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Abstract-This paper outlines the statistical basis, construction and interpretation of probability-density 
(PD) plots as applied to the analysis of mixed distributions of fission-track (FT) grain ages. Such 
distributions can be viewed as being composed of a mixture of elemental component distributions, with 
each component characterized by a unique average FT age. The original PD plot of Hurford et al. is shown 
to have a clear statistical basis, as defined by the Gaussian-kernel method of density estimation. This 
background is used to develop and justify an improved version of the PD plot. Three modifications are 
recommended: (I) as originally suggested by Galbraith, the PD plot should be constructed using the 
transform variable z, which is approximately proportional to the logarithm of FT age. By using z, to 
represent the FT grain ages r,, each component distribution within a mixed FTGA sample becomes 
approximately Gaussian-distributed. This approximation is shown to work well for FT dating of zircon 
grains, which generally have relatively high uranium content and high track densities, and less so for FT 
dating of apatite grains; (2) estimation of the PD plot is optimized by setting the width of the 
Gaussian-kernel equal to a(SE(z,), where a is a scaling factor with an optimal value of - 0.6 and SE(z,) 
is the standard error of the FT estimate for z for the ith grain. This arrangement ensures the best
compromise between resolution and smoothness for the final PD plot; (3) probability density is estimated 
as a function of z but it is best presented as a function of FT age r. This objective is accomplished by 
transforming the z coordinates of the PD plot to T and plotting r on a logarithmically-scaled axis, which 
ensures that the original scaling of the PD plot is preserved. With these modifications, the component 
distributions in a PD plot will appear as symmetric Gaussian-shaped peaks and the area beneath each 
peak will be proportional to the relative size of the component. Several examples are given that illustrate 
the general concepts behind the PD plot and the advantages of the recommended modifications. 
Copyright © 1996 Elsevier Science Ltd 

1. INTRODUCTION 

The external-detector method of fission-track (FT) 
dating provides estimates of FT age for each mineral 
grain dated in a rock sample (pp. 75-76 in Wagner 
and Van Den Haute, 1992). The result is a 
fission-track grain-age (FTGA) distribution which 
can be used to check for "contaminant" grains in a 
volcanic tuff or to interpret depositional age and 
provenance for an unreset sandstone (e.g. Hurford 
et al., 1984; Cerveny et al., 1988; Brandon, 1992; 
Brandon and Vance, 1992; Garver and Brandon, 
1994a,b). In this context, unreset means that the 
dated detrital minerals, usually zircon or apatite, 
retain FT ages related to cooling or magmatic events 
that occurred in the source region from which the 
grains were eroded. 

In the statistical literature, distributions that 
contain more than one component distribution are 
called mixed distributions . As used here, a component 
distribution in a mixed FTGA distribution represents 
an idealized group of mineral grains that have 
identical annealing and etching properties and that 
started to acquire their FT grain ages at the same 
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instant of time. In this sense, the components of a 
mixed FTGA distribution are the fundamental 
elements of that distribution. In practice, our 
resolution of the component distributions, especially 
those that make up a small fraction of the total 
distribution, is obscured by sampling errors, related 
mainly to the stochastic nature of radioactive decay 
and the finite size of the sample. 

One approach to the analysis of a mixed FTGA 
sample is to decompose the sample into a set of 
unique component distributions. Several statistical 
procedures have been proposed for this task. Seward 
and Rhoades ( 1986) present a method based on 
cluster analysis. The binomial peak1fit method of 
Galbraith (1988) uses a maximum-iikelihood pro­
cedure to find a best-fit solution assuming binornially­
distributed components (also see Galbraith and 
Green, 1990 and Galbraith and Laslett, 1993). The 
Gaussian peak-fit method of Brandon (1992) uses a 
non-linear least-squares procedure to find a best-fit 
solution assuming Gaussian-distributed components. 

Another approach is the probability density (PD) 
plot of Hurford et al. (1984). The PD plot is no 
substitute for the peak-fitting methods outlined 



664 M. T. BRANDON 

above, but it does provide a useful statistically-based 
tool for presentation and interpretation of FTGA 
data. Hurford et al. ( 1 984) suggest that the 
probability density distribution of a FTGA sample is 
approximated by 

" 1 II 
1 

fi..r) = - l:G[r;r;,SE(r;)-] n,.=t
(!) 

where r; and SE(r;) are the FT age and standard error 
for the ith grain with i = I to n. The symbol " used
here and throughout the text denotes an estimator of 
a distribution parameter. The function G[·] is the 
Gaussian probability density function (PDF) 

, e - 0.5((x - Jl)/a}! 
G [x;µ,a-] = (2) 

afln 
where x is the function variable and µ and a' are its
parameters (note that the semicolon is used to 
separate variables from parameters). Hurford et al. 
( 1984) provide no justification for equation (!). But 
it turns out that their procedure is similar to a 
well-established method of density estimation called 
the Gaussian-kernel method. Silverman ( 1986, 
pp. 1 3- 1 9, 35-74) presents a detailed analysis of the 
theoretical basis and practical application of this 
method, and other density-estimation methods as 
well. 

