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[11 We present crustal deformation results from a geodetic experiment (Retreating-Trench,
Extension, and Accretion Tectonics (RETREAT)) focused on the northern Apennines
orogen in Italy. The experiment centers on 33 benchmarks measured with GPS annually or
more frequently between 2003 and 2007, supplemented by data from an additional older
set of 6 campaign observations from stations in northern Croatia, and 187 continuous GPS
stations within and around northern Italy. In an attempt to achieve the best possible
estimates for rates and their uncertainties, we estimate and filter common mode signals and
noise components using the continuous stations and apply these corrections to the entire
data set, including the more temporally limited campaign time series. The filtered
coordinate time series data are used to estimate site velocity. We also estimate spatially
variable seasonal site motions for stations with sufficient data. The RMS scatter of residual
time series are generally near 1| mm and 4 mm, horizontal and vertical, respectively, for
continuous and most of the new campaign stations, but scatter is slightly higher for some of
the older campaign data. Velocity uncertainties are below 1 mm/yr for all but one of the
stations. Maximum rates of site motion within the orogen exceed 3 mm/yr (directed NE)
relative to stable Eurasia. This motion is accommodated by extension within the
southwestern and central portions of the orogen, and shortening across the foreland thrust

belt to the northeast of the range. The data set is consistent with contemporaneous
extension and shortening at nearly equal rates. The northern Apennines block moves
northeast faster than the Northern Adria microplate. Convergence between the Northern
Apennines block and the Northern Adria microplate is accommodated across a narrow
zone that coincides with the northeastern Apennines range front. Extension occurs directly
above an intact vertically dipping slab inferred by previous authors from seismic
tomography. The observed crustal deformation is consistent with a buried dislocation
model for crustal faulting, but associations between crustal motion and seismically imaged
mantle structure may also provide new insights on mantle dynamics.

Citation: Bennett, R. A., et al. (2012), Syn-convergent extension observed using the RETREAT GPS network, northern
Apennines, Italy, J. Geophys. Res., 117, B04408, do0i:10.1029/2011JB008744.

1. Introduction

[2] Late Cenozoic deformation of the northern Apennines,
Italy, (Figure 1) has attracted scientific interest for decades,
but community consensus regarding active deformation of
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the orogen, particularly regarding activity within the fore-
land thrust belt, has not yet emerged (Figure 2). The
mountain chain is often described as a convergent orogenic
wedge that has experienced orogen-perpendicular extension
coeval with and in close proximity to the locus of crustal
shortening and accretion. Several hypotheses have been
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Figure 1. Tectonic setting of the central Mediterranean
portion of the Nubia-Eurasia plate boundary zone. White
vector shows MORVEL estimate for Nubia-Eurasia relative
plate motion from DeMets et al. [2010]. The Adria region,
which underlies the Adriatic Sea, behaves like a microplate,
with motion (black vector) distinct from both Eurasia and
Nubia. Green lines represent mapped faults from the Geody-
namic Map of the Mediterranean project. Fault zones within
and around the northern Apennines (noap) in northern Italy
strike NW-SE, similar to the relative motion of the major
plates. The northern Apennines are located in the interior
of the plate boundary zone, such that they do not interact
directly with the Nubia plate. Instead, deformation within
the northern Apennines involves Adria-Eurasia relative
motion (black vector), which is oriented at high angle to
Nubia-Eurasia relative motion.

advanced to explain this unusual pairing of extension and
shortening, with important implications for the geodynamic
processes that characterize the closure of ocean basins, as
well as assessments of contemporary hazards. Proposed
hypotheses explaining the syn-convergent nature of the
northern Apennines include (1) rollback of a negatively
buoyant subducting slab causing extension of the overriding
plate analogous to back arc spreading inboard of retreating
oceanic subduction zones (Figure 2a) [Malinverno and
Ryan, 1986; Royden, 1993; Pialli and Alvarez, 1995],
(2) complete or partial detachment of an oceanic slab fol-
lowing collision with a buoyant continental passive margin
(Figure 2b) [Royden, 1993; Carminati et al., 1998; Wortel
and Spakman, 2000; Gvirtzman and Nur, 2001; Stein and
Sella, 2006], (3) upper plate retreat driven by resistance of
subducted slabs to the net westward drift of the lithosphere
relative to the mesosphere (Figure 2c¢) [Doglioni, 1990,
1991], and (4) late stage orogenic collapse, or gravitational
collapse of an over thickened orogenic wedge (Figure 2d)
[Platt, 1986; Carmignani and Kligfield, 1990; Jolivet et al.,
1998; Argnani et al., 2003]. A cornerstone argument of the
slab rollback interpretation for the northern Apennines
(Figure 2a)—one of the most widely accepted of the inter-
pretations for the Cenozoic history of the orogen—is the
observation that Nubia-Eurasia relative motion occurred at
high angle to the predominant direction of the crustal
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shortening underpinning the formation of the northern
Apennines orogen (Figure 1); assuming that Adria was a
promontory of Nubia for most of the early Cenozoic history
[e.g., Rosenbaum and Lister, 2004], this observation implies
that convergence across the Apennines fold and thrust belt
was driven by some process other than Nubia-Eurasia rela-
tive plate motion.

[3] The proposed hypotheses for late Cenozoic crustal
deformation imply different driving mechanisms for recent
deformation. Some authors advocate ongoing coeval short-
ening and extension in association with present-day slab
subduction and rollback [e.g., Galadini and Messina, 2004;
Picotti and Pazzaglia, 2008; Faccenda et al., 2009]. In
contrast, other authors argue that subduction (and by impli-
cation shortening), ceased during the late Quaternary after
the northern Apennines wedge overrode the thicker passive
margin of the Adria continental platform during Pliocene
time [e.g., Royden, 1993; Wortel and Spakman, 2000;
Di Bucci and Mazzoli, 2002]. According to the former
hypothesis, syn-convergent extension continues to charac-
terize the present-day deformation field, whereas the latter
hypothesis maintains that the system has undergone a more
or less complete transition from a Mio-Pliocene phase of
paired extension and shortening to a modern phase charac-
terized predominantly by orogenic collapse or continental
rifting with no ongoing subduction, shortening, or accretion
[e.g., Stein and Sella, 2006]. Discriminating between these
and other interpretations of the available geologic and geo-
physical data has proven difficult given that rates are small
and difficult to resolve.

[4] To address this problem, we designed a campaign
Global Positioning System (GPS) network across the north-
ern Apennines orogen. We adopted existing, older monu-
ments where available, and constructed new monuments to
increase the density of the network. The goal of the project
was to measure the pattern of present-day crustal deformation,
providing new data with which to assess the contemporary
strain rate field of the northern Apennines, contributing to
our understanding of the modern geodynamic setting. The
network was established in 2003 at a time of sparse prior
campaign and continuous GPS (CGPS) station coverage
within and around the orogen [e.g., Serpelloni et al., 2005].
However, since the establishment of our new campaign
network, a large number of continuous GPS (CGPS) net-
works were installed for both geodynamic and surveying
engineering applications, providing valuable additional data
with which to study the active deformation pattern. In this
paper, we present crustal deformation results derived from
the combined campaign and continuous GPS data set. We
describe our analysis of the GPS data in detail, and present
estimates for coordinate time series and site velocities rela-
tive to a Eurasia fixed reference frame. We use these kine-
matic results to investigate the pattern of present-day crustal
deformation in and around the northern Apennines orogen.
We speculate on the possible implications of the GPS
velocity field for geodynamic models, reserving a detailed
numerical assessment of deformation models for future work.

2. Active Tectonics Background

[5] The northern Apennines are bound to the northeast by
a deformation front that is buried beneath the Po Valley and
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Figure 2. Proposed end-member models for the contemporary geodynamic setting of the northern
Apennines from the literature. (a) Slab rollback drives upper plate extension within and behind the
retro-wedge, as well as shortening and accretion in the pro-wedge. (b) Slab tear (or complete slab
detachment) leads to isostatic uplift and extension of the orogen as asthenospheric mantle replaces
dense lithospheric mantle over the detached slab. Subduction of intact portions of the slab at the lead-
ing edge of the tear may be enhanced due to increased slab pull. (c) Upper plate retreat due to drift of
the lithosphere relative to the deeper mantle. The slab penetrates the deeper mantle and acts as a “drift
anchor,” resisting motion of the lower plate, which slows it relative to the upper plate. (d) Gravita-
tional collapse of an overthickened orogen drives a symmetric pattern of shortening in the pro- and

retro-wedges and extension in the orogen’s interior.

extends offshore beneath the western Adriatic Sea. Reflec-
tion profiles indicate that folding and thrusting associated
with this front are largely inactive at this time [Picotti and
Pazzaglia, 2008]. The range front of the Apennines lies
some 60 km to the southwest of the deformation front. The
range front is marked by a transition from gently dipping
strata of the Po basin, to uplifted bedrock of the Apennines,
which now stand some 2000 m above the Po plain. Benedetti
et al. [2003] and Picotti and Pazzaglia [2008] provide evi-
dence from range front geomorphology, Po basin stratigra-
phy, and other data that the topography of the range front
represents the forward dipping limb of an anticline overlying
a blind steeply dipping reverse fault. We refer to these
external and internal thrust belt features as the Apennine
Deformation Front (ADF) and the Apennine Range Front
(ARF), respectively (Figure 3).

