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[1] Sediment flux is known to influence bedrock incision rates in mountain rivers.
Although the widely used stream power incision model lacks any explicit representation of
sediment flux, the model appears to work in a variety of real settings. We address this
apparent contradiction using numerical experiments to explore the morphology of fluvial
landscapes evolved with four different incision models, three of which include the
influence of sediment flux on incision rate. The numerical landscapes have different spatial
patterns of uplift and are at steady state. We analyze these landscape using the common
“stream power” approach, which views incision rates to be primarily a function of the
local channel gradient S and the upstream drainage area A. We find that incision rates I for
these landscapes are well described by an empirical power law equation I = K′Am′Sn′.
This equation is functionally equivalent to the widely used stream power model, with the
important distinction that the parameters K′, m′, and n′ are entirely empirical. These
parameters take on constant values within a single landscape, but can otherwise be quite
different between landscapes mainly due to differences in the pattern of rock uplift
within the drainage. In particular, the parameters m′ and n′ decrease as the rate of rock
uplift becomes more focused in the upland part of a mountain belt. The parameter
m′ is particularly important in that it describes the sensitivity of a tectonically active
mountain belt to changes in precipitation or tectonic accretion. It also defines how incision
rates will change as the discharge becomes flashier.
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1. Introduction

[2] An important objective in geomorphology is to
understand the relationship between geomorphic processes
and the local form of the landscape, as represented by the
spatial variation in gradient, curvature, and upslope catch-
ment area [Dietrich et al., 2003]. An example of this kind of
approach is the stream power incision model, I = KAmSn,
where incision rate I in a bedrock river is solely a function of
S, the local channel gradient, and A, the drainage area above
that point [e.g., Howard, 1980; Howard and Kerby, 1983;
Howard et al., 1994; Rosenbloom and Anderson, 1994; Seidl
and Dietrich, 1992; Tucker and Slingerland, 1996; Whipple
and Tucker, 1999]. This model, or derivations of it, have
been widely used to study the evolution and shape of bedrock
river profiles [e.g.,Duvall et al., 2004; Finnegan et al., 2005;
Kirby and Whipple, 2001; Ouimet et al., 2009; Roe et al.,
2002; Snyder et al., 2000; Stock and Montgomery, 1999;
Tucker and Whipple, 2002; Whipple and Tucker, 2002;

Whittaker et al., 2007; Wobus et al., 2003, 2006; Yanites
et al., 2010], and to analyze the interaction of climate and
topography in tectonically active mountain ranges [e.g.,
Hilley and Strecker, 2004; Hilley et al., 2004; Roe et al.,
2006, 2008; Stolar et al., 2006; Whipple and Meade, 2004;
Whipple, 2009].
[3] The stream power model has been tested with variable

success using bedrock rivers with well‐defined incision
patterns [e.g., Stock and Montgomery, 1999; Tomkin et al.,
2003; van der Beek and Bishop, 2003; Whittaker et al.,
2007; Yanites et al., 2010]. The functional form of the
model seems to work well, but the estimates for the para-
meters m and n can differ from commonly expected values
[Stock and Montgomery, 1999; Tomkin et al., 2003; van der
Beek and Bishop, 2003]. However, the model is still widely
used and our confidence in the model may be based on the
fact that many of the fundamental relationships of fluvial
hydrology take the form of power law functions [e.g.,
Leopold et al., 1964].
[4] Despite its widespread use, the stream power model

remains incomplete, in that it ignores the influence of sed-
iment flux on incision rates [e.g., Chatanantavet and
Parker, 2008, 2009; Cowie et al., 2008; Finnegan et al.,
2007; Johnson and Whipple, 2007; Johnson et al., 2009;
Sklar and Dietrich, 2001, 2004, 2006; Turowski et al.,
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2007]. When the sediment flux is low, the amount of sedi-
ment bed cover is small so moving bed load will impact
the bed and serve as tools that enhance incision rates. As
the sediment flux increases and sediment begins to cover the
channel bed, there is a decrease in the area of bedrock
exposed to sediment impacts, resulting in a decrease in
incision rate.
[5] In this paper, we focus not on the stream power model,

but rather its functional form

I � K′Am′Sn′; ð1Þ

where the primes are used to indicate that the parameters K′,
m′, and n′ are entirely empirical. The key questions are
(1) Does this function provide a useful approximation of the
distribution of incision rates at the drainage network scale?
and (2) What controls variation of m′ and n′ values? Our
approach is to test the ability of the power law approxi-
mation to predict incision rates in numerically generated
landscapes evolved using different fluvial incision pro-
cesses and different patterns of rock uplift. The CHILD
landscape evolution model [e.g., Tucker et al., 2001a,
2001b] is used to calculate steady state landscapes and a
least squares method is used to estimate m′ and n′. These
parameters provide information about the sensitivity of
incision rate to changes in discharge and channel slope.
Thus, the range in m′ and n′ values has important implica-
tions for the feedbacks between climate and mountain
building, and also the sensitivity of fluvial incision to
extreme discharge events.
[6] Our analysis is divided into four parts. The first sec-

tion provides a summary of the four incision models used in
our different numerical modeling scenarios, which we refer
to as numerical experiments. The second section discusses
the predicted values for K′, m′, and n′, which are based on a
truncated Taylor series approximation for each of the inci-
sion models. The third section presents the least squares
method used to estimate K′, m′, and n′ from the numerical
experiments. The fourth section presents the setup and
results of the numerical experiments.