My objective here is to examine the statistical basis, 
construction and interpretation of the PD plot, as it 
relates to graphical analysis of mixed FTGA samples. 
The paper is divided into four parts. Section 2 
provides a general review of density estimation using 
the Gaussian-kernel method. Section 3 reviews an 

were drawn. A FTGA sample refers to a group of 
stratigraphically-related FT grain ages. A more 
specific definition depends on the problem to be 
addressed. For instance, a FTGA sample will usually 
come from one or more rocks collected at a single 
locality, but, in some cases, a sample might represent 
a group of grain ages collected at many localities 
from a specific stratigraphic horizon. To construct a 
PD plot, we need a method of estimating probability 
density using only the observed FT data and avoiding 
assumptions about the number of component 
populations present in the sample. The kernel­
function method (Silverman, 1986, pp. 1 3-19, 34-74) 
provides a general solution for this problem. 

2. 1 .  Kernel functions

To introduce the kernel method, let us define an 
arbitrary continuous random variable X with a
population PDF given by f(x). Our observations of 
X are based on samples X; where i = 1 to n. An 
estimate of the probability density at x is given by 
(Silverman, 1 986, p. 1 5) 

, .. I " 
fi..x) = - l:K[(x; - x);h] , 

ni=I
(3) 

where K[·] is the kernel function (as yet unspecified) 
and h is a parameter that indicates the "width" of the 
kernel function. A relatively simple kernel function is 
the box function, 

K[(x; - x);h] = l /h if Ix; - xi :s; 0.5h (4) 

K[(x; - x);h] = 0 if Ix; - xi> 0.5h, 

"approximate" Gaussian method and an "exact" where h is equal to the width of the box. This version 
binomial method for representing FTGA sample of the kernel method is called the naive estimator 

distributions. The advantage of the Gaussian method (Silverman, 1986, pp. 1 1-13) and is closely related to 
is that it produces a transformed sample distribution the conventional histogram, as illustrated in Fig. !(a). 
where each component is approximately Gaussian A conventional histogram is calculated by evaluating 
distributed. This feature is useful for the successful equation (4) at even increments of h along the x axis, 
implementation of the Gaussian-kernel method. The whereas the naive estimator produces a continuous 

binomial method is used for comparison to determine histogram because the histogram bar is allowed to 
when the Gaussian method is sufficiently accurate for slide continuously along the x axis. 
general use. Section 4 summarizes the procedure for The box function is one of many possible kernel

constructing a PD plot. Section 5 presents some functions (Silverman, 1986, pp. 1 3-19, 34-43). We 
typical PD plots to show how they are interpreted / focus on the Gaussian PDF which is a useful kernel

and how they compare with the numerical results of 1 Junction when a sample is composed of one or more

the Gaussian peak-fit method.* Gaussian-distributed components. The Gaussian-

2. KERNEL METHODS FOR DENSITY

ESTIMATION 

A PD plot is an estimate of the probability density 
of the FTGA population from which the dated grains 

kernel function is defined by 

K[(x; - x);h] = G[(x; - x);O,h'] , (5) 

where the width of the kernel h is equal to the 
"standard deviation" of the kernel function. When 
written out in full, the density estimated by the 

*All of the programs used in this study are available in both compiled and source-code forms on request from the author 
or at the following anonymous FTP site: hess.geology.yale.edu//pub/brandon/FT. The programs relevant to this paper are: 
GAUSSFIT (version 4.3) which is a modified version of the Gaussian peak-fit routine of Brandon (l 992); BINOMFIT 
(version l .8) which is an implementation of the binomial peak-fit algorithm of Galbraith (l 988); and ZET AAGE (version 
4.6) which calculates "exact" FT ages and confidence limits using the methods outlined in Section 3. All programs are 
written in Microsoft Professional Basic 7.0 and will run on a DOS computer using any standard printer. 
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Gaussian-kernel method is given by 

,.. ,, I I II ' 

.f(x) = - l:G[(x, - x);O,h2]. (6) 
J1 i= I , 

The standard error for flx) can be estimated in the
usual manner (Whittle, 1958; Silverman, 1986, p. 36). 

Figure 1 shows an application of the Gaussian-kernel 
method as specified by equations (6) and (7). In this 
case, h = rt.CJ where a is a scaling factor and CJ is the
standard deviation of the sample distribution (this 
procedure is justified below). 

2.2. Properties of the Gaussian-kernel function 

SEcflx))2 = 
( � l) I G[(x; - x;O,h2) - flx)]2, (7)

n n i= i 

because each x; is an independent observation.

To understand the advantages of the Gaussian 
PDF as a kernel function, .we need to examine the 
expected value of the estimator flx) defined by
equations (3) and (6). Silverman (1986, pp. 36-37) 
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Fig. 1. Examples of density estimation for a synthetic sample generate by 20 random draws from a 
Gaussian PDF withµ= 0 and CJ= I. Part (a) shows the sample distribution (circles at the bottom of the 
plot) and two estimated histograms. The first is a conventional histogram and the second is a continuous 
histogram which is estimated using a box-shaped kernel function [naive estimator, see equations (3) and 
(4)]. Note that the continuous histogram intersects the center of each bar in the conventional histogram 
because the two plots are identical at those points. Part (b) shows the estimated PDF as determined by 
the Gaussian kernel method [equation (6)] using an optimal value of h = 0.6 (h0P, = Cf.(J = 0.6 given an
expected standard deviation CJ = 1 and an optimal scaling factor of !Y. = 0.6; see Section 2.3 for details). 
One way to describe the Gaussian-kernel method is to envision that the kernel function converts each 
observation into a Gaussian, as illustrated in (b). Density is estimated by averaging the densities indicated 
by the "observed Gaussians" at each point along the x axis. (Note that the "observed Gaussians" shown 
here are displayed at 25% of their true amplitude.) Part (c) shows the ± I standard error (SE) envelope 
for the estimated density as determined by equation (7). Part (d) demonstrates the result of increasing 

and decreasing !Y. from its optimal value. 

