further discussion of 
this interpretation). This effect may be further accentuated by the 
progressive northward increase in sediment flux rate along the 
Cascadia margin [e.g., Brandon et al., 1998] feeding the growth 
and deformation of the accretionary wedge. 

As an alternative, regional scale plate motion and GPS data 
have been used to attribute the anomalous uplift of the Olympics 
to margin parallel motion, with the Olympic Peninsula 
supposedly caught between the northward moving Oregon Coast 
Range block and the relatively stable "buttress" of Vancouver 
Island and uplifted rapidly as a result [e.g., Wells et al., 1984; 
McCaffrey and Goldfinger, 1995; McCajfrey, 1996; McCrory, 
1996; Wang, 1996]. Pazzaglia and Brandon [2001] refute major 
margin-parallel deformation by using deformed erosional 
benchmarks to estimate long-term permanent strain rates across 
the Olympics. Pazzaglia and Brandon [2001] argue that long­
term permanent shortening is mainly occurring across the orogen, 
parallel to the Juan de Fuca-North America convergence 
direction at a rate of 3 km My(1 over a 140 km baseline. At the 
core of this argument is the observation that rates of rock uplift 
and erosion across the Olympic Mountains appear to be in close 
agreement with the accretionary flux associated with 
convergence. Orogen-parallel shortening would increase 
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Figure 1. Geology and thennochronological sample coverage of the Olympic Peninsula after Brandon et al. [1998]. 
Note the locations of the new (U-Th)/He data reported in this paper. Section A-A' parallels convergence of the Juan 
de Fuca Plate relative to continental North America and passes through the region of deepest exhumation in the 
Olympic Mountains. The box centered about A-A' marks the limit of samples projected into the section line for this 
study, as discussed in text. Also shown is a figurative cross section illustrating the key structural and tectonic nature 
of the Olympic section of the Cascadia wedge [after Brandon et al. , 1998]. 

accretionary flux above this level, which runs against other 
evidence that the Olympic Mountains segment of the Cascadia 

wedge has maintained a steady-state size for the last 14 Myr 

[Brandon et al., 1998; Pazzaglia and Brandon, 2001]. Our 

modeling here provides a test of the steady-state hypothesis, and 

thus has a bearing on this debate over the relative importance of 

orogen-parallel versus orogen-normal shortening in the 
Olympics. 

3.Modeling 

We aim to resolve two questions here: (1) What is the basic 

accretionary mode of the Olympics? (2) Has the distribution of 

erosion rates across the orogen varied on the million-year 

timescale constrained by the available thennochronological data? 

We begin below by describing an approach for modeling the 

coupled physical and thermal evolution of an eroding 

accretionary wedge. This coupling of physical and thermal 

behavior allows us to use thennochronology as a direct constraint 
on orogenic development. The model calculates ages by taking 
selected material points at the surface at the nominal "present­

day" and back tracking their passage to their points of entry into 

the wedge. Exhumational and thennal histories are then compiled 

using points along the calculated material paths and compared to 

the thennal response of different thennochronometers (the zircon 
fission track, apatite fission track, and apatite (U-Th)/He dating 
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Table 1. Model Parameters 

Parameter 

Time step length !:J.t, kyr 
Crustal thermal conductivity K" W m-1 K-1 

Mantle thermal conductivity Km, W m-1 K1 

Crustal heat capacity Cp, J kg-1 K-1 

Heat production H, µW m-3 

Mantle density Pm, kg m-3 

Crustal density pc, kg m-3 

systems) to predict the patterns of ages that we would observe at 

the surface for given orogenic scenarios 

As with previous thermal modeling of the Cascadia margin 

[e.g., Moran and Lister, 1987; Lewis et al., 1988; Hyndman and 
Wang, 1993], we assume that heat flow occurs primarily by 
conduction, with advection of heat by moving fluids playing a 

negligible role. This simplification is probably appropriate, as we 
are interested primarily in the rear of the wedge, well removed 

from any influence that rapid dewatering during accretion might 

have on the thermal structure of the wedge [Davis et al., 1990; 

Hyndman et al., 1993; Wang et al., 1993]. In the absence of fluid 

transport, the time-dependent temperature field in a deforming 

medium, such as the active accretionary wedge, is described by 

[Cars/aw and Jaeger, 1959] 

oT H - + u. VT= KV2 T + - , at c 

a. 

b. 
Surface erosion function fitted 

across the Olympic Peninsula 

(1) 

Value Reference 

36 
2.0 Brandon and Vance [1992] 
2.9 Hyndman and Wang [1993] 

1200 Dumitru [1991] 
0.6 Lewis et al. [1988] 

3700 
2900 

where u is material velocity, T is temperature, t is time, K is the 

thermal diffusivity of the medium, C is the heat capacity of the 

medium, and H is the internal heat production per unit volume 
(Table 1). 

Thermal conductivity for the Olympic subduction complex is 

estimated to be 2.0 W m-1 K-1 [Brandon and Vance, 1992]. This 

value is derived as a weighted harmonic mean of compiled 

thermal conductivity data from Oxburgh [1980] and Oxburgh and 
Wilson [1989], assuming an average vertical section through the 
wedge consisting of 50% Coast Range basalt and 25% sandstone 

and 25% mudstone in the underlying OSC. Internal heat 
production is taken as 0.6 µ W m-3 of solid rock, as measured in 

shelf sediments from offshore wells on the Vancouver Island 

Margin [Lewis et al., 1988]. The underlying slab of oceanic crust 

is assumed to have a negligible heat production because of low 

concentration of radioactive isotopes. 