2. Bedrock Incision Models

[7] We consider four models for bedrock incision in this
study. The models are distinguished in the way that they
account for sediment flux. The first model we describe is
the stream power model (section 2.1), which does not
include a sediment flux term in the incision equation. The
next two models are the saltation‐abrasion (section 2.2)
and generalized abrasion (section 2.3) models, which are
based on the work of Sklar and Dietrich [2004] and
Parker [2004], respectively. Both of these models include
the influence of sediment flux on bedrock incision. The
last model is the transport‐limited model, in which the
divergence of sediment flux controls bedrock incision.
The four incision models considered here are described in
detail by Crosby et al. [2007] and Gasparini et al. [2007]
and are formulated assuming a steady flow with a single
grain size.
[8] The stream power, saltation‐abrasion and generalized

abrasion models are detachment limited, meaning that the

rate controlling process is the removal of material from a
bedrock channel. These models have the general form

I / f Qsð Þ�p1b ; ð2Þ

where tb is the basal shear stress, p1 is a scaling exponent,
and f(Qs) is the sediment‐flux erodibility function, which
accounts for the influence of sediment flux on bedrock
incision. The stream power model does not include sediment
flux (f(Qs) = 1), and thus could be viewed as an approxi-
mation for a river with little to no bed load. Both the sal-
tation‐abrasion and generalized abrasion models account for
the dual role of sediment as both tools and cover, and thus
apply in rivers with varying bed load transport conditions.
The only difference between these two models is that the
generalized abrasion model does not account for variable
hop length of saltating bed load, which is included in the
saltation‐abrasion model.
[9] The fourth incision model is the transport‐limited

model, in which erosion rates are limited by the rate at
which bed load can be transported through the channel. This
model represents the end‐member case in which material is
easily detached from the channel bed, and the sediment flux
is everywhere at the maximum capacity. It can be applied to
bedrock channels that are entirely covered in sediment or
channels in which the bedrock is relatively weak and easily
detached from the bed. The incision rate is determined
entirely by conservation of mass,

I ¼ 1

W

dQt

ds
; ð3Þ

where W is the channel width, Qt is the volumetric sediment
transport rate, and s is the channel length.
[10] These models have many similar components, so we

start here with a description of those relationships that are
common to the models. The first variable is water discharge
Qw, which is related to channel widthW and drainage areaA by
the following relationships [e.g., Wolman and Miller, 1960]

Qw � Ac; ð4aÞ

W � Abc; ð4bÞ

and

Qw

W
� Ac 1�bð Þ: ð4cÞ

Weuse the ∼ symbol to indicate that the quantity of the left side
of the expression scales with the quantity on the right side of
the expression. The ∼ symbol implies that this is an approxi-
mation and a proportional relationship. Commonly used values
for the scaling exponents are b= 1/2 and c= 1 [seeWhipple and
Tucker, 1999]. These equations implicitly account for the
relationship between precipitation and discharge.
[11] The next variable is basal shear stress tb, which

represents the shear stress generated by water moving across
the channel bed. For uniform, steady flow in a wide channel

�b � Qw

W

� �p2

Sp3 ¼ Ac 1�bð Þp2Sp3 ; ð5Þ
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where p2 and p3 are scaling exponents that are both equal to
2/3 when the Darcy‐Weisbach flow‐resistance equation is
used [e.g., Tucker and Slingerland, 1996].
[12] The maximum capacity for sediment transport is

often described by [e.g., Meyer‐Peter and Müller, 1948;
Sinha and Parker, 1996]

Qt � W �b � �cð Þ3=2; ð6Þ

where tc is the threshold shear stress for entrainment of
sediment. Sinha and Parker [1996] show that the threshold
effect can be replaced by a power law approximation

Qt � W�p4b ; ð7Þ

where p4 = 3
2

�b0
�b0��c

� �
and tb0 is the bed shear stress at the

center of the interval for this approximation. This approxi-
mation indicates that p4 > 3/2 when tb0 > tc. Our numerical
experiments are focused exclusively on transport of a sin-

gle‐grain size in a steady flow where tb > tc, so it is rea-
sonable to replace (6) with (7). Equations (4), (5), and (7)
indicate that transport capacity can be approximated by
[Howard, 1980]

Qt � KtA
mt Snt ; ð8Þ

where Kt is a dimensional constant, and mt and nt are scaling
exponents. The relationships above suggest that mt ≥ 1, and
nt ≥ 1. We increase the value of mt to 3/2 in order to generate
landscapes with realistic concavity values (see, e.g., Tucker
and Bras [1998],Whipple and Tucker [2002], andWillgoose
et al. [1991] for details). All parameter values are given in
Table 1.
[13] We now focus on the three detachment‐limited

models. Combining equations (2) and (5) gives a general-
ized equation for detachment‐limited incision

I � K f Qsð ÞAmiSni ; ð9Þ

where K is a dimensional constant related to bedrock erod-
ibility and precipitation, and mi and ni are scaling exponents,
which depend on the value of p1 in equation (2). The sub-
script i is used to indicate that these exponents take on dif-
ferent values for each incision model.