4 

4 
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shows that 

Ecflx)) = r--+xx K[(x - y);hlf(y) dy

= K[x;h]*f(x), (8) 

where EO indicates the expected value. This equation 
shows that Ecflx)) is equal to the convolution of the
kernel function K[x;h] with the population density
function f(x ). The second expression in equation (8) 
is the convolution integral and the third expression 
shows an equivalent form of this integral where "*" 
is the convolution operator. Those readers not 
familiar with the mathematical operation of convolu­
tion will find a good introduction in Brigham (1988, 
pp. 50-73). 

As a rule, the convolution of two arbitrary 
Gaussian functions results in a third Gaussian 
function (e.g. Silverman, 1986, p. 37). We start with 
a simple example: a population PDF represented by 
a single Gaussian f(x) = G[x;µ,a2]. Convolution of
the population PDF with the Gaussian-kernel 
function (5) gives 

Ecf(x)) = G[x;O,h2]*G[x;µ,a2] = G[x;µ,a2 + h1] • (9)

This result demonstrates that if f(x) is Gaussian­
distributed around a meanµ then Ecflx)) will also be 
Gaussian-distributed around the same mean µ. In
fact, the only change introduced by the convolution 
is that Ecflx)) has a larger variance thanj(x):a2 + h1 
vs a2, respectively. This conclusion is illustrated in 
Fig. l (b) by the slightly larger width of the estimated 
PDF relative to the population PDF. 

Now consider a mixed distribution composed of 
j = 1 tom Gaussian component distributions with the 
jth component represented by the random variable J0 
with a distribution f;(x) = n;G(x;µ;,af). The par­
ameters u1, a1 and n1 are the mean, standard deviation
and fractional size of J0 where L.j"_ ,n1 = 1. The
population PDF is now given by 

"' 

f(x) = I np[x;µ1,a]l . ( 10) 
1

- 1 

For this case, the expected density estimated by the 
Gaussian-kernel method is 

Ecflx) = G[x;0,112]* I n;G[x;µ1,a]l ( 11) 
J=l 

This result represents a natural extension of 
equation (9). We now find that if J0 is a mixture of one 
or more Gaussian component distributions, then 
Ecflx)) will contain the same components. Each 
component will remain Gaussian distributed around 
the same mean but its variance will be increased by 112• 

Grain ages determined by FT dating, and other 

dating methods as well, generally follow a more 
complex type of mixed distribution. To illustrate, 
consider a set of Gaussian-distributed random 
variables, designed as )0., with mean values µ1k = µ1
and standard deviations a1k· To understand the
interrelation of the random variables J0i, let us focus 
on a subset of variables designated by j = 1. All 
random variables within X,k will have the same mean 
µ, but different standard deviations 0'1k· For the
FTGA problem, X,k is equivalent to a single-com­
ponent distribution because all grains within the 
distribution have a common mean, but variations in 
uranium concentration and numbers of counted 
tracks cause the standard deviation to vary from 
grain to grain. 

For this case, the population PDF is 

f(x) = I I n1kG[x;µ1,a]k], (12) 
}=I k =I 

where n is the number of Gaussians in the jth 
compon�nt distribution and 'n1k is the fractional size
of each Gaussian with L.'j'_ ,L.V- ,n1k = 1. The frac­
tional size of the jth component is now given by 
n1=L.V-1n1k· 

Most isotopic-dating methods provide estimates 
for ak in the form of analytical uncertainties. Using
our �eneral notation, an estimated grain age is-\ with
the uncertainty given by SE(x), the standard error of 
x1. For a mixed distribution, SE(xJ is an estimate of 
the standard deviation of the jk Gaussian from which 
x was drawn. We see below that this relationship is 
�seful despite the fact that we have no specific
knowledge about which Gaussian was sampled. 

Now we consider the expected density estimated by 
the Gaussian-kernel method for the population PDF 
given by equation (12). Because J0k is a mixed 
Gaussian population, equation (11) remains appli­
cable, although it must be modified to conform to the 
notation used in equation (12). 

Ecflx)) = I I n1kG[x;µ1,aJk + h1]. (13 )
j= I k = I  

This result shows that our general conclusion still 
holds: Ecflx)) contains the same set of Gaussians as 
present in the population PDF, but the variance of 
each of the Gaussians is increased by 112• 

At this point, it is important to distinguish between 
the different standard deviations we are using: 11, a1., 
a s and W For the Gaussian-kernel method, h J' j )" 
corresponds to the standard deviation of the kernel. 
Note that h is only used to control the width of the 
kernel and should not be viewed as a statistical 
parameter. Next are a1., which represent the standard 
deviations of all Gaussians in the population 
distribution, and a1, which represent the standard 
deviations of the component distributions. Remem­
ber that each component distribution contains a 
mixture of Gaussians with the same mean but 
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different standard deviations. Thus, by definition, 1.5 .--------.---.--�-�---�-.----� 
' 

(14) 

It is interesting to note that if we could randomly 
sample the jth component population, then the 
standard errors for those observations SE(,\) could 
be used to estimate a1, 

1 " 
sf= -;:; ISE(x;)2,

i= 1 
( 15) 

where E(s;) = a;. 
The standard deviations of the component 

distributions in E(/(x )) are represented by W,: in order
to distinguish them from the population standard 
deviations a1. Stated in a more casual fashion, W,: is
a measure of the width of the jth peak as revealed in 
the PD plot. 