[6] The Apennines are characterized by low-level seis-
micity, most of which is associated with normal faulting.
Diffuse, small magnitude earthquakes are frequent in the
northern Apennines (Figure 3), but larger earthquakes sel-
dom exceed magnitude M5.5. No earthquake of magnitude

greater than ~M6.5 has been recorded instrumentally or
inferred from historic data [Pondrelli et al., 2001]. The
record of historic seismicity in the northern Apennines goes
back to at least 1100 AD (cf., http://emidius.mi.ingv.it/
CPTIO08/). The four strongest historic earthquakes are each
thought to be in the range of M6.0 to M6.5: the 1501
Apennino Modenese, 1542 Mugello, 1688 Romagna, and
1920 Garfagnana earthquakes [Calderoni et al., 2009;
de Ferrari et al, 2010] (see also http://storing.ingv.it/
cfti4med/). The 1920 event appears to have been tentatively
associated with a mapped normal fault that bounds the
Garfagnana basin. The 1501, 1542, and 1688 events are
spatially associated with the ARF (Figure 3) [Montone and
Mariucci, 1999], but the shear sense for these earthquakes
is not known. More recent earthquakes from this region,
such as the 1971 My, 5.7, 1983 M, 5.0 Parma [Selvaggi et al.,
2001], 1996 M,, 5.4 Reggio Emilia [Selvaggi et al., 2001],
and 2003 M,, 5.3 Monghidoro [Piccinini et al., 2006], have
thrust-sense focal plane solutions (Figure 3).

[7] Slip vectors from major earthquakes throughout the
circum-Adriatic region, including the central and southern

3 0f23



B04408

; "\f

5 \nozzsmA
S042281A 9R070799A

3060780A .

S082495A

BENNETT ET AL.: NORTHERN APENNINES DEFORMATION

" ) 4" so42234 122497 A S

B04408

R091176B

@ R050776A @R051176A @
R050676A @ R050976A® R0911 76A@

e U 3032936‘\ R021402A

R091576A ®H091 677A @8042094A® 1

S101596E
B101596C
“R031398A £

R051100A\- 4

r \
n0801':%)()5.((\)600A
no1 59
SO70587A 15
‘ R012603A

R112601A
R022102A

R012603A R100297A

Figure 3. Focal mechanisms and seismicity pattern for instrumentally recorded earthquakes in the north-
ern Apennines [after Pondrelli et al., 2006]. Focal mechanism color indicates source of data from Harvard
and INGV catalogs (red) or Pondrelli et al. [2006] (blue). Focal mechanisms with gray background indi-
cate seismicity with focal depth greater than 20 km. ARF shows the general location of the Apennines
Range Front. ADF shows the location of the Apennines Deformation Front. Seismicity in the hinterland
of the northern Apennines orogen is characterized by normal fault mechanisms, whereas the foreland is
characterized by thrust events. Dates in boxes indicate locations of specific earthquakes referenced in
the text: 1501 Apennino Modenese, 1542 Mugello, 1688 Romagna, 1920 Garfagnana, 1971 Parma,
1983 Parma, 1996 Reggio Emilia, 2003 Monghidoro. There are no focal mechanisms shown for events
prior to 1971. Large white box labeled 1 shows the location of the inset at top right.

Apennines and the External Dinarides in Croatia and Mon-
tenegro have been used to infer the overall style of active
deformation characterizing the entire Apennines chain.
Anderson and Jackson [1987], D’ Agostino et al. [2008], and
Weber et al. [2010] used slip vector azimuths of selected
earthquakes within the Apennines and Dinarides orogens
to infer pervasive extensional deformation within the
Apennines along the entire length of the range, including
the northern Apennines, in association with counter-
clockwise rotation of one or more Adria microplates relative
to Eurasia. However, Anderson and Jackson [1987] used
slip vectors from only one earthquake in the northern
Apennines, and Weber et al. [2010] used only slip vectors
from outside of the northern Apennines. These previous
studies of northern Apennines kinematics based on focal
mechanism data did not incorporate the smaller magnitude
thrust earthquakes in the frontal belt of the northern
Apennines, nor did they test the possibility of paired belts

of active shortening and extension associated with the
northern Apennines.

[8] One of the factors limiting our understanding of the
active tectonic setting of the northern Apennines is that
most earthquakes do not rupture the surface [Galadini et al.,
2001; Galli et al., 2008]. This is particularly true of the
outermost foreland thrusts, which are buried beneath a thick
blanket of Plio-Quaternary sediments in the Po Plain. Seis-
mic reflection data have been used to infer the timing of
faulting associated with these Po Plain structures. These
reflection data reveal relatively undisturbed Quaternary
sediments, interpreted by some researchers as an indication
that shortening has ceased [e.g., Bertotti et al., 1997].
However, the absence of observable Quaternary deforma-
tion associated with the outermost ADF thrusts within the
Po Plain has also been interpreted as an indication of back-
stepping of the active thrust front to the ARF [e.g., Picotti
and Pazzaglia, 2008].
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Figure 4. Distribution of GPS stations in northern Italy
used in this study. In 2003, before we began our experiment,
the number of campaign (blue triangles) and continuous
(blue circles) GPS stations was severely limited. During
the course of our experiment, numerous additional stations
were installed throughout the area by ourselves and others.
Red triangles represent campaign (or semi-continuous)
GPS sites that were first surveyed during or after 2004.
Red circles represent continuous GPS stations that began
operation during or after 2004. Note that the majority of
the new (red) continuous (circles) GPS stations added since
2004 are located primarily outside of the northern Apen-
nines. The density of stations is greatly improved by the
new (red) campaign sites (triangles). Site names are pro-
vided for the 33 stations that formed the core sub-network
of our campaign/semi-continuous geodetic experiment, as
well as for select older continuous GPS stations (GENO,
MEDI, TORI, and UPAD), which are referred to in the text.

[9] Few geodetic studies have focused specifically on
the northern Apennines. Calais et al. [2002] report GPS
measurements of active deformation in the western Alps.
They estimated the motion of the Adriatic plate, which
subducted beneath the Apennines during Pliocene time,
using four CGPS stations in northern Italy (GENO, MEDI,
TORI, UPAD), all of which were located outboard of the
modern Apennine deformation front (Figure 4). Their results
were consistent with the kinematic analysis of Anderson and
Jackson [1987], which predicted counterclockwise rotation
of northern Adria with respect to a Eurasia-fixed reference
frame. A more detailed image of northern Apennines defor-
mation was obtained by Serpelloni et al. [2005, 2006], who
analyzed a large set of campaign and continuous GPS data
covering the central Mediterranean region (blue triangles
and circles, respectively, in Figure 4). Serpelloni et al.
provided the first synoptic view of Nubia-Eurasia plate
boundary zone deformation in the central Mediterranean,
demonstrating orogen-perpendicular extension along the
entire Apennine range, as well as providing evidence for
contemporary shortening within the external thrust belt of
the northern Apennines. However, the rate and pattern of
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this shortening were poorly resolved due to the sparse net-
work in northern Italy at the time of that study.

[10] The GPS data reported here provide a much better
resolved image of contemporary crustal deformation. We
focus mainly on estimation of site velocities and an assess-
ment of velocity uncertainty. We briefly speculate on pos-
sible implications of these data for geodynamics, but reserve
detailed geodynamic modeling of crustal kinematics for
future work.

3. Description of Network

[11] We here report results for 226 campaign and contin-
uous GPS stations, observed from the period 1996 to 2010
over an area that spans the northern Italian peninsula from
the Adriatic Sea to the Tyrrhenian Sea in the latitude range
of ~43.0°N to ~45.5°N (Figure 4). Our project started with
campaign-style observation of 23 new monuments, and 10
existing benchmarks. Most stations are concentrated within
the northern Apennines Mountains or over the Apennines’
frontal fold and thrust belt buried beneath the Po Plain.
Several stations (AULL, CERV, DANN, GESS, MASC,
MACU, SRGF) were occupied semi-continuously, record-
ing data for a few months per campaign during various years
of the experiment. We ran two additional stations (COLD
and SPEL) continuously for the period of 2004-2007. The
10 existing benchmarks that we adopted have a prior history
of measurements, which are described by Serpelloni et al.
[2005].