2.1. Stream Power Model

[14] Setting f(Qs) to a constant in equation (8) results in the
stream power model, which has been widely used in land-
scape evolution models [e.g., Anders et al., 2008; Howard,
1994; Miller and Slingerland, 2006; Pelletier, 2010; Roe
et al., 2003; Stock and Montgomery, 1999; Stolar et al.,
2006; Whipple and Tucker, 1999]:

I � KSPA
miSni : ð10Þ

One can derive values formi and ni depending on whether the
stream power model is based on unit stream power or shear
stress. The values of mi, and perhaps ni as well, are likely
influenced by other factors, including downstream changes
in channel width and discharge [e.g., Finnegan et al., 2005;
Whittaker et al., 2007; Yanites et al., 2010]. In this study, we
set mi = 1/2 and ni = 1, which is equivalent to setting p1 = 3/2
in (2). KSP is a coefficient that varies as a function of climate
and rock resistance to incision.
[15] The stream power model is unique when compared

with the other incision models used here because the inci-
sion rate is solely a function of A and S. As a result, the
steady state morphology of a landscape with any rock uplift
pattern or precipitation distribution is easily predicted. The
simplicity of the stream power model makes it useful as a
reference case for the other models.

2.2. Saltation‐Abrasion Model

[16] The saltation‐abrasion model used here is described
by Crosby et al. [2007] and Gasparini et al. [2007], and
follows, with some simplifications, from Sklar and Dietrich
[2004]. The sediment‐flux erodibility function is

f Qsð Þ � Qs

W
1� Qs

Qt

� �
; ð11Þ

Table 1. Summary of Numerical Experiments

Experiment Ka mi ni Kt
a mt nt Upliftb

Saltation‐Abrasion, Nonlinear
sa_pup_1 6.00E‐02 −0.25 −0.5 5.00E‐06 1.5 1 fast
sa_pup_2 4.00E‐02 −0.25 −0.5 1.00E‐05 1.5 1 fast
sa_pup_3 4.00E‐02 −0.25 −0.5 1.00E‐05 1.5 1 slow

Generalized Abrasion, Nonlinear
ga_pup_1 2.00E‐03 0 0 6.00E‐06 1.5 1 fast
ga_pup_2 2.00E‐03 0 0 1.00E‐05 1.5 1 fast
ga_pup_3 2.00E‐03 0 0 1.00E‐05 1.5 1 slow

Transport‐Limited, Nonlinear
tl_pup_1 – – – 4.00E‐06 1.5 1 fast

Stream Power, Nonlinear
sp_pup_1 1.00E‐05 0.5 1 – – – fast
sp_pup_2 1.00E‐05 0.5 1 – – – slow
sp_pup_3 3.00E‐06 0.5 1 – – – fast
sp_pup_4 5.00E‐06 0.5 1 – – – slow
sp_pup_5 5.00E‐06 0.5 1 – – – fast

Saltation‐Abrasion, Linear
sa_lup_1 6.00E‐02 −0.25 −0.5 5.00E‐06 1.5 1 slow
sa_lup_2 4.00E‐02 −0.25 −0.5 1.00E‐05 1.5 1 fast
sa_lup_3 4.00E‐02 −0.25 −0.5 1.00E‐05 1.5 1 slow

Generalized Abrasion, Linear
ga_lup_1 2.00E‐03 0 0 6.00E‐06 1.5 1 slow
ga_lup_2 2.00E‐03 0 0 1.00E‐05 1.5 1 fast
ga_lup_3 2.00E‐03 0 0 1.00E‐05 1.5 1 slow

Transport‐Limited, Linear
tl_lup_1 – – – 6.00E‐06 1.5 1 slow
tl_lup_2 – – – 4.00E‐06 1.5 1 slow

Stream Power, Linear
sp_lup_1 1.00E‐05 0.5 1 – – – slow
sp_lup_2 1.00E‐05 0.5 1 – – – fast
sp_lup_3 5.00E‐06 0.5 1 – – – slow
sp_lup_4 3.00E‐06 0.5 1 – – – slow

aUnits for these variables are consistent with distance in meters, area in
square meters, slope as a gradient (dimensionless), and incision rate in
meters per year. K refers to the proportionality constant for the relevant
incision model for each experiment.