Equations (13) - (15) show that 

(16) 

and 

WJ = s] + h'. (17) 

2.3. Optimal value for h 

A critical issue for the application of the 
Gaussian-kernel method is the selection of an optimal 
value for h, designated as h0P1 (Silverman, 1986, 
pp. 40-48). This problem involves a trade-off between 
the increased resolution provided by a small h and the 
increased precision provided by a large h. As used 
here, resolution refers to our ability to distinguish 
closely spaced component distributions, and pre­
cision refers to the uncertainty of the estimated 
densities that make up the PD plot [e.g. equation (7)]. 
Let us consider the case of a sample of size n drawn 
from a single Gaussian distribution with a known 
standard deviation a. For this case, Silverman (1986, 
p. 45) shows that the approximate mean integrated 
square error for the density estimate is minimized 
when ( 4 )0.2 

hopt =et.a= 3n a:::::; l.06n-0·2a. (18) 

Note that the variable ex is introduced here as a 
scaling factor. Equation (18) indicates that h0P1 is 
linearly proportional to a and relatively weakly 
dependent on n (Fig. 2). Figure l (c) shows ftx) as 
estimated using ex = 0.6, which is the optimal value 
indicated by equation (18) for n = 20. Figure l (d) 
shows the effect of increasing and decreasing ex from 
its optimal value. 

Equation ( 18) can be used for mixed distributions 
as long as we have a priori knowledge of the standard 
deviations of the Gaussians that make up the mixed 
distribution. As noted above, SE(x) is an estimate of 
the standard deviation of the distribution from which 
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Fig. 2. The lower curve shows equation (18) which gives the 
optimal value of rt. as a function of sample size n. The upper 
curve shows W/r:r = J1 + rt.2 which describes the increase in 
variance introduced by the Gaussian-kernel method [see 

equations (16), (17) and (2l)for details]. 

X; was drawn. Thus, we can change equation (6) to 
define a modified version of the Gaussian-kernel 
method, 

1 " ftx) = - I G[x1 - x;O,cx'SE(xYJ. ( 19) n,.=t 

Note that when a =  1, equation (19) becomes
identical to the original PD plot equation ( 1) 
proposed by Hurford et al. (1984). The estimator for 
the standard error is now 

, ' 1 
SE(f(x))- = n(n - 1) 

x ;tI G(x1 - x;O,cx'SE(xJ") -ftx) J (20) 

equation ( 17) becomes 

(21) 

Inspection of Fig. 2 shows that as n increases from 1 
to 40, J1 + a2 decreases from 1.46 to 1. 17. In other
words, as the size of a component distribution 
increases, we are permitted to use a smaller ex which 
results in a smaller W; and better resolution of the 
components in the PD plot. 

When using equation (19) to construct a PD plot, 
we are forced to use a single .value for a, and yet a
mixed distribution typically contains an unknown 
number of components, 

·
with each component 

possessing a different and unknown size nJ. Ideally, 
we would want to match a different ex for each 
component but there is no practical way to do this. 
I have found the following compromise provides a 
workable solution to this problem. In practice, the 
size of a typical component in a mixed distribution is 
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usually n1 = 1 - 40. Thus, I have adopted the 
convention of setting a = 0.6 which is its average 
value over this range in n; (Fig. 2). With regards to 
this compromise, three points are worth mentioning: 
(I) when the prescribed a value is poorly matched to
the size of a specific component in a mixed 
distribution, the distortions introduced in the PD plot 
are limited to the representation of that component 
alone; (2) a component with n.i < 20 should use a 
larger a, but this requirement is offset by the fact that 
the sample standard deviation decreases as n1 

decreases from < � 20 (i.e. small-sample bias). 
Simulations using the Student t distribution indicate 
that the need for a larger a when n.i < 20 is 
approximately compensated by the downward bias in 
the sample standard deviation; (3) the width of a peak 
or component distribution in a PD plot, as 
represented by Uj, is not strongly dependent on a 

when a < 0. 7. Thus, there is little advantage m 

fine-tuning a around its prescribed value of 0.6. 

3. FT STATISTICS FOR A 

SINGLE-COMPONENT SAMPLE 

Before using the Gaussian-kernel method, we need 
to consider if a real FTGA distribution is adequately 
approximated by a mixed Gaussian distribution, as 
defined by equation ( 12). More specifically, we are 
concerned with the expected form of the component 
distribution. 

Let us start with a brief review of FT statistics. FT 
age -r is calculated using the deterministic formula 
(e.g. Hurford and Green, 1 983; Galbraith, 1990). 

where A. is the total decay constant for 238U 
( 1 .55 125 x 1 0-10 yr-1), ( is the zeta-calibration 
constant, g is the geometry factor (0.5 for the 
external-detector method), pd is the track density for
the fluence monitor and p,/ Pi is the ratio of measured
densities for spontaneous and induced tracks, 
respectively. For the external-detector method, p, and 
Pi are estimated by counting the number of 
spontaneous and induced tracks, N, and Ni, present 
within the same area A of a polished grain surface. 
N, and Ni are inferred to have independent Poisson 
distributions (Galbraith and Laslett, 1985) with 
distribution parameters defined by p, = E(N,/A) and 
Pi = E(NJA).