Although frictional heating can also be included as a 

Basal heat flux 
[after Molnar and England, 1995] 

Figure 2. Boundary conditions and key features of the numerical model described in the text. (a) Thermal model 
conditions. (b) Kinematic model conditions. The form of the surface erosion function is taken from Pazzaglia and 
Brandon [2001 ], but the magnitude of the function ( i max) is a free parameter in the model. 
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contribution to H in this calculation (Equation 1 ), this parameter 

is set to zero in the final models presented below. In their 

analysis, Hyndman and Wang [1993] concluded that surface heat 

flow data did not support friction as a significant heat source for 

the Cascadia wedge. Our modeling similarly suggests that 
frictional heating must be very low in order to account for the 

observed thermochronological data of the Olympics. Low 

frictional heating is further supported by the multichannel seismic 

observations of Fisher et al. [1999] offshore of Washington State 

and other regional observations [e.g., Hyndman and Wang, 1995; 

MacKay, 1995; Wang et al. , 1995], which suggest only weak 

coupling at the basal decollement. 
In the model, the wedge surface is maintained at a fixed 

temperature (Figure 2a). Onshore, the mean annual surface 

temperature of the Olympics of 8°C is [Brandon and Vance, 
1992], while offshore, oceanographic and ocean bottom thermal 

probe measurements suggest surface temperature decreases 

progressively seaward, reaching -0°C at the deformation front of 
the accretionary wedge [Davis et al., 1990]. The left and right 

boundaries of the wedge are assumed to have no net heat-flux 

across them. 

The basal boundary temperature of the wedge is set according 

to the method of Molnar and England [1995], which provides an 

analytical approximation for temperature at the base of an 
accretionary wedge as a function of the rate and geometry of slab 

subduction, and the age of the slab. Because of the young age of 

the Juan de Fuca Plate, which is only 8 Ma at the Cascadia 

subduction zone offshore of the Olympics [Moran and Lister, 
1987], the contribution of heat from the downgoing oceanic slab 

is considerable. Surface heat flux levels at the Cascadia 
subduction zone approach 70 mW m-2, with temperatures at the 

top of the basaltic oceanic crust beneath the accumulated 
sedimentary blanket estimated to be as high as 200°C [e.g., 

Yorath et al. , 1985; Lewis et al., 1988]. 

Internal motions within the wedge play an important role in 

the cooling history of a sample [Jamieson et al., 1996; Batt and 
Braun, 1997]. To interpret the significance of isotopic ages, we 

must consider both the thermal structure of the wedge and the 
path taken by the sample during its passage through that thermal 

structure. We use a simple kinematic model from Pazzaglia and 
Brandon [2001] to represent the key features of the velocity field 

in the wedge. 

Our null hypothesis is that the wedge is in a flux steady state 

throughout the model run time (Figure 3). The entire sedimentary 

section of the subducting Juan de Fuca Plate is assumed to be 

incorporated into the Cascadia wedge, either by accretion at the 

toe or underplating beneath the deforming wedge (Figures 2b and 

3). This displacement field is assumed to be two-dimensional 

(plane strain) and oriented parallel to the Juan de Fuca-North 

America convergence direction. Motion of material perpendicular 
to this section is not explicitly included in the model but is 

addressed instead in terms of its additional contribution to the 

material budget of the deforming wedge, as any such orogen 

parallel deformation would prevent balance being attained 

between accretionary influx and erosional outflux in our models. 

The compaction of sediment is assumed to occur 
instantaneously during the initial stage of subduction, so that 

material within the wedge is effectively incompressible [e.g. , 

Dahlen and Supp e ,  1988]. We consider two competing 

mechanisms for the accretion of sedimentary material into the 
wedge. The first is underplating, where sediments are carried 

beneath the wedge together with the underthrust oceanic plate 

and then decoupled from the subducting slab and incorporated 

into the wedge at depth beneath the orogen. The second 

alternative is frontal accretion, where material is scraped off the 

oceanic crust at the point of subduction and incorporated into the 

toe of the wedge. The underplating and frontal accretion solutions 

provide end-members of behavior where vertical or horizontal 

velocities, respectively, are maximized. It is important to consider 

this range of velocity fields because of the highly two­

dimensional (2-D) (and perhaps three-dimensional) setting of the 

Cascadia wedge. At the latitude of the Olympics the Juan de Fuca 

Plate is converging with stable North America at a rate of 36 mm 
yr-1 oriented at 054°, nearly orthogonal to the modern subduction 
zone (option 2 for Juan de Fuca/Pacific of DeMets et al. [1990], 

and "NA-PA combined" of DeMets and Dixon [1999] (Plate 1). 

The frontally accreted influx of material at the toe of the 

wedge is given by 

(2) 

where h0 and n are the thickness (2 km [after Kulm et al. , 1984]) 

and average porosity (27% [from Yuan et al., 1994] of the 

incoming sedimentary section, respectively, V0 is the orthogonal 

convergence velocity (36 mm yr-1, as discussed above), and a is 
the fraction of the sedimentary section accreted at the toe of the 

wedge. 