[12] Most of our new monuments consist of stainless-steel
benchmarks [Cavaliere et al., 2010] anchored 20 c¢m into
either exposed rock outcrops or into meters-thick castle
walls built directly on bedrock. (Six suboptimal monuments
are discussed below.) Each of the new stainless-steel
benchmarks was precisely leveled. Stainless-steel masts of
various heights in the range of 10 to 25 cm were threaded
into the benchmarks. Antennas were attached directly to
these masts and oriented to true north. This benchmark-mast
system provided sufficient long-term stability for continuous
or semi-continuous deployments. Monumentation for the
existing sites involve geodetic markers set on concrete pillars.

[13] Six of the new GPS stations are based on suboptimal
monumentation on brick or wooden buildings, due to the
absence of suitable outcrops or large stone castle structures.
For one station (SPEL), we used a rod attached to the roof
of a large building at the apex of a stone walled medieval
hilltop city, presumably constructed on a stable rock founda-
tion. This station was operated continuously for the majority
of the experiment (mid-2005 to mid-2008), which allows us
to precisely assess the short-term stability of the monument.
The five additional exception sites involved installation of
the leveled fixed-height stainless steel monuments on the
roofs of buildings (APPI, COLD, DANN, MACU, MVGL).
Site COLD was occupied continuously from mid-2004 to
mid-2008 allowing us to assess its short-term stability.
Five of the six suboptimal sites are fortuitously located
within a region spanned by a new, dense network of con-
tinuous GPS stations operated by the Laboratorio di Topo-
grafia (LabTopo) University of Perugia (cf., http://labtopo.
ing.unipg.it/labtopo/). This particular network was estab-
lished for the purposes of surveying engineering applications,
but has been shown in previous studies [e.g., Hreinsdottir
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and Bennett, 2009; D’ Agostino et al., 2009] to produce reli-
able data for tectonics applications.

[14] Those stations that were not operated continuously
were surveyed using GPS, nominally once per year in the
late Summer/early Fall [Cavaliere et al., 2010]. Occupation
campaigns typically lasted about five to seven days each.
We made a concerted effort to conduct each campaign
during the same season each year in order to mitigate the
effects of seasonal site motion on our estimates for secular
site velocity, as described in more detail below. Some sta-
tions were not installed until the second or third campaign,
and a subset of stations were occupied again in 2008 fol-
lowing the main phase of our GPS experiment. For most
measurements, we used Trimble Zephyr Geodetic antennas
and either Trimble NetRS or Trimble R7 receivers bor-
rowed from the UNAVCO Facility pool. Some data were
collected by INGV personnel using either Leica GRX1200
series receivers with AX1202 antennas or Ashtech receivers
with choke-ring antennas. Older campaign measurements
were also collected with a variety of equipment types.

4. GPS Data Analysis

4.1. Analysis of Phase Data and Estimation
of Coordinate Time Series

[15] We analyzed all of these campaign GPS data together
with data from ~1500 continuous GPS (CGPS) stations, 187
of which are located within our northern Apennines study
region (Figure 4). The remaining ~1300 stations are located
throughout the Eurasian plate interior and globally and are
not reported on here. This broad distribution of CGPS sta-
tions facilitated transformation between global and Eurasia-
fixed reference frames, and allowed us to estimate precise
adjustments to orbital and Earth orientation parameters (as
described next).

[16] We analyzed all of the available data following
standard methods using the GAMIT/GLOBK software
version 10.3 [Herring et al., 2010a, 2010b], which incor-
porates International GNSS Service (IGS) absolute phase
center and ocean-loading (FES2004) models. We used pre-
cise IGS products for orbital parameters and Earth orientation
parameters as a priori constraints, but we estimated correc-
tions to these a priori estimates. In addition to estimating
adjustments to Earth orientation and satellite-orbital para-
meters, we used GAMIT to estimate zenith tropospheric
delay parameters, carrier-phase ambiguities, and adjustments
to a priori station coordinates for each UTC day for which we
had data. The GPS phase data errors were estimated during
the GAMIT analyses using an elevation-angle dependent
model through an iterative analysis procedure whereby the
elevation dependence was determined from the observed
scatter of phase residuals [Herring et al., 2010a, 2010b].

[17] We then used GLOBK to determine the evolution of
our site coordinate estimates through time by minimizing the
net rotation and translation among the coordinate adjust-
ments [Dong et al., 1998], relative to the ITRF05-Eurasia
reference frame [Altamimi et al., 2007]. We obtained this
Eurasia-fixed reference frame by rotating the global ITRF05
reference velocities to the Eurasia-fixed frame using the
transformation parameters provided by Altamimi et al.
[2007]. The weighted root-mean squared (WRMS) scatter
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among stations within the Eurasia plate interior is in the
range ~0.3 to 0.6 mm/yr, depending on the set of stations
selected. The small RMS indicates that the realized reference
frame is consistent with very small rotation rate relative to
this frame. Errors associated with the realization of a refer-
ence frame manifest primarily as common-mode motions
across the network. Common-mode motions may take the
form of rigid body translation, rotations, as well as seasonal
variations of the entire network. When the number of sta-
tions available to define the reference frame is low, distor-
tions of the network may also occur that mimic crustal strain
[Larson and Webb, 1991]. However, the global reference
frame for our analysis is based on a very large number
(>100) of globally distributed stations so we assume that
local distortions associated with reference frame error are
negligible. Our analysis of the deformation field, presented
below, is based primarily on velocity gradients and is thus
only marginally dependent on the velocity reference frame
as described in detail below.

4.2. Time Series Analysis and Assessment
of Common-Mode Variations

[18] The coordinate time series for each station obtained
from our GAMIT/GLOBK analysis represents the evolution
of position for that site with respect to a Eurasia-fixed ref-
erence frame. Because the northern Apennines deformation
signals that we seek to scrutinize are small (of order 1 mm/yr),
we performed a detailed analysis of the coordinate time series
in an attempt to form the most precise estimates possible,
and develop an understanding of the uncertainties associated
with the velocity data set as completely as possible.

[19] We accounted for potential common-mode reference
frame errors by analyzing the kinematics of the site motions
recorded by these coordinate time series in several steps.
First, we estimated and removed a “Common-Mode Signal”
(CMYS) from the coordinate time series, assuming a Gaussian
white noise error model. The model for CMS consists of a
set of parameters for net-translational velocity and seasonal-
site motion for annual and semi-annual periods, representing
the trend and periodic motions averaged among all of the
continuous sites. We estimated the parameters of the CMS
using data from the continuous sites, but we reduced the
coordinate time series for both continuous and campaign
sites using the predicted displacements associated with the
inferred CMS model. The slopes of the resulting Common-
mode Signal Reduced (CSR) time series represent site
motions associated with rigid-body rotation relative to the
continuous GPS network centroid, as well as the deforma-
tional component of velocity representing strain accumula-
tion within the network. CSR time series for four select
stations are shown in Figure 5.

[20] We used the CSR time series to estimate secular
velocities (“CSR velocities”) and annual and semi-annual
periodic motions at each site, component-by-component. The
residual time series, which are obtained by subtracting the
best fit kinematic models from the CSR time series, were then
stacked and averaged to form an estimate for common-
mode noise, similar to the procedure described by Wdowinski
et al. [1997]. We subtracted this Common-mode Noise
Process (CNP) from the residual time series forming a Final
Filtered Residual (FFR) time series from which we assess
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Figure 5. Representative time series for IGS site MEDI,
continuous site SPELL, semi-continuous site AULL, and
campaign site SMNT. The gray vertical line crossing the
MEDI time series represents an epoch for which an antenna
offset was estimated during the time series analysis.

measurement precision using standard root-mean square
(RMS) statistics.