For our purposes, all parameters on the right-hand 
side of equation (22) are known except for p, and Pi· 
The parameters ( and Pd are treated as constants
because they have fixed values for all grains in a 
FTGA sample, assuming that grains from the same 
sample are irradiated at the same time and under 
identical conditions. Note that this assumption is not 
essential because the errors in ( and Pd are usually
much smaller than those associated with p, and Pi and 
thus can be safely ignored. 

Two methods are available for representing and 
estimating the distribution of a single-component 
FTGA sample. The Gaussian method is based on the 
fact that the logarithm of the ratio of two 
independent Poisson-distributed random variables is 
approximately Gaussian distributed, with the ap­
proximation improving as N, and Ni increase. The 
general theory behind the logistic transform, as it is 
called, is reviewed by Cox ( 1 970, pp. 30--35) and 
McCullagh and Nelder ( 1 989, pp. 1 06--107). The 
implementation of the transform to FT dating 
(Bardsley, 1983; Galbraith, 1 990) is accomplished by 
recasting the FT age equation 

-r = A. - ' In(! + e') , (23) 

as a function of a new parameter 

z = ln(A.(gpd) + In(� ) . (24) 

For a single-component sample, estimates of z should 
be approximately Gaussian distributed. The approxi­
mately unbiased estimator of z is given by 

z= ln(A.(gpd) + In( N, + 0·5 ) Ni+ 0.5

with standard error 

SE(z) = JN, 1 0.5 + Ni 1 0.5 

(25) 

(26) 

The " + 0.5'' terms in equation (25) and 
equation (26) are continuity corrections which are 
introduced in the transformation from discrete 
Poisson distributions to a continuous Gaussian 
distribution (i.e. N, and N; are no longer limited to 
integer values; see Cox, 1 970, p. 33 and McCullagh 
and Nelder, 1989, p. 1 07, for a full derivation). A 
useful feature of z is that (SE(z) � SE(i)/i = RE(i) 
where RE(·) indicates the relative standard error 
(Galbraith, 1990; Galbraith and Laslett, 1993). Thus, 
100 SE(z) is approximately equal to the percentage 
,relative standard error of the estimated FT age. 

'• After transformation, the FTGA sample is 
represented by z, and SE(z,) where i indicates the ith 
grain among a total sample of n grains. The 
advantage of this transformation is that each 
component in a mixed sample is now approximately 
Gaussian distributed. Furthermore, each observation 
z, now has an approximately Gaussian sample 
distribution with 

'
the mean and standard deviation 

estimated by z, and SE(z,). Thus, the transformed 
distribution is ideally suited for application of the 
modified Gaussian-kernel method [equations ( 1 9) 
and (20)]. 

But how well does the Gaussian approximation 
hold? This question can be answered using the 
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binomial method which uses an accurate represen­
tation of the expected sample distribution. The 
binomial method is based on the fact that the sample 
distribution of the Poisson variables N, and N; can be
transformed into a univariant binomial distribution. 
Chapman (1952) and McCullagh and Nelder (1989, 
pp, 101-102) present the general theory for this 
transformation. As applied to FT dating, if the sum 
(Ns + N;) is fixed, then N, is a binomial-distributed
variable with a distribution parameter e = pj
(Ps + p;) and an index equal to (N, + N;) (Bardsley,
1983, 1984; Sneyd, 1984; Galbraith and Laslett, 
1993). The estimator and associated standard error 
are given by fJ = N,/(N, + N;) and SE(fJ) = 

je( l  - fJ)(N, + N;). Note that fJ is also binomially
distributed. Given observations of N, and N;, the 
estimated sample distribution of fJ, including its 
median value and confidence limits, can be calculated 
using the numerical algorithm of Sneyd (1984). 

The approximate form of the sample distribution 
estimated by the Gaussian method can now be 
compared with the expected form estimated by the 
binomial method. Given observations N, and N;, the 
approximate distribution for z is a Gaussian PDF 
with a mean and standard deviation estimated by 
equations (25) and (26). The expected distribution is 
determined by calculating the estimated sample 
distribution of fJ using the algorithm of Sneyd (1984) 
and then transforming this result using 

z = ln(-1.(gpd) + Jn( 1 � e) . (27) 

Figure 3 shows a comparison of the results of the 
Gaussian and binomial methods for a large range of 
N, and N; values (see figure caption for details). The
general conclusion is that the errors introduced by the 
approximation are roughly inversely correlated with 
SE(z). Figure 3(a) shows that for SE(z) < 0.30, the 
value of z given by equation (25) is nearly identical 
with the median estimated by the binomial method. 
Figure 3(b) shows that the relative misfit between the 
approximate and expected sample distributions is less 
than 10% for SE(Z) < 0.30. My experience indicates 
that when estimating FT ages and confidence limits, 
the Gaussian approximation can be trusted to 
produce a reasonable result when SE(z) < 0.30 and 
an accurate result when SE(z) < 0.15. 

Now consider some measured values of SE(z;), as 
determined by FT dating of apatite and zircon 
(Fig. 4). The zircon grains have an average SE(z;) of 

� 0.13 with a range 0.01-0.30, whereas the apatite 
grains have an average SE(Z;) of � 0.54 with a range 
0.10-1.00. This difference is due to the fact that 
zircons generally contain more uranium than 
apatites, which, with all other factors equal, means 
that zircons will usually have a greater numbers of 
tracks per grain. The practical result is that the 
Gaussian approximation usually works well for 
zircons and less so for apatites. 