The remainder of the sedimentary material is assumed to be 

underplated. In the absence of lateral motion; underplating would 
be expected to lead to the compensatory uplift of the overlying 

column of rock. Adopting this kinematic simplification, we 

distribute the underplating flux in direct proportion to the surface 

uplift velocity across the Olympics. This construction is useful 

because it is similar to the 1-D thermal analysis used by Brandon 

erosional outflux 

undeforming 
upper 
plate 

Figure 3. Figurative cross section illustrating the accretionary wedge behavior assumed in the model. 
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et al. [1998], where horizontal velocities were considered 
insignificant. The influx of underplated material is described by 

w 

Qu = ffu(x)dx=(l-a)(l-n)h0�, (3) 0 
where fu(x) = (1-a) i(x)d.x is the specific underplating flux at a 

distance x landward of the deformation front, i(x) is the erosion 

rate at the surface immediately above x, and Wis the width of the 

actively deforming wedge. 

In the absence of a specific dynamic model, we make the 

simplifying assumption that au I az = 0, where u is horizontal 

velocity and z is the vertical dimension. This assumption is 

similar to the use of an average horizontal velocity for 2-D sheet 

thin-skinned tectonic modeling [e.g. , Holt, 1989; Devoe et al., 
1992]. Horizontal velocity is determined by maintenance of a 
flux balance, 

( h0 V c - { i( x )dx) 
��<l=��aj=a �� ' (4) 

where h(x) is the thickness of the wedge at a distance x from the 

deformation front. The vertical velocity w can then be obtained 
from the continuity equation aulax + awlaz = 0, such that we can 

differentiate ( 4) to obtain 

z i( x} z tan <fl x w(x,z)=w(x,0)--(-) --( } 
f i(x) dx. 

h x h2 x 0 
(5) 

The flux steady-state condition specifies that vertical velocity at 

the surface w(x,O) is everywhere equal and opposite to the erosion 

rate i(x). The transition to the stable North American plate at the 
rear of the wedge occurs where a balance is attained between 

accretionary and erosional fluxes, such that u and w equal zero. 

The model assumes a rock uplift and erosion function of the 

form defined for recent Olympic Mountains uplift by Pazzaglia 
and Brandon [2001], but with its amplitude as a free parameter. 

The Pazzaglia and Brandon [2001] uplift function is mainly 
derived from fluvial incision rates over the last 140 kyr in the 

western Olympics, together with evidence that the east and west 

coasts of the Peninsula have seen little long-term Neogene uplift 

and erosion. Pazzaglia and Brandon [2001] also showed that the 

pattern in the western Olympics was similar to that indicated by 

long-term (3-7 Ma) exhumation rates derived from apatite fission 
track ages. If it holds true across the entire peninsula, this 

correspondence allows estimation of the rates of uplift and 

erosion across almost the entire Olympic orogen. 

Calculated erosion rates rise rapidly from zero at the west 

coast of the Olympic Peninsula, reach a peak in the west of the 

Olympic Mountains, and then decrease progressively to the east 
(Figure 2b ). This asymmetric form may be a result of orographic 

rainfall focussed on the western, seaward side of the peninsula 

[Pazzaglia and Brandon, 2001]. Our modeling here will allow us 

to test more closely how the thermochronological data fit the 

short-term geomorphic indicators of uplift presented by Pazzaglia 
and Brandon [2001]. 

As noted previously, the first step in calculating model 
isotopic ages is to select material points at the surface of the 

model at the nominal present day and to track their path back to 

their entry into the wedge. The exhumational and thermal 

histories of these points are then compiled using model results 

from different time steps corresponding to the calculated material 

paths. 

Apatite fission track ages are predicted by modeling the 

annealing of fission tracks as a function of time and temperature. 

This model is based on the experimentally derived annealing 
response of fission tracks in fluorapatite, as evaluated by Willett 
[1997]. The results of Willett's model closely match those of 

other popular annealing models [e.g., Duddy et al., 1988; 
Crowley, 1993]. 

The thermal history of each selected point is divided into a 

number of time steps m, each of length M;. At each time step, a 

new set of tracks are assumed to form according to the 238U decay 

rate. The apatite fission track annealing response [Willett, 1997] 

is then integrated over the remainder of the modeled thermal 
history, thereby giving the predicted track length distribution. 

The final fission track age of the sample is calculated as a sum of 

the relative contributions of the tracks created at each time step, 

weighted for track length and observational bias [Laslett et al., 
1987; Green, 1988; Willett, 1997]. 

This method is not applied to zircon fission track ages here 
because of the lack of an accepted track length model for the 

annealing of fission tracks in zircon over geological timescales. 

Laboratory annealing studies [e.g., Tagami et al., 1990; Yamada 
et al., 1995] suggest a closure temperature for the zircon fission 

track system some 50 to I 00°C higher than that derived from 

studies of the geological record [e.g., Zaun and Wagner, 1985; 
Brandon and Vance, 1992; Foster et al., 1996]. Following 
Kasuya and Naeser [1988], Brandon and Vance [1992] and 

Brandon et al. [1998] argue that this discrepancy is due to the 
influence of accumulated a damage (lattice damage due to the 

decay of U and Th by a particle emission) on the thermal 

stability of fission tracks in zircon. 