bUplift type defined in Table 2.
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where Qs is the incoming volumetric sediment flux, and Qt is
the volumetric sediment transport capacity (8). Equation (11)
can be recast as

f Qsð Þ ¼ Qt

W
R 1�Rð Þ; ð12Þ

where R, the flux‐capacity ratio, is equal to Qs

Qt
and can be

viewed as a measure of the amount of bedcover. R ranges
from 0 for a river with no bed load to 1 for a river at full
capacity. The saltation‐abrasion model has the form

I � Qt

W
R 1�Rð Þ��3=4

b : ð13Þ

The negative exponent on shear stress comes from the
dynamics of a saltating bed load moving over a planar bed
[Sklar and Dietrich, 2004]. As the sediment hop length
increases, individual grains impact the bed less frequently, and
do less work on the bed. Substituting (5) for shear stress gives

I � KSA
Qt

W
R 1�Rð ÞAmiSni ; ð14Þ

where mi = −1/4 and ni = −1/2. KSA is a dimensional constant
that varies as a function of climate and rock resistance to
erosion (see Gasparini et al. [2007] for details).

2.3. Generalized Abrasion Model

[17] The generalized‐abrasion model is simplified after
Parker [2004] and uses the same function for f(Qs) as (11)
[Gasparini et al., 2007]. This model does not include sal-
tation dynamics, and as a result there is no shear‐stress
dependence, implying that p1 = 0 in (2). The resulting
equation is

I � KGA
Qt

W
R 1�Rð Þ; ð15Þ

where KGA is a coefficient that varies as a function of rock
resistance to erosion.

2.4. Transport‐Limited Model

[18] The transport‐limited case is defined by the change in
sediment load along a reach,

I ¼ 1

W

dQt

ds
¼ 1

W

dQs

ds
: ð16Þ

Equation (16) is simply equation (3) recast to show the flux
of moving bed load, Qs, is always equal to the local trans-
port capacity, Qt, as defined by (8) with mt = 3/2 and nt = 1.
The incision rate that occurs over a channel interval, Ds, is
always proportional to the change in transport capacity,
DQt, over that interval. It is often assumed that at steady
state Qs can be set to the product of the upstream area and
the rock uplift rate. This assumption only holds when the
rock uplift rate is uniform upstream and the entire upstream
channel network is at steady state. The CHILD model routes
sediment, so it can accurately account for temporal and
spatial variations in sediment flux, and the influence of this
variation on local incision rates [Tucker et al., 2001a]. We
do not include a porosity term in equation (15) [e.g.,
Willgoose et al., 1991] because porosity would only affect

the trend in the results if porosity varied systematically in
space. In our numerical experiments, both grain size and
porosity are uniform.

3. Prediction of Power Law Parameters

[19] The evolution of any system can be reduced to a
problem of integration, where relevant processes within the
system are represented by a system of differential equations.
The domain of the integration is usually finite, so the con-
ditions along the boundary of the system must be specified,
both in space and in time. Landscape evolution models
provide the numerical machinery to solve this integration.
The governing differential equations in a landscape evolu-
tion model must provide an internally consistent description
of the processes associated with production and transport of
water and sediment.
[20] We would like to examine, test, and compare dif-

ferent incision models under different boundary conditions,
however the space of realizable landscapes is beyond what
we can reasonably explore with numerical experiments. We
use scaling analysis to understand the general behavior of
the incision models [Meakin, 1998]. The first step is to
reduce the number of independent variables to the smallest
number needed to represent the state of the system. For our
analysis here, we follow the conventional wisdom that the
variation in incision rate at a point is primarily a function
of only two independent variables, A and S. The second step
is to simplify the incision equations into a common linear-
ized form. Each of the equations is a nonlinear function
composed of different combinations of power functions. In
scaling analysis, the usual approach is to replace a nonlinear
equation with a Taylor‐series approximation (see Hassani
[2009] for a good review of Taylor series). The analysis is
simplified by transforming the equation into log space and
then applying the Taylor‐series expansion [Savageau and
Voit, 1987; Savageau, 1988; Voit, 2000].
[21] To illustrate the power law approximation, we use a

generic incision equation I = I (A, S), which is solely a
function of area and slope. More complex functions could
be considered, but this is beyond the scope of our study
here. The first step is to recast the incision equation with
logarithmic variables i = i(a, s), where i = lnI, a = lnA, and
s = lnS. Next, we define the center point for the interval of
approximation, which is given by the coordinates i0, a0, s0.
The Taylor‐series expansion is