4. CONSTRUCTING PD PLOTS FOR FTGA 

SAMPLES 

The first step in constructing a PD plot is to use 
equations (25) and (26) to transform the FT grain 
estimates to z; and SE(z;) for the i = 1 - n sampled 
grains. Probability density and standard errors are 
estimated using equations ( 19) and (20) with a = 0.6. 
To determine the limits of z for the PD plot, the 
youngest and oldest grain ages, Tm;, and Tm.,, are 
converted to Zm;o and Zm., using 

z = ln( e;, - 1) . (28) 

The PD plot is then extended to zm;, - 3 W and 
zm,, + 3 W to ensure that the plot includes the tails of 
the full distribution. This practice is justified by the 
fact that the expected half width of a component 

<2 20 

g "' 
"' > 10 ·c; 
�4-0 

N 
ci 

SE(z) 

SE(z) 

V"I \() r-... QO. 0\ 0 
0 0 0 0 0.....: 

Fig. 3. Comparison of the "approximate" Gaussian method 
with the "exact" binomial method as a function of SE(Z). 
Results were calculated for the domains: (N, + N;) = 5 
to 400 and N, = 0 to (N, + N;). For counts with 
(N, + N;) � 35, N, and (N, + N;) were incremented by 1 and 
5, respectively. Larger increments were used when 
(N, + N;) > 35. Part (a) shows the percentage difference 
between the mean z approximated by the Gaussian method 
and the median .: determined by the binomial method. Part 
(b) shows the root-mean-square (r.m.s.) average of the 
relative misfit of the probability densities calculated by the 
two methods. Both examples demonstrate that the Gaussian 
method produces reasonable results when SE(z) < 0.30 and 

fairly precise results when SE(z) < 0. 15.
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Fig. 4. Typical values of SE(z) for zircon and apatite FT 
grain ages. The histogram is based on 1010  zircon ages from 
23 samples reported in Brandon and Vance ( 1992) and 876 
apatite ages from 45 samples reported in Brandon et al. 
( 1 996). The dated minerals are mainly detrital grains from 
sandstones and thus provide a broad sampling of typical 
zircons and apatites. The r.m.s. average and range for SE(z) 
is 0 . 1 3  and 0.0 1-0.30 for zircon and 0.54 and 0. 10-1 .00 for 

apatite. 

distribution in the PD plot is - 3 W. W is 
approximated by 

wz = (l+ix)2�SE(' .)2 
ave n � z

, i= I 
(29) 

which is the estimated average of the standard 
deviations � of the component distributions in the 
PD plot [see equations (15), (17) and (21)]. The plot 
is calculated in even increments fJz to ensure that the 
peaks in the distribution are equally represented. A 
useful value for fJz = (6/50) Wwhich ensures that each 
component distribution is represented by about 50 
points, given that the full width of a component is 
- 6W. 

When constructing the actual PD plot, we need 
some easy way to show FT age along the z axis but 
at the same time, we need to preserve the relative 
scaling of ftz) to z so that the component 
distributions will retain their Gaussian form. The 
recommended procedure is to convert from z to r 
using equation (23) and to plot r on a logarithmic
scale and J on a linear scale (Galbraith, 1990). The
resulting plot will have a nearly identical form to a 
linear-linear plot of J vs z. The reason is that z is
approximately proportional to the logarithm of r and
f(z) is approximately equal to /(ln r). (This result is
based on an approximation of equation (23) 
ln r = (1 + E)z - In.A, where the absolute value of
the approximation error IEI < 0.01 where 
r < � 365 Ma.)

The current version of my Gaussian peak-fit 
program provides best-fit estimates of the mean age 
zj, standard deviation U:j, and number of grains nj for

each of the j = 1 to m component distributions. The
estimated PDF for the }th component can be shown 
in the PD plot using 

�(z) = � G(z;zj, tf;J) ,
n 

(30) 

where n is the total number of dated grains in the 
sample. 

The binomial peak-fit method of Galbraith (1988) 
provides best-fit estimates of the binomial parameters 
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Fig. 5. Logarithmic PD plots for single-component FTGA 
samples. Density (thick line) and the ± I SE envelope (thin 
lines) were estimated using equations ( 1 9) and (20). (a) 
Volcanic zircons (n = 72) from unreset Fish Canyon tuff of 
Colorado (sample Fl of Brandon and Vance, 1992); (b) 
detrital apatites (n = 20) from a fully reset sandstone of the 
Olympic subduction complex (sample AR25 of Brandon 

et al., 1996).
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Table I. Results from the Gaussian peak-fit program 