In light of this issue, we instead utilize effective closure 

temperatures, calculated from the relationship [Dodson, 1979] 

· -RT 2 
T= c 

, 

EB eE IRTc 
(6) 

where R is the gas constant, E is the "average" activation energy 

250 

� 200 
:i 

§ 
Q) 
a. 150 E � 

� ii 
� 
:i 100 
en 
0 
(3 

OLi_t__t__L___L_...L_...L_-'--.l..-'--1-..J'---'---'---'--'--' 
0 20 40 60 80 100 120 140 160 

Cooling rate (°C My(1) 
Figure 4. Variation of zircon fission track closur� temperature 
with cooling rate. Derived from (6) assuming E=49.77 kcal 
mor1 , and for B=3.160xl0-22 Myr. 
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(as evaluated at 50% annealip.g), B is a materially dependent 
proportionality constant, and T and Tc are the cooling rate and 
effective closure temperature, respectively. Brandon and Vance 
[1992] and Brandon et al. [1998] estimate the constants in (6) 
from the annealing data of Zaun and Wagner [ 1985] and Tagami 
et al. [1990], arriving at values of 49.77 kcal mor1 for E and 
3.160 x 10-22 Myr for B. These values yield the relationship 
shown in Figure 4. Zircon fission track ages in the model are 
calculated by determining the time at whic.h temperature falls 
below Tc for the relevant cooling rate T .  This calculation 
requires iterative solution of (6) because the equation cannot be 
recast to give an analytical solution for time. The effective 
closure temperatures predicted by this model (Figure 4) are 
consistent with the study of Faster et al. [ 1996], which used time­
temperature histories determined by 40 Ar-39 Ar analysis of 
potassium feldspar to estimate closure temperatures for 
associated zircon fission track ages as a function of cooling rate. 

Apatite (U-Th)/He ages are calculated directly by modeling 
the production and diffusion of helium in apatite as a function of 
time and temperature, after the approach described by Wolf et al. 
[1996]. Assuming uniform distribution of uranium and thorium 
within the sample, the change in 4He concentration over a time 
step is given by numerically solving for the balance of diffusion 
and production of 4He over the duration of the step t, as a 
function of radial position r within a spherical diffusion domain 
of radius a. The governing equation is 

ac =D(t) [a2c +3_ac ] +f P(t)dt, 
at a2 ar2 r ar 0 

(7) 

where a is the characteristic diffusion dimension of the system, C 
is the concentration of 4He, and P(t) is the production rate of 4He. 
D(t) is the temperature-dependent diffusion coefficient given by 

D(t) =Do e-EIRT(t), (8) 

where D0 is the diffusion coefficient at infinite temperature, R is 
the gas constant, T(t) is the absolute temperature of the sample at 
time t, and Eis the activation energy of the system. Following the 
experimental work of Farley [2000] on Durango apatite, we 
adopt helium diffusion characteristics of E = 33±0.5 kcal mor1 
and log (Do) = 1.5±0.6 cm2 s-2 for apatite. The characteristic 
diffusion dimension a is believed to be the radius of the apatite 
grain [Farley, 2000]. For our model, this is taken to be 50 µm, 
approximately corresponding to the average radius of the grains 
analyzed in this study (Table 2). 

4. Thermal and Thermochronological Data 

The Olympic Peninsula is covered by a dense set of zircon and 
apatite fission-track ages from Brandon and Vance [1992] and 
Brandon et al. [1998] (Figures I and 5). Fission track samples are 
characterized as either reset or unreset. Unreset samples generally 
display discordant grain ages older than the deposition age of the 
sedminents, reflecting the heterogeneous cooling histories of their 
sedimentary provenance regions. As these ages are inherited by 
the detrital material, they offer no direct constraint on the recent 
thermal history of the region. Samples are considered to be reset 
when (1) the observed age falls below the deposition age of the 
sample and (2) the wide age variation typical of an unreset 
sample is replaced by a narrow range of grain ages [Brandon and 
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Figure 5. Thermochronological data used to constrain the model, plotted as apparent age versus distance along 
section A-A' (Figure 1). Error bars indicate la uncertainty for age and an assumed ±2 km variability in relative 
position to account for the projection of geographically distributed points onto a single section line. Unreset ages 
are identified by the population characteristics of individual samples (as discussed in the text) and are marked as 
individual ages along the top boundary. These reset ages are inherited from their sedimentary source and are not 
reflective of the recent deformation and exhumation of the Olympic subduction complex. Zircon fission track ages 
come from Brandon and Vance [ 1992] and Garver and Brandon [ 1994], apatite fission track ages from Brandon et 
al. [1998], and (U-Th)/He ages are presented in this study in Table 2. 

Vance, 1992; Brandon et al., 1998]. These changes reflect the 
erasure of the earlier thermal history of the samples during burial 
and heating, with the reset age indicating the subsequent cooling 
undergone by the sample during its exhumation. 