[21] Table 1 lists the CSR estimates for velocity and peri-
odic terms, and RMS statistics associated with the residual-
error time series. We note that the NRMS values, which
represent misfit of the kinematic models to the coordinate
times series are on average about 0.5 for the continuous sta-
tions (Table 1), indicating that the scaling of the phase data
errors determined at the GAMIT stage of processing con-
servatively characterize the precision of the continuous
coordinate time series data. NRMS values for the campaign
stations are on average near unity. If we were to assume that
the continuous coordinate time series data were uncorrelated
with time, we would rescale the uncertainties in the kinematic
parameters derived from the continuous time series by the
NRMS value 0.5, which would decrease the formal uncer-
tainties associated with the parameter estimates by a factor of
two. However, we choose to forego this rescaling in an
attempt to account (informally) for possible unmodeled
temporal correlations within each coordinate time series. We
do not expect that parameter estimates derived from the
temporally sparse campaign time series data to be affected
appreciably by temporal correlations. A more accurate anal-
ysis of the possible error processes contaminating the time
series data would require an understanding of the power
spectral density of the temporally correlated components of
the measurement errors as well as any real, non-secular site
motions as might arise from environmental loads [e.g.,
Langbein, 2008; Bennett, 2008]. Here, we assume that the
informal factor of ~2 inflation of uncertainties implied by the
NRMS of 0.5 adequately approximates the true error statis-
tics, noting that additional modest inflation of the velocity
errors would not fundamentally change our conclusions.

[22] Our ability to resolve secular deformation within the
plate boundary zone is independent of rigid-body transla-
tions and rotations of the entire network associated with the
frame definition. Thus, this component of reference-frame
error is of little consequence. However, common-mode
periodic site motions may bias studies of strain rate,
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depending on the observation history at each station.
Blewitt and Lavallée [2002] showed that, if unaccounted
for, periodic-site motion would bias estimates for secular
velocity depending on the duration of coordinate time
series. If all stations of a local- or regional-scale network
operated over precisely the same period of time, we would
expect any velocity biases associated with these common-
mode signals to also be common, and thus not contribute to
estimates for strain rate, which are based on linear combi-
nations of velocity differences. However, when coordinate
time series data are measured for different time periods,
biases may not cancel completely.

[23] The data set presented in this manuscript is quite
heterogeneous, both in terms of observation strategy (cam-
paign, semi-continuous, continuous) and observation period.
For continuous stations, there is sufficient temporal density
of data that periodic site motions can be estimated simulta-
neously with secular site motions. However, this is not the
case for annual-campaign stations, and is only marginally
true for semi-continuous stations. We attempted to mitigate
the effect of periodic site motions on our campaign data set
in three ways. First, our campaign observations were col-
lected during the same season each year. Assuming that the
amplitudes of the periodic motions are more or less constant,
we expect the campaign monuments to sense the same
repeating offsets each year. Second, we consider only sta-
tions that have been measured repeatedly over a period of
>1.5 years. This helps to mitigate the biases associated with
periodic motion, which decreases with time [Blewitt and
Lavallée, 2002], even when the amplitudes of the periodic
motions are not constant with time [Bennett, 2008]. Third,
we reduced the campaign coordinate time series data set
using the common mode periodic site motions obtained from
the available continuous network of stations within our
northern Italy study area. That is, we calculated the com-
mon-mode signal (CMS) motion for each epoch at each
campaign station using the inferred CMS model derived
from the CGPS data, and subtracted the calculated motion
from each campaign time series.

5. Results

5.1.

[24] Velocities obtained from the Common-mode Signal
Reduced (CSR) time series are not expressed in the Eurasia
frame because they have no net translational velocity. We
derived “corrected” velocity estimates with respect to the
Eurasia-fixed frame for all sites by adding the common-
mode signal (CMS) velocity to the CSR velocity estimates
for each station. We refer to the resulting estimates as
Common-mode Seasonal Corrected (CSC) velocities.

[25] The horizontal components of the CSC velocity esti-
mates, which are relative to the Eurasia reference frame, are
plotted in Figure 6. Vertical velocity estimates determined
from the CSR time series are shown in Figure 7. Because the
common-mode vertical rate has been subtracted from the
CSR time series these vertical rates refer to a no-net vertical
frame of reference. The no-net-vertical frame determined
here is similar in effect to some previous studies utilizing
vertical rates for analysis of active tectonics [Bennett and
Hreinsdottir, 2007; Bennett et al., 2007; Hreinsdottir and
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Figure 6. (a) Estimates for horizontal velocity (red vectors)
from analysis described in the main text. Velocity reference
frame is fixed to the stable interior of the Eurasia plate. Error
ellipses represent 95% confidence regions. Green lines rep-
resent mapped faults as in Figure 1. (b) Color contours of a
smoothing spline fit to the rates of motion. The black region
indicates rates <0.5 mm/yr, which we here adopt as an
ad hoc indication of the stable interior region of the Eurasia
plate. Vectors are shown at a reduced scale relative to
Figure 6a, and are plotted to give some indication of where
the spline fit was constrained by actual observations. Interpo-
lated rates are poorly constrained over the marine regions—
including the Ligurian, Tyrrhenian, and Adriatic Seas—where
there are no GPS stations. We present this contour map sim-
ply to illustrate that the fastest rates relative to Eurasia
within our study region are found along the frontal portion
of the northern Apennines orogen. The interpolated rates
are not used elsewhere in our interpretations.
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Bennett, 2009; Buble et al., 2010; Velasco et al., 2010], with
the exception that here we include periodic terms in the
common-mode model. The amplitudes of the north, east, and
vertical annual signals are contoured in Figure 8 along with
the distribution of WRMS scatter in the north, east, and
vertical coordinate components.

[26] Differences between the velocity estimates based on
the pre-filtered time series and CSC velocity estimates are
zero for the continuous stations. This is because periodic site
motions were included in the kinematic models used to
estimate the pre-filtered results, CMS, and CSR velocities.
Differences between the various velocity estimates for the
campaign GPS stations are nonzero, but statistically insig-
nificant. Small differences arise because periodic motions
were not part of the kinematic models used to estimate pre-
filtered and CSR velocities for these stations, whereas the
CSR time series were corrected for CMS periodic motions
(derived from the continuous stations). These differences are
small because of the small amplitude (<0.5 mm horizontal,
<3 mm vertical) of the seasonal terms (Table 1) and also
owing to our campaign strategy, which involved multiyear
observations during the same season each year. Due to the
limited temporal sampling of campaign GPS measurements,
we could not estimate the total periodic site motion for these
stations. We rely on our observation strategy to mitigate the
effect of possible site-specific periodic motion for campaign
sites. We discuss the amplitudes of the spatially variable
components of the continuous stations in more detail below.

46°N

44°N

42°N

6°E 8°E

Figure 7. Vertical velocity estimates derived from CSR
time series. White vectors show vertical rates with error bars
representing 2-0 confidence regions. The color contour
represents a smoothed spline model fit to the estimated rates.
In general, uplift (positive vertical rate) appears to occur
within the northern Apennines and Alps orogens, whereas
subsidence (negativevertical rate) occurs primarily in the
Po Plain, particularly along the coastal portion of the Po
Plain. The apparently isolated uplift at latitude 41.5°N could
be associated with a volcanic source.
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[27] The horizontal CSR velocities show significant var-
iations in the style and amount of crustal motion across
northern Italy (Figure 6). In general, velocities west of about
10°E longitude are less than 1 mm/yr, decreasing with
increasing distance to the north and west toward the interior
of the Eurasia plate (Figure 6b). Velocities to the east of
10°E longitude are generally greater than 1 mm/yr. The
largest rates, >4 mm/yr, are observed at sites within the
northern Apennines (Figure 6b). Velocities for Istria, Croatia,
which is within the rigid interior of the Northern Adria
microplate [e.g., Weber et al., 2010] are about 3 mm/yr
(Figure 6b), somewhat lower than velocities in the northern
Apennines. At the 45°N parallel, there is an abrupt decrease
in velocity between the 11 to 12°E meridians (Figure 6b).
This decrease indicates NE-SW horizontal shortening coin-
ciding with the ARF (Figures 1 and 6a), which is a zone
dominated by thrust-sense seismicity (Figure 3).

[28] The vertical CSR velocities (in the no-net-vertical
velocity reference frame) are shown in Figure 7. The most
striking feature of the vertical velocity field is the general
absence of long-wavelength variations. Most stations have
small vertical motions (|V,| < 1 mm/yr) (Table 1), but there
are a few prominent exceptions. The largest vertical veloci-
ties are in the eastern Po Plain region, along the Adriatic
coast (Figure 7). Stations in this location reveal subsidence
at rates in excess of 3 mm/yr. These estimates are consistent
with rates inferred independently by Baldi et al. [2009]. This
motion is probably related to long-term subsidence given
that it appears to be independent of local cities (which pump
groundwater) and is observed over a distances in excess of
100 km. Long-term subsidence could be caused by loading
associated with rapid sedimentation [Bertotti et al., 1997,
Picotti and Pazzaglia, 2008; Carminati et al., 2003a], or
could represent a flexural response to slab sinking [Carminati
et al., 2003b]. Uplift exceeding 1 mm/yr is observed along
the northern Apennines orogen, and at various locations
within the Alps. The broadest and most spatially coherent
uplift anomaly occurs in the eastern Alps at 12°E longitude.
Vertical rates are generally quite small in coastal regions,
consistent with the findings of Bennett and Hreinsdottir
[2007] and Buble et al. [2010].