Lab# 
Description, 

number of grains 

Zircon FTGA samples 

Age range, 
W.,, from 

equation (29) 
Mean age ± I SE, width and size of 

best-fit peaks 

Fl Fish Canyon tuff, CO 
n = 72 

2 1-40 Ma 
w.,. = 0. 12  

28.9 ± 0.8 Ma
W;=0. 12 

ZD6 OSC sandstone, WA 
n = 50 

1 4- 1 93 Ma 
w.,. = 0. 1 9

n1 = 57.8 
18.8 ± 0.4 Ma 

W;= 0. 19  
43.l ± 1 .3 Ma

W;=0. 1 6
66.8 ± 2.6 Ma

W;=0. 1 9  
184 ± 5. 1 Ma

W; = 0. 1 1  

C- 1 Siwalik sandstone, 22- 1 1 3 Ma 
w.,. = 0.22 

n1 = 12 .5  
23 .8  ± 0.7 Ma

n1 = 17.0
36.8 ± 1 .2 Ma 

W; = 0.20

n1 = 1 6.5  
60.8 ± 1 .9 Ma

W; = 0.25 

n1 = 1.5 
1 14 ± 6.3 Ma

W;= 0. 1 5  Pakistan 
n = 80 

W;=0. 12  
n 1  = 5.2 n1 = 30.9 n1 = 4 1 .3 n1 = 1.8 

Apatite FTGA samples 
AR25 OSC sandstone, WA 

n = 20 
8-27 Ma 

w.,, = 0.50 
1 3.2 ± 0.4 Ma 

W; = 0.38 

AR12 OSC sandstone, WA 
n = 10 

5- 1 17 Ma 
w.,, = 0.93

n1 = 1 9.7 
7.8 ± 1.3 Ma

W;= 0.86 
n1=2.3 

34.9 ± 2. 1  Ma
W;= 0.55 
n1 = 6.3 

Notes: n = total number of grains analyzed. W.,, was determined using equation (29). For the peak-fit calculation, µ1, 
W; and n1 were all fit as independent free parameters: µ1 is the mean age, W; is the peak width in z unit and n1 is the number 
of grains, where j indicates the jth component distribution or peak. OSC = Olympic subduction complex. 

for each of the component distributions: 

Estimated PDFs for these component distributions 
can be calculated using the algorithm of Sneyd 
(1984). Alternatively, if the Gaussian approximation 
is warranted, then the logistic transform can be used, 
where 01 is converted to z1 using equation (27) and if} 
is estimated by 

(31) 

Equation (30) is then used to calculate the estimated
component PDFs. 

-

I find it useful to superimpose a conventional 
histogram on the PD plot (e.g. Fig. 5). This result can 
be accomplished by constructing the histogram on 
the z scale with the bar width set at a constant dz. 
Note that when plotted on the t scale, the bars of the 
histogram will show a logarithmic increase in width 
with increasing age. For instance, the value used here, 
dz = 0.1, is equivalent to a bar width on the t scale
of - 0.5 m.y. at t = 5 Ma and - 5 m.y. at 
t = 50 Ma. 

Up to this point, probability density flz) has been
defined in units of fractional probability mass per 
unit z. An alternative is to express density in the same
units used for the histogram which is the number of 
observations per dz = 0.10. This transformation is
accomplished by multiplying flz) by the factor ndz.

5. EXAMPLES 

Five FTGA samples are presented here to illustrate 
the construction and interpretation of the modified 
PD plot. Each sample was decomposed using the 
Gaussian peak-fit method to illustrate the relation­
ship of the PD plot to its estimated peak-fit 
parameters. Note that z1, if} and n1 were estimated as
independent free parameters (Table 1) and that the 
maximum number of resolvable component distri­
butions was determined using the F-ratio test 
(Brandon, 1992). 

5.1. Single-component samples 

Two typical single-component FTGA samples are 
shown in Fig. 5. The first consists of unreset volcanic 
zircons (n = 72) from the Fish Canyon tuff 
[Fig. 5(a)] (sample F l  in Brandon and Vance, 1992), 
and the second, fully reset detrital apatites (n = 20) 
from the Olympic subduction complex of western 
Washington State [Fig. 5(b)] (sample AR35 in 
Brandon et al., 1996). Note that the zircon peak is 
about one-third the width of the apatite peak 
( �  = 0.12 vs 0.38). Also note that there is fair 
agreement between W.,, determined by equation (29) 
and if} given by the Gaussian peak-fit method
(Table I). 

5.2. Mixed samples 

Now we turn to mixed FTGA samples. The first 
and second examples are for detrital zircons from 
unreset Miocene sandstones of the Olympic subduc­
tion complex (Fig. 6; ZD6 in Table I; Brandon and 
Vance, 1992) and the Siwalik group from the 
Himalayan foredeep in Pakistan (Fig. 7; C-1 in 
Table I; Cerveny et al., 1988). The third example is 
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a mixed sample of reset detrital apatites from the 
Olympic subduction complex (Fig. 7; AR 12 in 
Table l; Brandon et al., 1996). The bimodal form of 
this distribution is attributed to variations in 
annealing and etching properties among the detrital 
apatites. 

equation (1). Parts (b), (c) and (d) show the modified 
PD plot as calculated from equation ( 19) and 
equation (20) with ex =  0.6. Part (b) uses a linear scale 
for FT age, whereas parts (c) and (d) use a 
logarithmic scale, as recommended above. Parts (b) 
and (d) show the best-fit peaks from Table l as 
calculated by equation (30). Each example is illustrated by three different types 

of PD plots. Part (a) of each figure shows the original 
version of the PD plot as calculated from 

The different versions of the PD plot give different 
impressions of the relative amplitudes and sizes of the 
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Fig. 6. PD plots for a mixed FTGA sample of detrital zircons (n = SO) from an unreset sandstone of the 
Olympic subduction complex (sample ZD6 of Brandon and Vance, 1 992). Three versions of PD plots are 
shown: (a) the original version as proposed by Hurford et al. ( 1 984) [see equation ( l )], (b) the modified 
version [equation ( 19)] with age plotted on a linear scale and (c, d) the modified version [equation ( 19)] 
with age plotted on a logarithmic scale, as recommended here. The thin lines in (c) show the ± 1 SE 
envelope for the estimated density [equation (20)]. The best-fit peaks shown in (b, c) were calculated using 
equation (30) and the parameters reported in Table I. Brandon and Vance ( 1 992) conclude that the 

depositional age of this sample was younger than the youngest peak ( < 19 Ma).
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Sample C- 1, Siwalik Grp., n = 80, Peak Ages = 24, 37, 6 1 ,  1 14 Ma 
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Fig. 7. PD plot for a mixed FTGA sample of detrital zircons (n = 80) from an unreset sandstone of the 
Siwalik group at Chinji, Pakistan (sample C- 1 of Cerveny, 1986; Cerveny et al., 1988). Cerveny et al. ( 1988) 

report an 18 Ma stratigraphic age for this sample. See Fig. 6 for an explanation of the plots. 