Due to the presence of mixed grain populations of varying 
character in the sediments of the OSC, Brandon et al. [ 1998] use 
the binomial peak fit method of Galbraith [ 1988] and Galbraith 
and Green [ 1990] to isolate a minimum age for each sample. For 
unreset samples the minimum age represents the age of the 
youngest component of detrital grain ages. For reset samples the 
minimum age corresponds to the cooling age for the fraction of 
grains that were last to close (i.e., closed at the lowest 
temperature). For apatite, that fraction typically consists of the 
most fluorine-rich grains in the sample. For zircon the youngest 
cooling ages appear to correspond to the grains that had the 
largest amount of accumulated a damage prior to thermal 
resetting of the sample 

Brandon et al. [1998] delineate a discrete zone of reset zircon 
fission track ages exposed in the center of the Olympic 
Mountains (Figure 5). The metamorphic grade and degree of 
ductile deformation support the conclusion that this region is the 
most deeply exhumed part of the Olympics [e.g. , Tabor and 
Cady, 1978a; 1978b; Brandon et al., 1998]. For our analyses 
here, we group together ages along a transect parallel to the 

direction of plate convergence across the Olympic Peninsula, 
centered on this reset zircon zone and wide enough to encompass 
it (see area outlined around section line A-A' in Figure 1). This 
grouping includes a total of 50 apatite fission track samples 
covering a total of 100 km of the -120 km width of the Olympic 
Peninsula at this point, and 13 zircon fission track samples 
covering 75 km of the peninsula (Fig. 6). Sample density along 
this transect is sufficient to constrain the boundaries between 
unreset and reset apatite fission track ages to within -±2 km 
(Figure 5). For zircon fission track ages the eastern boundary of 
the reset zone is similarly well constrained to -±2 km, while less 
dense sample coverage limits resolution of the western boundary 
of the reset zone to -±4 km (Figure 5). 

Apatite and zircon fission track ages display the same broad 
patterns of variation across the Olympics. For both chronometers, 
ages are reset and youngest (5-6 Ma for apatite, 13 Ma for zircon) 
in the more deeply exhumed interior of the orogen, increase 
markedly toward both east and west, and undergo a transition to 
unreset ages toward the bmmdaries of the Olympic Peninsula 
(Figure 5). Notably, the age minima of the zircon and apatite 
fission track chronometers are offset from one another by some 
20 km (Figure 5). 

Eleven new apatite (U-Th)/He ages from the Olympic 
subduction complex (OSC) are presented here (Figure 5 and 
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Figure 6. Explicit model fit to thermochronological data with varying a . All model age distributions shown here 
assume e max=0.95 mm yf1. Data are shown as boxes reflecting relative uncertainty on age and position along A-A' 
(Figure 5). For clarity, only the innermost unreset age locations are indicated, illustrating the maximum possible 
size of the reset age zones for different chronometers. Distal limits of the modeled apatite (U-Th)/He age profiles 
are omitted for clarity where age constraint is lacking. 

Table 2), spanning a geographic range of 60 km, or half the width 
of the Olympic Peninsula (Figure 5). These samples comprise 
partially volcanigenic graywackes, with mixed apatite 
morphologies ranging from euhedral and prismatic to rounded 
and abraded. The most euhedral grains possible were picked from 
each sample and were analyzed using the techniques outlined by 
House et al. [1997]. The reported errors represent the estimated 
analytical precision of the analyses to one standard deviation 
[Wolf et al., 1996]. Analysis AR-13(a) is rejected from analysis 
as both anomalously old and unreproducible, possibly due to the 
presence of small undetected inclusions of other U- and Th­
bearing phases in the apatite sample. All other replicated analyses 
agree to within estimated uncertainties on sample age (Table 2). 

Eight samples from the central core of the Olympic Mountains 
(Figures I and 5) display relatively consistent ages of 2 to 3 Ma, 
and although not sampled to define a specific topographic profile, 
their ages are broadly correlated with elevation (Table 2). When 

the more peripheral samples from the Clearwater River are 
included, a general increase in age can be observed from the core 
of the orogen toward its western margin, as observed in the 
higher-temperature fission track systems (Figure 5). 

5. Model Results 

The model provides three general observables that vary with 
the interaction of the kinematic and thermal conditions of the 
wedge. The most important of these are the synthetic age profiles 
developed for each of the three modeled chronometers (apatite 
and zircon fission track ages and apatite (U-Th)/He ages). Where 
the exhumation path leading to a surface point is such that 
material cooled through the relevant closure temperature during 
the model run, the observed ages are indicators of model 
kinematics. Such "reset" ages reflect the time between 
thermochronological closure at depth in the wedge and exposure 
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at the surface and hence are functions of the path-averaged 
exhumation rate. As seen in Figure 6, this gives low ages in the 
central part of the orogen where erosion rates are high, with ages 
increasing toward the margins of the wedge as erosion rates fall 
to zero. The exact distribution of ages depends on a, which 
controls the horizontal component of the velocity field. 

The second observable is the distribution of reset ages along 
the section. Over time as the total accumulated exhumation 
increases, the lateral extent of the domain of reset ages expands 
to include areas of lower mean erosion rate. If material at a given 
point is being exhumed from deeper in the wedge than the 
relevant closure temperature, a reset age will eventually be 
exposed at that location by progressive exhumation. If 
exhumation paths leading to a point are so shallow that they do 
not sample below the relevant closure temperature, then reset 
ages will never be observed at that point. The expansion limit of 
the reset area thus depends, ultimately, not on exhumation rate 
but on the material paths within the wedge. Because of the 
varying temperatures and depths relevant for different 
chronometers, this limiting state develops on different timescales 
for various thermochronological systems. 