[20] Figure 8 shows contour maps of the CSR-based esti-
mates for the amplitudes of annual site motion in all three
coordinate components. Also shown in Figure 8 are contours
of the WRMS scatters of site motion for the respective
coordinate components. Figure 8 shows that there is little, if
any, correlation between annual site motion and long-term
variance in site velocities. Langbein [2008] observed mar-
ginally significant correlations between annual motions
and long-term noise statistics for continuous GPS networks

6°E 8°E 10°E 12°E 14°E

46°N

44°N

DO C~+——0 3>

42°N

46°N

44°N

DO C~+——0 3>

42°N

46°N

44°N

Figure 8. Color contours of the amplitude of annual site
motions for each coordinate component versus line contours
of WRMS scatter for the same components. Contours are
derived from smoothing spline fits to the amplitude and
WRMS values at each site. (a) North components. Thick
black line contours for WRMS at 2 mm increments. (b) East
components. Thick black line contours for WRMS at 2 mm
6'E 8'E 10°E 12°E 14°E increments. (c) Vertical components. Thick black line con-
tours for WRMS at 3 mm increments.

PQCc~——0T 3>

42°N
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Figure 9. Strain rate field inferred from GPS velocities using method described by Shen et al. [1996].
Red indicates extension, blue indicates shortening, and green arrows represent the velocity data from

which the strain rate field was derived.

in southern California. We find no apparent correlation
between seasonal site motions and scatter, suggesting that
seasonal perturbations to site motion are adequately accounted
for in our time series analysis. By visual inspection of the
residual time series, we also find no evidence for non-periodic
transients in the coordinate time series, although it is possible
that more sophisticated methods for identifying transient
signals in GPS time series might reveal signals that are dif-
ficult to discriminate by visual inspection.

[30] The NRMS values for the horizontal components of
the common-mode noise process are near one, indicating
scatter at a level consistent with the uncertainty estimates.
However, the NRMS value for the vertical component of
the common-mode noise is 2.6, indicating scatter that is
larger than expected based on the uncertainty estimates. The
WRMS scatter of the horizontal components is 0.3 mm,
significantly smaller (<30%) than the WRMS miisfits of the
kinematic model to the CSR time series. These results indi-
cate that the common-mode noise does not contribute
appreciably to the total error budget for horizontal compo-
nents. In contrast, the WRMS scatter of the vertical com-
ponent of the common-mode noise process is 2.9 mm/yr,
which is >50% of the scatter associated with most of the
continuous GPS stations.

[31] We find a very small common-mode periodic site
motion in the horizontal components. Amplitudes of the
annual components of the common-mode seasonal motion
are 0.167 £ 0.008 mm and 0.124 £ 0.007 mm for the north
and east, respectively. Amplitudes of the semi-annual com-
ponents of the common-mode seasonal site motion are even
smaller, 0.008 + 0.008 mm and 0.038 &+ 0.007 mm for north
and east, respectively. The amplitudes for common-mode
annual and semi-annual for the vertical component are
2.55 £ 0.03 mm and 0.54 £ 0.03 mm, respectively. For
comparison, amplitudes of the site-specific component of
annual motion exceed 2 mm in the horizontal components
and 3 mm in the vertical.

5.2. Strain Rate Analysis

[32] We use the estimated CSR horizontal velocities to
invert for the velocity gradient tensor field. We use the
approach described by Shen et al. [1996], which accounts for
velocity uncertainties, network geometry and inter-station
distances. Strain and rotation rates are estimated on a reg-
ular 0.25° grid using the velocity data accounting for their
uncertainties by weighted least squares. The grid repre-
senting the model domain extends between longitude 7° and
15°E and latitude 41° and 47°N. Each velocity data point
was re-weighted by a Gaussian function exp(—AR?/D?),
where AR represents the distance between the geodetic
station associated with the data point and the grid point at
which strain is to be evaluated. D is a smoothing parameter
that is optimally determined, for each node of the regular
grid, through balancing the trade-off between the formal
strain rate uncertainty estimate and the total weight assigned
to the data (cf. Shen et al. [2007] for more details). According
to this weighting scheme, measurements made closer to a
grid point contribute more to the strain rate estimate at that
point, and the smoothing is applied according to the station
distribution and density. The re-weighting determines the
degree of smoothing around a given spot and the uncer-
tainties of the strain estimates, while the D value can be
considered as an indicator of how local or regional the strain
rate tensor inverted at each grid point is. Adopting this
approach to estimate the strain rate field from horizontal
velocities in Figure 6a, we obtain D values ranging between
30 and 150 km (Figure 9); most values indicate that our
strain rate field is resolved at spatial wavelengths longer
than about 50 km.

[33] The estimated strain rate field is shown in Figure 9.
Within and west of the northern Apennines, where the strain
rate field is well resolved, the deformation field is dominated
by extensional strain. The largest rates of extensional strain
are observed near the crest of the range. To the northeast of
the orogen, in the Po Plain and eastern Alps, the deformation
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Figure 10. (a) Location of two velocity profiles (A-A’ and A-A") representing different segments of the
northern Apennines. The southern profile (A-A’) crosses the northern Apennines orogen at the latitude
where potential present-day shortening is predominantly offshore, and onshore strain accumulation is
dominated by extension. The northern profile (A-A") crosses the northern Apennines orogen, the Po Plain,
and Eastern Alps, recording shortening across the ARF and eastern Alps deformation front, but not the
ADF. The general location of the Adria-Eurasia Euler pole is represented by a gold star. Adria rotates
counter clockwise relative to the Eurasia plate as indicated by the golden arcuate arrow. (b) Profile parallel
components of horizontal velocities for sites within 50 km of profile A-A’ (red) and profile A-A" (blue),
respectively. Error bars represent 1-o uncertainties. Extensional strain is apparent in the horizontal data for
both profiles between the Tyrrhenian and northern Apennines, as indicated by an increase in northeast-
directed velocity with northeast distance along the profile (orthogonal to the range). Shortening is apparent
between the northern Apennines and Po Plain. A smaller amount of shortening (totaling ~1 mm/yr across
a distance of ~50 km) is also apparent between the Po Plain and the eastern Alps. There is no signal appar-
ent at the location of the ADF. The solid black curve overlying the data points, representing a simple
model for crustal velocity calculated using three buried edge dislocations in an elastic halfspace, repro-
duces the 1st order features of the velocity profile. (c) Schematic diagram showing the relationship
between Apennines topography, inferred crustal faults, and the Apennines slab, which is imaged tomogra-
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phically at depths between about 100 to 300 km depth.

field is dominated by crustal shortening. The largest rates of
shortening are imaged in the central part of the Po Plain. The
amplitudes of strain rate for both shortening and extension
are less than 100 nanostrain/yr, which is typical of diffusely
deforming continental plate boundary zones (e.g., the Basin
and Range Province, the Tibetan plateau) [e.g., Kreemer
et al., 2003].

6. Discussion

6.1. Crusal Velocity and Strain Rate Pattern

[34] Our GPS velocity estimates provide a new, detailed
view of the active deformation within the northern Apen-
nines and adjacent areas. We find general consistency
between the strain rate field we have inferred from GPS
velocities and the strain rate field of Barani et al. [2010],
which is based on the tensor summation of earthquake focal
mechanisms. Our velocity estimates are also consistent with
previous inferences on Adria microplate motion based on
sparse GPS [Calais et al., 2002; Battaglia et al., 2004;
Serpelloni et al., 2005], and/or earthquake focal mechanism
data [Anderson and Jackson, 1987; D’ Agostino et al., 2008;

Weber et al., 2010]. The advantages of the GPS method for
determining the strain rate field relative to inferences based
on focal mechanisms are that (1) GPS strain rate estimates
are not restricted to seismogenic zones, and (2) GPS records
the complete instantaneous strain rate field, including
(ephemeral) elastic and aseismic strain components of
crustal strain accumulation. GPS measurements of active
crustal velocity also directly record relative motions among
non- or slowly deforming microplates, which can only be
inferred indirectly from the focal mechanisms of earthquakes
that occurred within the deforming margins of the microplates.