� �; �ð Þ ¼ �0 þ �� �0ð Þ @�

@�

� �
0

þ �� �0ð Þ @�

@�

� �
0

þRN �; �ð Þ; ð17Þ

where RN refers to the higher‐order terms of the series, which
are ignored for the approximation. The subscript 0 outside
the partial derivatives indicates that they are evaluated at the
center point, a0, s0. When this approximation is returned
back to the original form with linear and not log variables,
the power law form is apparent, I ≈ K′Am′Sn′ (equation (1)),

where the constant K′ = exp �0 � �0
@�
@�

� �
0
��0

@�
@�

� �
0

h i
. The

exponents are given by

m′ ¼ @�

@�

� �
0

¼ @ ln I

@ lnA

� �
0

¼ A

I

@I

@A

� �
0

; ð18aÞ
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and

n′ ¼ @�

@�

� �
0

¼ @ ln I

@ ln S

� �
0

¼ S

I

@I

@S

� �
0

: ð18bÞ

These equations show two important features about the
power law representation. The first is that partial derivatives
can be determined directly from the incision equation. The
second is that the exponents represent dimensionless scaling
factors that indicate how the incision rate is influenced by
changes in area or slope. In other words, DI

I ≈ m′ DA
A , and

DI
I ≈

n′ DS
S , as long as the ratios remain small (i.e., less than about

50 percent). For example, am′ value of 0.5 would mean that a
10 percent change in drainage area would cause a 5 percent
change in incision rate, assuming that all other factors remain
constant.
[22] The Taylor‐series expansion requires that the log‐

transformed incision function is infinitely differentiable at
a0, s0, which is true for all of the incision models considered
here. The error associated with the approximation generally
increases with increasing distance from the center point. The
convergence properties of the series can be used to determine
an upper bound for the error but this is a complicated task for
a multivariate Taylor series. Each term in the remainder of
the series RN consists of a successively higher‐order deriv-
ative multiplied by a difference, either (a − a0) or (s − s0),
raised to a successively higher integer power. We can infer
that the RN will remain convergent (and thus relatively small
compared to the leading terms) while in the interval defined
by ∣a − a0∣ < 1 and ∣s − s0∣ < 1. In other words, we should
be able to trust the approximation out to at least one log unit
from the center point, which is equivalent to ∼0.37 < (A/A0)
< ∼2.72 and ∼0.37 < (S/S0) < ∼2.72 (the numbers corre-
spond to e−1 and e). Voit and Savageau [1987] show that
the power law representation commonly remains valid over
a much larger range for biochemical reactions, sometimes
up to two or three orders of magnitude. The numerical
experiments presented below help to illustrate the useful
range for the power law approximation when applied to the
problem of fluvial incision.
[23] We now apply this power law approximation to the

incision models in order to obtain predictions for m′ and n′,
which will then be compared against those estimated from
the numerical experiments. The prediction is trivial for the
stream power model in that m′ and n′ are equal to the pro-
cess‐based estimates for mi and ni, respectively. The two
abrasion models are considered first, since they have similar
equations. The transport model is considered next.

3.1. Abrasion Models

[24] The two abrasion models are subsumed by the fol-
lowing generalized equation

I � R 1�Rð ÞAmiþmt�bcSniþnt : ð19Þ

The saltation‐abrasion model has mi = −1/4 and ni = −1/2,
and the general‐abrasion model has mi = ni = 0. Because
R = R (Qt, Qs), we need to find a representation for Qs

before we can calculate the approximation. We assume that
Qs is closely approximated by a power law equation

Qs � K ′
sA

m′
s Sn

′
s ; ð20Þ

where K′s, m′s, and n′s are empirical parameters. For steady
state landscapes, Qs is commonly assumed to be solely a
function of area, but this is only true for a spatially uniform
uplift rate. If uplift and incision rates are not spatially uni-
form, area alone cannot constrain sediment flux values. This
is illustrated in our numerical modeling results.
[25] The partial derivatives of (19) give the following

predicted values for the power law exponents:

m′h i ¼ A

I

@I

@A

� �
0

¼ mi þ mt � bcð Þ

þ A

R 1�Rð Þ
@ R 1�Rð Þ½ �

@R
@R
@A

� �
0

� . . . mi þ mt � bcð Þ þ m′
s � mt

� � 1� 2R0

1�R0
; ð21aÞ

and

n′h i ¼ S

I

@I

@S

� �
0

¼ ni þ ntð Þ

þ S

R 1�Rð Þ
@ R 1�Rð Þ½ �

@R
@R
@S

� �
0

� . . . ni þ ntð Þ þ n′s � nt
� � 1� 2R0

1�R0
; ð21bÞ

where R0 is the sediment‐flux capacity at the center of the
approximation interval. The brackets h·i are used to indicate
that these estimates are the “expected values” for m′ and n′,
as derived directly from the incision models. The “approx-
imately equal” symbol is used to remind us that that the
predictions on the right sides of (21a) and (21b) include an
approximate relationship for sediment flux (20).