The third observable is the residence time of material in the 
wedge. Brandon and Vance [1992] argue that for the Cascadia 
region the presence of a contemporaneous volcanic source (the 
Cascade arc) ensures that the minimum zircon fission track age of 
an unreset sample closely approximates its depositional age. For 
the trench-basin turbidites of the Olympic subduction complex, 
with the rapid subduction of the Juan de Fuca Plate offshore of 
the Olympics (36 mm yr-1), this depositional age can reasonably 
be equated with the timing of subduction and accretion of 
sediments into the wedge system [Brandon and Vance, 1992]. 
Unreset minimum ages can thus be used as a proxy for residence 
time in the wedge, which range from 39 Ma in the east of the 
OSC to as low as I 5 Ma at the west coast of the Olympic 
Peninsula [Brandon and Vance, 1992; Brandon et al., 1998] 
(Figure 5). 

The relative veractity of our models is judged on fit of these 
observables to measured thermochronological data across the 
Olympic Mountains (Figure 6). We use the reduced chi square 
statistic, Xr 2 [Press et al., I 988] 

(9) 

to judge the degree of fit of the model relative to the uncertainties 
of the each of the datasets, where i is the ith sample at a distance 
x; landward from the deformation front, r 0 and e 0 are the 
observed isotopic age and its standard error, respectively, and 
r m (x; ) is the predicted model age at x; (Figure 6). Observed ages 
r 0are projected onto the model transect and compared to model 
ages rm ( x) at the corresponding locations (Figure 6). The fit is 
summarized for each of the three data sets (apatite fission tracks, 
zircon fission tracks, and apatite (U-Th)/He ages) by calculating 
the Xr 2 value for the model age distribution. The calculated 
values of Xr 2 are normalized by the number of degrees of 
freedom in each data set (N-2) to allow comparison between the 
different chronometers, despite the different number of ages for 
each data set. The best fit model is found by iterating models 
varying in a and e max until Xr 2 is minimized. 

5.1. Wedge Kinematics 

Mass balance calculations for the Cascadia margin at 
Vancouver Island [Clowes et al., 1987] suggest that most, if not 

all, of the sedimentary sequence on the incoming Juan de Fuca 
Plate is accreted into the wedge. This conclusion appears to hold 
over the long term as well. To the south of the Olympics in 
southwest Washington, the compositions of the recent Cascade 
Volcanics do not provide evidence for subducted sediment in 
their mantle source [Leeman et al., 1990]. Lack of sediment 
subduction would require full accretion of the Juan de Fu�a 
sedimentary cover into the Cascadia wedge. 

The mechanism by which this sediment is incorporated into 
the wedge, however, may vary significantly along the margin. To 
the north, offshore of Vancouver Island, the subduction thrust 
appears to cut deeply through the incoming sedimentary section, 
which implies that much or all of that section is being frontally 
accreted at present [Davis and Hyndman, 1989; Hyndman et al., 
1990; Westbrook et al., 1994]. In contrast, along the western edge 
of the Oregon margin, landward dipping thrusts at the front of the 
wedge flatten out into a decollement lying approximately in the 
middle of the incoming sedimentary section at 2 km depth 
[Cochrane et al., 1994]. The implication is that the remaining 
sedimentary section is accreted at deeper levels beneath the 
wedge (Figure 3). Thus, the relative balance of frontal accretion 
and underplating of sedimentary material at the Olympic margin 
is an unknown variable that will have important implications for 
predicted material paths and thermal histories. Sediments 
accreted at the front of the wedge must pass through the entire 
wedge before exposure in the eroding forearc high. Such material 
thus experiences a markedly 2-D history. In contrast, deeply 
underplated sediments could, in the extreme, have a purely 1-D 
vertical exhumation history. This problem is investigated here 
using the parameter a, the relative proportion of the sedimentary 
section incorporated into the wedge by frontal accretion. The 
remaining balance of the sedimenary budget ( 1-a) is assumed to 
be deeply underplated beneath the wedge. For the purposes of the 
scenarios considered herea is assumed to be time invariant. 

For a=O, where the entire sedimentary sequence is carried 
beneath the Cascadia wedge and underplated at depth, 
exhumation paths are purely vertical. The underplated material 
experiences a constant rate of exhumation during its residence in 
the wedge, corresponding to the erosion rate at the overlying 
surface point. This velocity field predicts that horizontal gradients 
in erosion rate are accommodated by related gradients in the 
vertical shear strain rate. For this end member, calculated reset 
ages are simply related to the erosion rate function (Figure 2b) by 

(10) 

where Zc is the depth at which isotopic closure occurs for the 
relevant chronometer. The a=O model notably fails to 
satisfactorily account for the observed pattern of zircon fission 
track ages (Figure 6). The predicted ages of the reset zircon 
fission track samples are approximately correct (circa 12 to 14 
Ma), but the predicted position of the reset zircon fission track 
zone falls 30 km to the west of the observed zone (Figure 6) 
because the model erosion rates are highest to the west of the 
zircon reset zone. In contrast, the position and ages of the reset 
zone in the a=O model are reasonably well fit for both fission 
track and (U-Th)/He ages in apatite. This result illustrates an 
important feature of using multiple thermochronometers. 
Chronometers with high closure temperatures provide more 
information about the two-dimensional nature of the exhumation 
path, whereas the lower Tc thermochronometers are less sensitive 
to lateral motion of material but provide better resolution of 
recent exhumation rates and surface processes. 
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Figure 7. Relative model fit to thermochronological data, described by variation in x, 2 with a and i max-