[35] One consideration when interpreting strain rate esti-
mates derived from point measurements of crustal velocity
is the inherent non-uniqueness of the strain rate estimation
problem. The resolution of strain rate fields inferred from
the discrete set of GPS velocity estimates is necessarily
limited by the distribution of stations, and observational
errors [e.g., Baxter et al., 2011]. Strain rate estimates
derived from geodetic data may be thought of as spatially
smoothed, low-pass filtered versions of the true strain rate
field, such that some short-wavelength features of the true
field may not be apparent in the estimated field. Despite
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such limitations, our strain rate model (Figure 9) clearly
reveals a marked transition from horizontal extension to
horizontal shortening across the Apennine Range front
(ARF) that is not likely to be an artifact of the strain rate
estimation procedure.

[36] To further explore the details of this strain rate tran-
sition, we project the velocity data onto profiles orthogonal
to the strike of the Apennines range (Figure 10). The pro-
files have been constructed in an attempt to account for the
two-dimensional nature of the horizontal velocity field.
Because deformation in and around the northern Apennines
is kinematically linked to the motion of the northern Adria
microplate, which rotates rapidly counterclockwise relative
to Eurasia about a pole located in the southwestern Alps
[e.g., D’Agostino et al., 2008; Weber et al., 2010], velocities
depend strongly on the azimuth of the GPS stations’ loca-
tions relative to the Euler pole location. Consequently, sta-
tions immediately east of the pole tend to be directed
northward, and stations immediately south of the pole tend
to be directed eastward. We accounted for this effect by
projecting data onto two profiles locally oriented perpen-
dicular to the range crest (Figure 10a). The independent
profiles are plotted relative to a common abscissa, by shift-
ing the x-axes so as to align the projected data to a common
origin relative to the crest of the range (Figure 10b). In
forming this one-dimensional representation of the two-
dimensional velocity field, we made no attempt to adjust for
systematic increases in rate with distance from the northern
Adria Euler pole. The similarity of the rate profiles after
alignment in terms of overall pattern and amplitude of
motion (Figure 10b) suggests that this latter effect is of
second order.

[37] The composite velocity profile (Figure 10b) generally
supports inferences derived from the two-dimensional hori-
zontal strain rate field (Figure 9). To the west of the Apen-
nines crest, we observe a northeast-directed velocity gradient.
Rates increase toward the northeast across the network,
indicating extensional strain accumulation. A maximum rate
of ~4 mm/yr is observed near the crest of the range. To
the northeast of the crest, velocities decrease rapidly across
the ARF. A smaller, but nevertheless significant, drop in
velocities occurs across the front of the eastern Alps. These
decreases in the northeast components of velocity with
northeast distance clearly indicate shortening there. The
relatively steeper slope of the velocity gradient associated
with the shortening (~3 mm/yr over ~60 km) as compared
to that associated with the extending portion of the range
(~4 mm/yr over ~180 km) implies roughly a factor of
two difference between horizontal shortening and extension
rates (50 versus 22 nanostrain/yr, respectively). The net
velocity difference across the Apennines range, which
represents motion of Adria relative to Eurasia (including
Corsica and Sardinia), indicates net divergence of nearly
2 mm/yr, consistent with previous inferences [e.g., Stein
and Sella, 2006].

[38] Vertical velocities inferred from our analysis are
generally consistent with the recent study of Baldi et al.
[2009], which was based on a subset of the data set of
the continuous GPS stations considered here, with broad
subsidence in the Po Plain and uplift in the Apennines and
eastern Alps. However, our study clearly reveals small but
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systematic uplift of mountainous regions not apparent in the
Baldi et al. study.

[39] The new crustal motion data set that we present
here clearly reveals active shortening along the Apennines
range front. This result is consistent with the distribution
of thrust-sense earthquakes, which tend to be located
along the external front of the range (Figure 3). Hypocenters
of instrumentally recorded earthquakes show that thrust
events extend to great depths beneath the range, with focal
mechanisms that are consistent with a steeply southwest-
dipping thrust plane (Figure 3). The narrow width (~60 km)
of the zone of crustal shortening, coupled with the observed
uplift of the Apennines crest relative to the Po Plain is also
compatible with deformation being controlled by a steeply
dipping structure; a shallow dipping fault might produce a
broader distribution of deformation and a lower ratio of
vertical to horizontal motion across the range front. This
inference based on crustal velocities agrees well with the
geomorphologic studies of Picotti and Pazzaglia [2008] and
Benedetti et al. [2003].

6.2.

[40] To further explore the implications of the GPS mea-
surements for crustal deformation mechanisms, we forward
modeled the velocity profile data in Figure 10 assuming
three crustal faults, representing a low angle normal fault
(LANF) bounding the western range front of the northern
Apennines, a steep dipping reverse fault representing the
Apennines Range Front (ARF) fault, and a steep dipping
reverse fault bounding the southeastern Alps (Figure 10b).
The parameters describing the Apennine bounding model
faults are based loosely on the previous work of Hreinsdottir
and Bennett [2009] and Picotti and Pazzaglia [2008]. To
model the crustal strain associated with all three faults, we
used expressions for an edge dislocation embedded in an
elastic half-space [e.g., Segall, 2010]. We calculated surface
velocity assuming values for dislocation location, locking
depth, dip, and displacement rate. We chose the locations of
the dislocation planes such that the plane would intersect the
Earth’s surface at the respective range front (Figure 10b).
We assumed a locking depth of 12 km. We prescribed dips
of 20° for the LANF, and 50° for both reverse faults. We
assigned slip rates to the LANF, and the ARF and SE Alpine
reverse faults of 3.6 mm/yr, 2.9 mm/yr, and 1.1 mm/yr,
respectively. These slip rates were not determined by a least
squares fit to the data, though they do provide a reasonable
first-order fit to the data. Instead, they were based loosely on
previous studies [e.g., Benedetti et al., 2003; D’Agostino
et al., 2005; Picotti and Pazzaglia, 2008; Hreinsdottir and
Bennett, 2009] and a fit to the velocity data by eye. The
goodness of fit is quantified by the WRMS misfit of the
residual velocities after subtracting the forward model from
the data. For the prescribed slip rates the WRMS statistic is
1.9 mm/yr and the associated variance reduction is 75%.
We leave development and quantitative evaluation of more
realistic deformation models, possibly including a formal
inversion for fault model parameters and a numerical
assessment of the possible relationships between surface
motion and slab dynamics for future study.

[41] The overall consistency we find between GPS
velocity estimates and a simple buried dislocation model

Implications for Crustal Deformation

17 of 23



B04408

A P
12 kmi < 121km
LN J20° 500
m/yr / 2.9 mm/yr 45km
1 9mm/yr 34mm/yr l
Qs e @l
Mantle ,
i
10 mm/yr
1
1
:
B

12 km

\ 20° 50°

3 6 mm/yr 2.9 mm/yr 45 km
1.0 mm/yr
19 mm/yr 3.4 mm/yr

Crust

Mantle l

Figure 11. Numerically equivalent dislocations models
illustrating the inherent non-uniqueness of the buried dislo-
cation model. (a) Two dipping finite length dislocations with
opposing dip in the mid-to lower crust meet at a depth of
45 km. Three dislocations radiate from the point intersec-
tion: two horizontal and one vertical edge dislocation. This
model generates the same surface velocity profile as shown
in Figure 10b, which was calculated assuming two edge dis-
locations of infinite extent. (b) Same as for the model
depicted in Figure 11a except that the vertical edge disloca-
tion is replaced by a horizontal tensile dislocation. Neither of
the models shown in Figures 11a or 11b requires truncation
of one dislocation by another.

(Figure 11b)—which was inspired by fault dips, slip sense,
and slip rate based on limited existing geological and geo-
physical data [e.g., Picotti and Pazzaglia, 2008; Hreinsdottir
and Bennett, 2009]—is encouraging. However, several issues
warrant caution when interpreting elastic dislocations models
in a geodynamic context.

[42] First, Earth is not a homogeneous elastic halfspace.
At the scale of our study, which spans a modest area of
~250,000 km?, encompassing northern Italy and neighbor-
ing regions, both the curvature of the Earth and vertical
stratification of elastic moduli within the crust and mantle
should have only second order effects that would not affect
our basic conclusions [e.g., Sun and Okubo, 2002]. A more
important consideration, however, is the extent to which
inelastic behaviors contribute to the present-day deformation
field as sampled by GPS geodesy. Inelastic behavior could
take a number of forms falling into two broad categories:
(1) viscoelastic behavior, resulting in short-term transient
deformation following large earthquakes or other episodic
sources of deviatoric stress change, and (2) viscoplastic
behavior in the form of folding, flow, and other varieties of
non-recoverable penetrative deformation.