3.2. Transport‐Limited Incision

[26] We start by recasting the transport‐limited model (16)
in terms of A and S. Hack’s law [Hack, 1957], s ∼ Ah,
provides the scaling relationship between channel distance s
and area. Hack’s constant h is ∼0.6 for most drainages
[Willemin, 2000]. In our numerical experiments, h is a little
larger, with an average of 0.66, and a range of 0.64 to 0.69.
For our purposes, 1

W ds ∼
A1�h�bc

dA , which can be substituted into
(16) to give

I ¼ 1

W

dQt

ds
� dQt

dA
A1�h�bc: ð22Þ

The derivative is given by

dQt

dA
� Amt�1Snt mt þ nt

A

S

@S

@A

� 	
: ð23Þ

The partial derivative @S
@A is related to �, the concavity index

of the channel [e.g., Tucker and Whipple, 2002]

� ¼ � @ ln S

@ lnA
¼ �A

S

@S

@A
: ð24Þ

The concavity index is the negative of the slope of the log
slope–log area trend for an individual channel (e.g., Figure 1).
We assume here that � is approximately constant, but for our
numerical experiments this is not entirely the case. This
assumption implies that � has no influence on the exponents
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for the power law approximation. The resulting approxima-
tion is I ∼ Amt−h−bcSnt, which means that

m′h i � mt � h� bc ð25aÞ

n′h i � nt: ð25bÞ

Once again, the predictions for the exponents are shown as
approximations, given that they rely on an empirical re-
lationships and assumptions, such as Hack’s law and constant
concavity.

4. Estimating Exponents From Results
of Numerical Experiments

[27] We use numerical experiments to test whether the
power law approximation is valid at the scale of a full
drainage. The least squares method provides a straightfor-
ward way to test this approximation. In log form, the power
law approximation is given by

� ¼ lnK′þ m′�þ n′�þ "; ð26Þ
where " represents the error in the approximation. This
equation represents a plane in i–a–s space. It is linear with
respect to its parameters lnK′, m′, and n′, which means that
the parameters can be uniquely estimated from a set of three
or more independent observations of incision rates in i–a–s
space.
[28] The log incision–rate variable i is designated as the

dependent variable, which means that the best fit solution
will be determined by minimizing the sum of the squares of

the residuals SSR =
Pn
i¼1

(ii
obs − ii

pred)2, where ii
obs are the

observed incision rates calculated in a numerical experi-
ment, and ii

pred are the values predicted by the power law
equation. The quality of the best fit solution is reported

using the usual metric Rfit
2 = 1 − SSR

SST, where SST =
Pn
i¼1

[ii
obs −

mean(ii
obs)]2.

[29] By designating i as the dependent variable, we are
assuming that any misfit is due to errors in that variable. The
misfit between observed and predicted incision rates is due

to the Taylor‐series approximation (17), which ignores the
higher‐order terms represented by RN. The misfit appears as
an additive term on the right side of the power law
approximation (17), so i is correctly designated as the
dependent variable for the numerical experiments consid-
ered here. The application of the least squares method is
more complicated for real data sets given that all of the
variables will have errors, as discussed by Tomkin et al.
[2003].
[30] Parameter estimation requires that the span of the

data is large compared with the errors. In other words, a set
of observations must have a large enough distribution of
i–a–s values to fully resolve the planar geometry of the
power law equation. If this is not the case, then there is no
unique solution to the inverse problem. This problem occurs
when there is a high covariance between the independent
variables, which in our case are a and s. When this hap-
pens, the data will tend toward a linear distribution of points
(collinearity) in i–a–s space, and the least squares model
will fail to resolve the planar geometry of the incision
equation (26).
[31] As an example, consider a steady state landscape

forced by a uniform and steady rate of uplift. The incision
rate is everywhere the same, so changes in drainage area are
directly compensated by changes in channel slope, which
would appear as a linear covariance between a and s
(Figure 1). We can see this result by setting (17) to a fixed
incision rate, where i = i0 (and ignoring RN as well). The
remaining two variables are forced to follow a line in i–a–s
space, defined by i = i0 and � � �0

� � �0
= m′

n′ . It is impossible to get
three or more independent observations from a set of ob-
servations that follow a line. As a result the data are insuf-
ficient to determine a solution using the least squares
method.
[32] To ensure that the model data are able to adequately

resolve the power law parameters, we define the numerical
experiments to have relatively large spatial variation in
uplift rates, and we include incision rates from both tributary
and trunk streams. Collinear data sets may be hard to avoid
in field studies. In particular, we have found that it is useful
to have incision‐rate data from both tributaries and trunk
channels in order to minimize covariance between slope and
area in the data. This holds for both model data and field
data (results not shown here). The slope‐area plot, which
is usually constructed using log‐log scaling, can also be
inspected to see if the independent variables are collinear (as
in Figure 1).
[33] The condition index (CI) method of Belsley et al.

[1980] and Belsley [1991] provides a direct test for the
collinearity problem. CI is equal to the square root of the
ratio of the largest and smallest eigenvalues of the correla-
tion matrix for the independent variables of the regression
(which are a and s, here). Collinearity may be a problem
when CI > 15, and is highly likely when CI > 30. Our
practice here is to exclude those numerical experiments that
have CI > 15.