The introduction of frontal accretion into the model affects the 
predicted distribution of ages in several ways (Figure 6). Toward 
the inland margin of the wedge, the rear no-flow boundary 
condition (Fig. 3b) results in particle motions that approach 
vertical, so there is little difference between age distributions 
predicted by different a values in that area. As horizontal motion 
becomes progressively more important toward the front of the 
wedge, ( 1) the location of the reset zone boundaries are moved 
landward by the horizontal motion and (2) material experiences a 
range of exhumation rates as it is advected through the laterally 
varying velocity field (Figure 2b ) . As a result, ages become a 
function of the average exhumation rate along the material path, 
rather than being indicative of erosion rates at any particular 
spatial point. The impact of these effects scales with the closure 
temperature of the relevant chronometer. Assuming identical 
kinematic conditions, higher-temperature thermochronometers 
integrate exhumation rates over a longer period and travel farther 
horizontally after closure than lower-temperature systems, prior 
to their eventual exposure at the surface. 

Model sensitivity to this variation in accretion pathway is 
shown by the x axis in Figure 7. Apatite (U-Th)/He ages display 
only minor response to a variation, due to the relatively low 
closure temperature for the system (-65°C), and the 
correspondingly short time interval over which any horizontal 
motions are integrated. Apatite fission track ages display 
somewhat higher sensitivity (Figure 7). Minor improvements in 
fit are observed for this system with increasing a due to 
improved fit to ages in the west of the orogen, with model 

residence times approaching the observed ages in this area 
(Figure 6). The sensitivity of this data set is limited by the high 
relative errors of apatite fission track ages from this region 
(Figure 5), which maintains Xr 2 at high levels, even for 
relatively well-fit models. 

The influence of a on model fit is strongest for zircon fission 
track ages. As a increases and lateral migration of material 
through the wedge becomes more significant, the reset zone for 
zircon fission track ages is progressively widened and pushed 
farther eastward (Figure 6), improving model fit to the observed 
age distribution (Figure 7). At a 95% confidence level, optimal fit 
to the observed zircon fission track ages requires a>0.80, and 
favors higher values of a, up to 1.0. 

5.2. Flux Steady State 
On the basis of age-elevation trends and paired cooling ages 

from the Olympic Mountains, Brandon et al. [1998] suggest that 
long term erosion rates in the center of the Olympics have 
remained relatively constant since circa 14 Ma. This consistency 
indicates that erosion rates apparently reached modern levels 
within several million years following initial emergence of the 
forearc high at circa 18 Ma [Brandon et al .. 1998]. Because of the 
influence of material flux balance on the deformation of an 
accretionary wedge [Barr and Dahlen, 1990], such an erosional 
steady state would also require a flux steady-state since 14 Ma for 
the Olympics, where the rate of accretionary influx would 
balance the erosional outflux from the wedge. 
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We test the applicability of this flux steady state hypothesis 
through the combined analysis of the three available 
thermochronological datasets. Closure of these chronometers 
occurs at a variety of temperatures: -65°C for (U-Th)/He and 
- 100°C for fission tracks in apatite, and 240-260°C for zircon 

fission tracks. The three thus close at varying depths in the 
wedge, with their ages integrating exhumational histories after 
closure over different time spans. 

As discussed in section 3, the basic distribution of erosion 
rates across the Olympics appears to reflect the topography and 
orographic rainfall patterns of the Olympic Mountains, with 
erosion highest on the wet ocean-facing western side of the 
massif [Pazzaglia and Brandon, 2001]. Assuming that this 
geographic influence has been consistent throughout the history 
of the orogen, we take the form (but not the amplitude) of the 
erosion function as a constant, with peak rates in the west of the 
Olympic Peninsula decreasing to zero at either coast (Figure 2b). 
We then vary i max and assess the resulting fit of the model. By 
minimizing Xr 2 for each data set in this analysis, we find the 
best fitting conditions for the orogen on a range of timescales. If 
the Olympic Mountains have been in a flux steady state since 14 
Ma (the oldest reset zircon fission track age from the massif), 
then the varying timescale of the chronometers should be 
irrelevant, and all three data sets should be consistent with a 
single set of erosion rates. 