[43] Based on the historic earthquake record, we expect
negligible transient deformation associated with the visco-
elastic response of the northern Apennines lithosphere to
stresses induced by large earthquakes. Only one earthquake

BENNETT ET AL.: NORTHERN APENNINES DEFORMATION

B04408

in northern Italy (1920 Garfagnana) had a magnitude greater
than M6 during the past century. The smaller more recent
events (e.g., 1971 My, 5.7, 1983 M; 5.0 Parma, 1996 M,, 5.4
Reggio Emilia, and 2003 M, 5.3 Monghidoro) may not have
been large enough to excite flow of lower crustal or upper
mantle rocks sufficient to appreciably modify the secular
strain rate field at the surface. Furthermore, we assume that
crustal strain associated with ongoing glacial isostatic
adjustment (GIA) following loss of Fennoscandian or Alpine
glacial mass is negligible. Velocity gradients in northern
Italy associated with Pleistocene deglaciation in distant
Fennoscandia appear to generate very low strain rates at the
latitude of northern Italy according to current models [e.g.,
Hill et al., 2010]. Ongoing deformation associated with the
loss of the smaller Alpine Wiirm glacier is expected to result
in small amplitude (<~0.5 mm/yr) vertical deformation
localized in the Alps [Stocchi et al., 2005]. Even if post-
seismic and GIA signals in the northern Apennines con-
tribute observably to the strain rate field in the northern
Apennines, they are unlikely to change the character of the
deformation field enough to alter our main conclusions.

[44] The question of whether viscoplastic deformation of
the northern Apennines lithosphere contributes appreciably
to the contemporary deformation field on time scales of
relevance to GPS geodesy is largely unknown. In seismi-
cally active plate boundary zones it is customary to model
the crustal strain field assuming some combination of elastic
and viscoelastic materials. These rheologies are thought to
provide adequate descriptions of deformation on time scales
of the order of the earthquake cycle. However, implicit to
this assumption is the expectation that the steady state
accumulation of strain in the crust—upon which viscoelastic
transients are superimposed—represents recoverable elastic
strain, which is episodically converted into localized fault
displacement during discrete slip events. In many continen-
tal plate boundary zones, especially where rates of defor-
mation are of order 10 mm/yr or larger, there appears to be
general agreement between geologically inferred fault slip
rates and geodetically inferred fault slip rates, suggesting
that crustal strain accumulation observed geodetically is
dominated by recoverable elastic strain in those locations
[e.g., Spinler et al., 2010]. However, where the rates of
deformation are relatively low and large earthquakes occur
infrequently, such as in the northern Apennines region, it is
difficult to quantify how much relative plate motion is being
accommodated through aseismic mechanism(s), perhaps
involving diffuse, penetrative, non-recoverable strain.

[45] Literally interpreted, the model dislocation planes
representing the orogen-bounding LANF and ARF reverse
fault—which have opposing dips—would intersect at a
depth of about 45 km assuming the dislocation geometry
remains planar below the dislocation tips. Such a geometric
configuration is physically untenable, because slip on one
fault would lead to a step in the other fault’s plane. However,
it is possible to interpret the physical significance of buried
dislocation models in several ways, not all of which are
physically implausible.

[46] The most literal interpretation of the buried disloca-
tion lines is that they represent fault planes or highly local-
ized shear zones that penetrate to great depth into the Earth.
Several models for lithospheric deformation consisting of a
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thick elastic lithosphere dissected by discrete throughgoing
faults overlying a weak asthenosphere have been discussed
in the literature [e.g., Nur and Mavko, 1974; Savage and
Prescott, 1978; Thatcher and Rundle, 1979]. Deformation
below the elastic lithosphere is accommodated by viscous
flow. The asthenosphere is assumed to be so weak as to
impart very little shear stress to the base of the plates. So
long as the lithospheric plate thickness is large relative to the
burial depth of the dislocation tips in these models, stress will
accumulate within the elastic lithosphere, and the system
might be well approximated by the buried dislocation model
[e.g., Savage and Prescott, 1978)].

[47] However, an alternative view of lithospheric defor-
mation is also possible. According to this alternative, fault
slip rates are determined by distributed flow in the upper
mantle, because the strength of the flowing upper mantle
exceeds that of the overlying, relatively thin, crust [e.g.,
Lamb, 1994; Bourne et al., 1998]. Discrete faults and crustal
blocks are envisioned to exist only at crustal depths. In the
simple dislocation model presented in Figure 10b, the point
of intersecting dislocation planes at ~45 km depth might
thus be interpreted as the point below which motion in the
mantle lithosphere is resolved by flow, an inference sup-
ported by the fact that 45 km depth corresponds to the depth
of the Adriatic Moho [Levin et al., 2002]. The issue of
whether the stresses arising from shallow mantle flow
dominate the crustal deformation pattern is not constrained
by the crustal kinematics. Nevertheless, the notion of one
edge dislocation truncating another beneath the northern
Apennines is obviated if we permit that the motion accom-
modated by discrete faulting in the crust may be resolved
differently, perhaps assisted by flow, below Moho depth.

[48] The stress singularities associated with the buried
dislocation tips, which drive the motion of the model half-
space surface, may be thought of as idealizations of real
crustal stresses that originate from upper mantle flow. The
inherent non-uniqueness of the dislocation model itself per-
mits us to interpret these stress singularities as arising from
an infinite number of possible dislocation geometries. For
example, any dipping edge dislocation may be represented
exactly as the sum of horizontal and vertical edge disloca-
tions with coinciding dislocation tips, as the sum of hori-
zontal edge and tensile dislocations, or any appropriately
weighted linear combination of these idealized end-
members. Figure 11 shows two such representations that
are numerically equivalent to the infinite edge dislocations
used to generate the curves in Figure 10b. In these alternative
geometries there is no truncation of one dislocation by
another. Such representations might serve as a way to visu-
alize the kinematics of upper mantle deformation in settings
where paired belts of extension and shortening coexist in
close proximity.

[49] A final issue with the interpretation of buried dis-
locations that requires explanation is that slip on any one of
the prescribed dipping dislocation planes would result in
a net far field vertical offset of the halfspace surface,
requiring infinite work against gravity [e.g., Forsyth, 1992].
In the real Earth, the lithosphere flexes in response to grav-
itational forces, achieving isostatic equilibrium. The lateral
distance across which crustal and upper mantle buoyancy is
balanced is controlled by the effective elastic thickness of
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the lithosphere. The vertical components of motion predicted
by the normal and thrust faults of Figure 11b are opposite in
sense, such that the net vertical component of motion
summed across the model fault system is small (~1 mm/yr).
Thus, it might be very difficult to discriminate the details of
any model accounting for flexural accommodation of verti-
cal fault offsets unless the effective elastic thickness of the
northern Apennines was very small. The halfspace model
presented here may be thought of as representing an end-
member flexural model with plates of very large thickness,
which for the northern Apennines case, might serve as an
adequate approximation to flexural models of finite elastic
thickness so long as the flexural wavelength is of the order
of the width of the Apennines orogen or longer, such that
the long-wavelength vertical offsets from faults of opposing
dip would tend to cancel.

[50] We make no attempt here to reconcile the short-term
deformation field with the long-term stability of syn-con-
vergent extension or how it is possible to develop such a
configuration through a physically plausible dynamic pro-
cess. We note that the pattern of present-day crustal defor-
mation is highly consistent with the thermochronometric
data set of Fellin et al. [2007] and Thomson et al. [2009],
who analyzed a large set of apatite (U-Th)/He and fission
track age data showing significant spatial and temporal
variations in Mio-Pliocene exhumation pattern across the
northern Apennines. They observed rapid late Miocene
(ca. 3-5 Ma) exhumation at ~1 mm/yr on the eastern con-
tractional side of the range, but slower exhumation of
~0.3 mm/yr within the extending central and western side
of the range. A larger exhumation rate of ~1 mm/yr within
the extending range core since Pliocene time (ca. 3 Ma)
may be explained by either underplating or out-of-sequence
shortening during continued convergence, or enhanced Pli-
ocene uplift and erosion driven by lithospheric delamination
or slab detachment [Thomson et al, 2009]. Our GPS
velocity estimates, which reveal ongoing shortening con-
centrated across the Apennines range front (ARF) well
inboard of the Apennines deformation front (ADF), favors
enhanced uplift driven by out-of-sequence shortening. The
overall consistency between the instantaneous deformation
field and the Cenozoic geology suggests that it should be
possible to develop a dynamic model in which syn-convergent
extension arises spontaneously as a stable configuration.