component distributions, a point that was first 
recognized by Galbraith ( 1990). The original PD plot 
of Hurford et al., shown as part (a), does a poor job 
representing the relative sizes of the component 
distributions. For instance, Fig. 6(a) gives the 
impression that the youngest peak (19 Ma) for 
sample ZD6 is the largest in the distribution, but 
values for nj in Table 1 shows that the youngest peak 
is significantly smaller than the peaks located at 43 
and 67 Ma. The relative sizes of the component 
distributions seem to be better represented in part (b) 
but note that the peaks vary considerably in width 
and are also slightly skewed. The logarithmic version 

of the modified PD plot (c, d) provides the best 
representation given that component distributions 
appear as symmetric well defined peaks with the 
relative area of each peak proportional to the size of 
the underlying component distribution. 

Also note that the histogram bars in (b) become 
progressively wider with increasing FT age, but those 
in (c) show a constant width independent of FT age. 
The reason is that the width of the histogram bars is 
fixed at �z = 0.10 so that the constant width of the
bars is only apparent when -r is plotted on a 
logarithmic scale (as discussed above). This result 
also indicates that those peaks that have a similar 
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standard deviation It; will appear to have a similar
width when viewed in the logarithmic version of the 
PD plot. In this context, note that the peaks for the 
zircon samples show a more uniform width in 
logarithmic version of the PD plot. The reason is that 
for zircon FTGA samples, It; does not seem to vary
much from its average value W.ve (see Table 1). This 
result does not hold for the apatite sample (Fig. 8) 
because W.ve = 0.93 is quite large (AR12 in Table 1) 
indicating that the Gaussian approximation is not 
applicable. [Note that if er: = 0.6, then 
W.ve � 1.17 SE(z) according to equation (21). Thus,
the limiting value for the Gaussian approximation 
SE(z) < 0.30 is approximately equal to W.ve � 0.35.) 

5.3. Radial plots 

The radial plot of Galbraith (1990) provides an 
alternative method for displaying mixed FTGA 
distributions. Figure 9 shows a radial plot for the 
zircon FTGA sample presented in Fig. 6. An 
important advantage of the radial plot is that it shows 
the estimated age and precision for each grain. 
Precision is equal to l /SE(z) and increases to the right
along the horizontal scale. The vertical scale, labeled 
y on the left side of the plot, is a standardized version
of z with y = (z; - Zmean)/SE(z;) where zm"" is the
average z for the total distribution. The advantage of 
this scaling is that the ± SE(z;) for a grain age

Sample AR1 2, Elwha Snowfinger, n = 1 0, Peak Ages = 8, 35 Ma 
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Fig. 8. PD plot for a mixed FTGA sample of detrital apatites (n = IO) from a partially reset sandstone 
from the Olympic subduction complex (sample AR 12 of Brandon et al., 1996). This sample has an

estimated stratigraphic age of - 20 Ma. See Fig. 6 for an explanation of the plots. 
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Sample ZD6, Mt. Tom, n = 50 
Peak Ages = 19, 43, 67, 1 84 Ma 
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Fig. 9. Radial plot (Galbraith, 1990) of the FTGA sample 
displayed in Fig. 6 (sample ZD6 of Brandon and Vance, 
1992). The four radial lines mark the mean ages of the 
component distributions determined by the Gaussian 
peak-fit method (ZD6 in Table 1) .  See text for further 

details. 

corresponds to ± 1 y-unit in the vertical around the
plotted value for the grain. Lines of constant FT age 
radiate out from y = 0 on the left side of the graph 
and to the age scale on the right side of the plot. The 
mean FT ages of the four component distributions 
determined for this sample (ZD6 in Table 1) are 
indicated by the radial reference lines in Fig. 9. The 
radial plot shows a clear clustering of grain ages 
around the 19 and 1 84 Ma lines. The other two 
component distributions at 43 and 67 Ma appear as 
overlapping clusters and are not well resolved by the 
radial plot. In contrast, all four components are 
visible in the modified PD plot [(Fig. 6(c)]. 

6. CONCLUSIONS

This paper demonstrates the advantages of the 
modified PD plot for presentation and analysis of 
FTGA samples. The proposed modifications are: ( 1 )  
density estimation should use a Gaussian kernel with 
the kernel width scaled by a = 0.6 to achieve the best 
compromise between resolution and smoothness of 
the PD plot; (2) density should be estimated using the 
transform variable z to ensure the that component 
distributions are approximately Gaussian distributed; 
(3) the calculated probability density should be 
transformed from z to r and plotted using a
logarithmically-scaled axis for FT age. The result is 
a PD plot where component distributions appear as 
symmetric Gaussian-shaped peaks, with the relative 
area of each peak proportional to the relative size of 
the component distribution. This procedure works 
well for zircon FTGA samples, which generally have 
large numbers of tracks per grain. It is less successful 
for apatite FTGA samples because the lower number 

of tracks per grain typical of apatite mean that the 
Gaussian approximation is more commonly not 
applicable. 
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