All three thermochronometers display high sensitivity to i max 
(Figure 7). At a 95% confidence interval (Figure 8), the optimal 
fits of the three systems overlap for peak erosion rates of -0.9-1.0 
mm yr-1 • The hypothesized flux steady state is thus consistent 
with the available data. Such a fit is notable in the context of the 
marked climatic variation and oscillation of glacial and 
interglacial conditions during the late Cenozoic [e.g., Mathewes 
et al. , 1993; Booth, 1994; Peizhen et al., 2001]. The evidence of 
consistent erosion rates suggests that at least on the million-year 
timescale relevant to the chronometers considered here, tectonic 
uplift, and not climate, is forcing erosion. Such tectonic control 
would require the limiting factor in the landscape evolution to be 
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Plate 2. Predicted thermal structure and surface heat flow of our overall best fit model ( i max=0.95 mm yf1, a=l .O) .  
Heat flow measurements from southwest of Vancouver Island (shaded stars) [Lewis et al. , 1988] and coastal 
Washington (solid stars) [Blackwell et al., 1990] are projected into the section using the relative location of the 
Cascadia subduction zone as a datum. Lewis et al. [ 1988] attribute much of the variability between the tightly 
clustered wells off Vancouver Island to local thermal effects or fluid movement, rather than spatial variations in 
deeper heat flux, and thus only general trends can probably be drawn from them. The Lewis et al. [ 1988] data 
should also be regarded as heat flow maxima here because of the younger age (8 Ma compared to 9 Ma) and 
consequently higher temperature of the subducting Juan de Fuca Plate off Vancouver Island, relative to the 
Olympic Peninsula 
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insensitive to climatic conditions. Bedrock landsliding, as an 
example, may satisfy this requirement. As long as sediment 
transport rates are sufficient to remove the evolved debris, 
landform evolution and erosion in an environment controlled by 
bedrock landsliding are insensitive to further variation in climate 
and become dominated instead by uplift and the development of 
steep slopes [e.g., Hovius et al., 1997, 1998]. Note that our age 
data are insensitive to the shorter timescale effects of climate 
variation (e.g. , the -100 kyr glacial cycle). Such climatic 
variations will undoubtedly produce cyclic variations in erosion 
rates. Our modeling results provide only an averaged measure of 
rates on longer timescales and indicate that on average, the 
erosion rates in the Olympics have remained steady, even with 
the onset of Quaternary "icehouse" conditions. 

The predicted thermal structure and surface heat flow of our 
best fit model (with an erosion rate of 0.95 mm yr-1 , and a=l .O) 
are shown in Plate 2. In the submarine portion of the wedge the 
dominant heat source is the young, hot subducting Juan de Fuca 
Plate. With the eastward thickening of the accreted Cascadia 
wedge sediments progressively insulating this heat source, model 
surface heat flux steadily decreases landward from -75 mW m-2 
at the Cascadia subduction zone to 40 mW m-2 at the west coast 
of the Olympic Peninsula. Across the Olympic Peninsula, surface 
heat flow then increases sharply again to -60 mW m-2 over a 
distance of 50 km before tapering off to 45 mW m-2 at the east 
coast (Plate 2). This asymmetric heat flux high is centered over 
the high topography of the Olympic Mountains and 
approximately parallels the variation in erosion rate across the 
orogen (Figure 2b). This correlation is due to advection of heat 
by exhumation. Heat flow measurements made in exploration 
wells offshore of Vancouver Island [Lewis et al . ,  1988] and 
Oregon [Blackwell et al., 1990] are shown projected into the 
model section. Despite their relatively high uncertainty 
(conservatively estimated at -20% by Lewis et al. [1988]) these 
data support our assertion that the background thermal structure 
of the model adequately represents the thermal conditions of the 
offshore Cascadia wedge (Plate 2). No surface heat flow 
measurements are available from the exhumed interior of the 
Olympic Mountains, so that despite its potential as an indicator of 
kinematics and thermal structure, this variable cannot be used to 
directly constrain the model. 

6. Conclusions 

The two-dimensional model described here produces a thermal 
structure and model distributions for zircon and apatite fission 
track ages and apatite (U-Th)/He ages comparable to those 
observed in the Olympic Mountains segment of the Cascadia 
wedge. The success of the model is assessed with reference to the 
degree to which these model and observed age profiles concur. 
Variation in model fit with changing accretionary and erosional 
fluxes indicates that most, and possibly all, of the sedimentary 
section on the subducting Juan de Fuca Plate is incorporated into 
the Cascadia wedge seaward of the Olympic Peninsula by frontal 
accretion at or near the wedge toe. The thermal and exhumational 
histories experienced by material passing through the wedge are 
thus sensitive to the convergent component of motion. Material 
accreted at the front must pass horizontally through a large part of 
the deforming wedge prior to its eventual exhumation in the 
forearc high at the rear of the wedge, and accreted materials 
experience an accompanying range of thermal and erosional 
conditions during their passage. Two-dimensional models, such 

as those developed here, are desirable in this setting to place the 
physical interpretation of thermochronological data in a valid 
kinematic context. 

The variety of isotopic age systems available for the Olympic 
Mountains provide insight into the evolution of the wedge over a 
variety of timescales, ranging from Pleistocene (2-3 Ma) for (U­
Th)/He ages in apatite to late Miocene (7 Ma) for fission tracks in 
apatite and to early Miocene (13-14 Ma) for fission tracks in 
zircon. The earliest of these constraints occurred not long after 
the initial subaerial exposure of the Olympic Peninsula at circa 18 
Ma. Our model results support the hypothesis that the wedge has 
been in a flux steady state since circa 14 Ma, with the 
accretionary flux into the wedge balanced by an erosional flux 
from the subaerial forearc high. This indicates that climatic 
variation over this interval has not played a significant role in the 
overall uplift and erosion of the massif. These characteristics 
must be controlled by tectonic rather than climatic conditions for 
the Olympic Mountains, at least on the timescales relevant to 
thermochronologic data. The apparent balance of accretionary 
and erosional fluxes in our models is consistent with the 
argument that margin-parallel transport along the Cascadia 
Margin has not played a significant role in the development of the 
Olympic Mountains [e.g. Brandon et al., 1998; Pazzaglia and 
Brandon, 2001]. 
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