6.3. Implications for the Contemporary Geodynamics
of the Northern Apennines

[s1] Regardless of how present-day deformation is
accommodated within the lithosphere, it is informative to
consider the possible relationships between upper crustal
motions and deeper mantle structure. Modern seismic
tomography and receiver functions reveal a steeply dipping
intact slab directly beneath the northern Apennines orogen in
the latitude range 43° to 46° [e.g., Lucente et al., 1999;
Wortel and Spakman, 2000; Piromallo and Morelli, 2003;
Bianchi et al., 2010; Benoit et al., 2011]. The southern
boundary and depth extent of the slab are well resolved by
current seismic data sets [Benoit et al., 2011]. The majority
of the GPS data set that we are investigating here lies
directly above the region where the slab is apparent in the
seismic images. The observed deformation field is consistent
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with active subduction and retreat [e.g., Waschbusch and
Beaumont, 1996] or active delamination [e.g., Gogus and
Pysklywec, 2008] of the slab (Figure 2a). Contemporary
extension within the orogen seems consistent with a model
driven entirely by absolute motion of the upper plate away
from a stagnant non-subducting slab (Figure 2c¢), but this
upper plate retreat model is incompatible with the modern
deformation field because there would be no crustal short-
ening under that scenario [e.g., Waschbusch and Beaumont,
1996].

[52] Orogenic extension driven by excess gravitational
potential energy has been proposed as an explanation for
syn-convergent extension in the northern Apennines. Excess
buoyancy may derive from the replacement of a dense slab
with buoyant asthenosphere following slab detachment [e.g.,
Royden, 1993; Wortel and Spakman, 2000; Carminati et al.,
1998] (Figure 2b), upwelling in the wake of a sinking
slab [e.g., Carminati et al., 1998], or from over-thickened
crust (Figure 2d) unsupported by sufficient horizontal com-
pressive stress [e.g., Jolivet et al., 1998]. Previous authors
have shown how gradients in gravitational potential energy
could produce paired belts of extension and shortening under
some circumstances [e.g., Dalmayrac and Molnar, 1981;
Platt, 1986; Carminati et al., 1998; Gogus and Pysklywec,
2008]. D’Agostino et al. [2001] associate regional uplift and
Quaternary extension in the central Apennines where seis-
mic tomography [e.g., Benoit et al., 2011] reveals no slab
to mantle upwelling. However, as discussed above, the
detachment scenario is inconsistent with the seismically
imaged slab in the northern Apennines. Thus, explanations
for orogenic extension in the northern Apennines that
appeal exclusively to excess buoyancy would require either
a sinking slab or a crustal source. If the transition between
extension and shortening is controlled entirely by changes
in vertical stress between the highlands and the lowlands
associated with variations in crustal thickness, it would
generate a maximum resolved shear stress averaged over the
thickness of the crust of less than ~10 MPa assuming
crustal density of 2700 kg/m’, and a maximum elevation
difference between Po plain and Apennines crest of 2 km
(cf. calculations of Dalmayrac and Molnar [1981]). It is
possible that the LANF and steep dipping reverse faults
bounding the northern Apennines orogen may slip under
such a low resolved shear stress due to low coefficients of
friction or high pore pressures [e.g., Collettini et al., 2009].
But, the pattern of deformation predicted in such a model
would be symmetric, with two belts of shortening, one on
either side of the orogen (Figure 2d). The absence of
shortening on the southwestern side of the range along the
Tyrrhenian coast would require either variations in fault
friction or pore pressure, or variations in horizontal com-
pressive stress such that o-1 remains vertical to the south-
west of the range, whereas -1 is horizontal to the northeast,
oriented orthogonal to the range despite equivalent decrea-
ses in vertical stress relative to the highlands. Based on
these considerations, the available data seem more consistent
with excess buoyancy deriving from upwelling astheno-
sphere in the wake of a sinking, negatively buoyant slab.

[53] Although retreat of the upper plate (Figure 2¢) does
not provide a mechanism for crustal shortening above the
slab, upper plate retreat is not exclusive of either rollback of
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a subducting slab or delamination of lower lithosphere.
Addition of some component of upper plate retreat to a model
for slab sinking would serve to increase the rate of crustal
extension relative to that which would occur in association
with slab rollback. Indeed, we observe net divergence
between the Eurasia plate and the Northern Adria micro-
plate across the northern Apennines (Figure 10b), as noted
by several previous authors [e.g., Anderson and Jackson,
1987; Calais et al., 2002; Battaglia et al., 2004; Serpelloni
et al., 2005; D’Agostino et al., 2008; Weber et al., 2010],
consistent with horizontal component of extensional defor-
mation exceeding crustal shortening. Waschbusch and
Beaumont [1996] showed that net divergence across an
orogen is not likely to generate shortening of accreted
materials as they pass from the lower plate to the upper
plate. Net divergence across the orogen is not a character-
istic of models that appeal to slab sinking. However, it is
possible that divergence signifies some amount of upper
plate retreat relative to the imaged slab, accompanied by
rollback-subduction or delamination. That is, the two pro-
cesses are not mutually incompatible. Qualitative support
for such upper-plate retreat is provided by some (though not
all) “absolute” plate motion models, but the low rates of
motion implied by the current results (<4 mm/yr) do not
require fast retreat (of order several mm/yr or more) as
envisioned by some previous authors [e.g., Doglioni, 1990,
1991]. Alternatively, small-scale mantle circulation within
the Mediterranean plate boundary zone, superimposed upon
any possible global circulation, may provide a resistive drag
on the Adria plate causing it to move roughly eastward
relative to the Eurasia plate [Panza et al., 2007; Barba
et al., 2008]. It is possible that the drag on the slab might
also enhance slab rollback, contributing to the steepness of
the slab.

[54] Models appealing to partial slab detachment or active
slab tearing [e.g., Wortel and Spakman, 2000] (Figure 2b)
might also be expected to produce paired belts of shortening
and extension as observed. The well resolved slab beneath
the northern Apennines appears to have a lateral edge near
latitude ~43°N [Piromallo and Morelli, 2003; Wortel and
Spakman, 2000; Benoit et al., 2011]. This edge has been
interpreted as a tear [Wortel and Spakman, 2000] or hole
[Lucente et al., 1999; Wortel and Spakman, 2000; Piromallo
and Morelli, 2003] in the slab. However, the slab tear
model may not fit the observed pattern of vertical rates,
which shows no appreciable variation along strike within
our study region. Whether the differential vertical motions
expected from slab tearing would be large enough to be
detected geodetically is an open question. The short wave-
length of vertical deformation observed in the GPS data
of the order of 10s km likely requires a shallow (crustal)
level source.

7. Conclusions

[s55] We have estimated crustal motions in northern Italy
using a large set of available GPS data to investigate the
relationships between crustal kinematics and mantle struc-
ture. The crustal velocities that we obtain are consistent with
previous studies of crustal motion, but the number of sta-
tions and quantity of data that we use provides significantly
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improved resolution of the northern Apennines strain rate
field relative to previous studies. Present-day crustal motions
reveal a wide belt of extension within and to the southwest
of the orogen, a narrow belt of shortening located along the
northern Apennines range front, and divergent motion
between the Northern Adria microplate and the Eurasia plate
across the northern Apennines orogen. The pattern of exten-
sion and shortening is inconsistent with models that appeal
exclusively to either post-orogenic extension driven by
excess crustal buoyancy, or to upper plate retreat, although
these processes may contribute to the modern deformation
field at some level. The observed pattern of deformation
seems most consistent with dynamic models appealing to
excess mantle buoyancy in the wake of a sinking slab and/or
lateral changes in horizontal compressive stress or basal
tractions associated with slab rollback. However, models
that appeal exclusively to slab sinking do not account for
the net divergence across the range. Therefore, we suggest
that the modern crustal velocity field is the surface mani-
festation of both a sinking northern Apennines slab and a
retreating upper plate. Slab sinking could represent rollback
of an actively subducting slab, albeit at slow rates, or pas-
sive delamination of Adria mantle lithosphere. Upper plate
retreat could be driven by small-scale circulation in the
Mediterranean, by differential motion of Adria and Eurasia
with respect to the mesosphere, or by excess gravitational
potential energy deriving form upwelling mantle in the
wake of the sinking slab. Further geodynamic modeling
constrained by the crustal kinematics discussed here could
potentially shed light on the relative contributions of these
processes.
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