5. Numerical Experiments

5.1. Setup of Numerical Experiments

[34] The CHILD model is used to evolve steady state
landscapes with different uplift patterns. At steady state, the

Figure 1. Example of steady state slope area data from a
numerical experiment with uniform uplift. These data were
produced using the stream power model.
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incision rate equals the local uplift rate at every location in
the landscape. Our methods could be extended to consider
transient cases, but we focus here on steady state examples,
given that they are simpler and provide an essential first step
in understanding the dynamic behavior of the fluvial system.

[35] All of the numerical landscapes are rectangular in
shape, 29.7 km by 8.7 km, with a grid spacing of 300 m.
Numerical experiments with a higher resolution, or involv-
ing larger or smaller regions (not reported here) indicate that
these factors do not significantly influence our estimates of
m′ and n′. One of the shorter edges of the landscape is an
open boundary over which sediment and water can pass out
of the system. Material cannot cross the other three edges
(Figure 2). The precipitation is uniform and steady, and the
discharge is also everywhere steady. The sediment in the
drainage network is homogeneous. The initial condition for
the landscapes is a white‐noise surface with an average
elevation of 20 m, and the drainage network evolves on its
own. This surface is uplifted and eroded until it reaches
steady state.
[36] We used four uplift patterns for our numerical

experiments (Table 2 and Figure 3). For all types, uplift
varies only in the y direction, with largest values of ≈1.0 to
2.0 mm/a near the drainage divide, to the smallest values of
≈0.1 mm/a close to the open boundary. Uplift is strongly
focused at the divide for the two nonlinear uplift patterns,
and falls off more gradually with distance for the linear uplift
patterns.

Figure 2. Example of topography created with CHILD (from experiment sa_lup_3). The shading
illustrates the uplift pattern, with lowest uplift rates at the open boundary. The values on the axes
are in kilometers. The white streamlines illustrate those parts of the network used in the analysis.

Figure 3. Plots of uplift rate profiles used for our experi-
ments. See Table 2 for details.

Table 2. Parameters for Different Uplift Distribution Used in
Experiments

Type of Uplift Uplift Equationa

Type 1: nonlinear and slow U = 2(Ydivide − y)−0.3

Type 2: nonlinear and fast U = 70(Ydivide − y)−0.6

Type 3: linear and slow U = 1 − 0.3 × 10−4 (Ydivide − y)
Type 4: linear and fast U = 6.1 − 2 × 10−4 (Ydivide − y)

aDistance y is in meters and uplift rate U is in millimeters per year. Ydivide
equals 30,000 m.
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5.2. Results of Numerical Experiments

[37] Table 3 reports the best fit values of K′, m′, and n′ for
each numerical experiment. The Rfit

2 values range from 0.76–
0.99. We focus our presentation on the results from
numerical experiment sa_lup_3 (saltation‐abrasion model,
slow linear uplift; Figures 4 and 5) and sa_pup_3 (saltation‐
abrasion model, slow nonlinear uplift; Figures 6 and 7). The
steady state landscape for the linear uplift example is shown
in Figure 2; the slope, area and incision model data and best
fit solution are shown in Figure 4 and the slope, area and
sediment flux model data and best fit solution are shown in
Figure 5. Figures 6 and 7 are similar to Figures 4 and 5,
respectively, except that Figures 6 and 7 illustrate the model
data and the best fit solutions for the nonlinear example,
sa_pup_3. The centroid of the data (Figures 4, 5, 6, and 7) is
estimated using the log mean of the data, in keeping with the
log scaling associated with the power law approximation.
[38] Figure 4b shows a representation of the three‐

dimensional best fit plane in log S–log A–log I space and the
model data from the linear uplift example that were used to
produce this fit. Figures 4c and 4d show the residuals as a
function of area and channel slope (note the residuals are
shown here as a percent ratio (Ii

obs − Ii
pred)/Ii

obs rather than
log units). The residuals are below 50% and above −50%
over a range of approximately an order of magnitude around
the centroid for both area and channel slope.
[39] The slope area plot (Figure 4a) shows contours of

incision rate. These contours represent the projection of the
best fit plane, shown in Figure 4b, downward onto the log S—
log A plane represented by the slope‐area plot. The contours
have a uniform slope equal to m′

n′ , which is a conclusion
anticipated by the earlier discussion on collinearity. In the
case of uniform incision rates, the model data would follow
the line representing the contour for that incision rate (e.g.,
Figure 1). The stream concavity would be equal to m′

n′ . All of
our numerical experiments have spatially variable incision
rates, so the trend of the model data is always oblique to the
incision‐rate contours. Uplift/incision rates for all of our
numerical experiments decrease downstream, which means
that the channel concavity will always be greater than m′

n′

[Kirby and Whipple, 2001].
[40] The large span of points in the slope area plot

(Figure 4a) is a result of using model data from both the trunk
and tributary channels. The map of the drainage (Figure 2)
shows several tributaries at about ∼5–15 km in the y
direction. Each of these tributaries has different incision
rates, but they all have small drainage areas relative to the
trunk channel. Using model data from both trunk and
tributaries, as well as from the small channels that drain
directly to the open boundary, increases the spread of the
data in area and slope space, and thus should help avoid
problems with collinearity.
[41] There is less mismatch between the model incision

data and the predicted values in the nonlinear case illustrated
in Figure 6 (Rfit

2 = 0.99) in comparison with the linear case
illustrated in Figure 4 (Rfit

2 = 0.87). As a result, the residuals
for the nonlinear example (Figures 6c and 6d) are smaller
than the residuals in the linear example (Figures 4c and 4d).
In all cases, the numerical experiments using the nonlinear
uplift model are better described by the power law
approximation (higher Rfit

2 values and less mismatch) than

Figure 4. Incision, channel slope, and drainage area
data from the landscape and channel network illustrated in
Figure 2 (experiment sa_lup_3). (a) The slope area data
with iso‐incision contours from the best fit power law rela-
tionship, labeled in units of millimeters per year. (b) The same
data in three dimensions. The gray panel is the best fit power
law solution, which is a plane in log I, log S, log A space.
White circles are above the plane and black circles are below
the plane. (c and d) The residuals in percentage form as a
function of drainage area and channel gradient, respectively.
Positive values indicate that the observed value is greater than
the predicted value, and negative values indicate that the
observed value is less than the predicted value. In all of the
plots the white square illustrates the centroid of the data, as
determined by the log mean.
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the numerical experiments using the linear uplift model
(Table 3).
[42] Table 4 reports the least squares estimates for power

law fits for sediment fluxQs (equation (20)). In all cases Rfit
2 >

0.99. Figures 5 and 7 illustrate Qs data taken from the linear
and nonlinear uplift examples, respectively. We do not fully
understand this result, but it is clearly a robust feature for all
numerical experiments. One possibility is that this result is
related to the specific form of the uplift equation, but the
linear uplift case is actually poorly represented by a power
law approximation. Instead, we think that this result is
an intrinsic feature associated with fluvial incision. The
drainages tend to organize in a way that the sediment flux

Figure 5. Sediment flux, channel slope, and drainage area
data from the landscape and channel network illustrated in
Figure 2 (experiment sa_lup_3). (a) The slope‐area data
with iso‐sediment‐flux contours from the best fit power law
relationship, labeled in units of cubic meters per year. (b) The
same data in three dimensions. The gray panel is the best fit
power law solution, which is a plane in log Qs, log S, log A
space. White circles are above the plane and black circles are
below the plane. (c and d) The residuals in percentage form
as a function of drainage area and channel gradient, respec-
tively. Positive values indicate that the observed value is
greater than the predicted value, and negative values indicate
that the observed value is less than the predicted value. In all
of the plots the white square illustrates the centroid of the
data, as determined by the log mean.

Figure 6. The same plots as shown in Figure 4, but with
data from experiment using the nonlinear uplift pattern
(sa_pup_3).
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follows a power law relationship. This is perhaps not sur-
prising given that we know that the water flux (discharge)
is also well approximated by a power law. The difference,
however, is that water discharge is only a function of A,
whereas sediment flux is a function of both A and S. Slope
tends to vary smoothly across a drainage network so that the
value of S at a point is strongly correlated with the values of
S in the network above that point.
[43] Table 3 and Figure 8 provide a comparison between

the m′ and n′ values predicted from the incision models,
and those estimated by the power law fit to the data. The
observations and predictions have some noticeable differ-

ences but also show similar patterns. Comparing among the
incision models, the observed m′ and n′ values are similar as
long as the uplift patterns are the same. The predicted m′ and
n′ values have greater differences among the models, espe-
cially when considering the transport‐limited model, in
which the predicted m′ and n′ values are constant.
[44] All of the observed m′ and n′ values fall along a linear

trend with a slope ofDm′/Dn′ ≈ 0.4 and an intercept close to
the origin (Figure 8). The nonlinear uplift cases always plot
on the low side of this trend, and the linear uplift cases, on
the high side. The predicted m′ and n′ values for numerical
experiments using the saltation‐abrasion and generalized
abrasion models also show linear trends. These trends are
offset upward from the trends for the observed values,
indicating that the predicted m′ values are slightly larger
than the observed. The slopes of these trend lines are other-
wise similar to those for the observed values. The prediction
for the numerical experiments using the transport‐limited
incision model is that m′ and n′ should be constant at
0.32 and 1, respectively. The prediction fails to account for
the trend in the observed data. We suspect that this problem

Figure 7. The same plots as shown in Figure 5, but with
data from experiment using the nonlinear uplift pattern
(sa_pup_3).

Table 3. Observed and Predicted Parameters for Power Law
Approximationa

Experiment

Observed Predicted

K′ m′ n′ Rfit
2 hm′i hn′i

Saltation‐Abrasion, Nonlinear
sa_pup_1 1.20E‐04 0.20 0.68 0.99 0.39 0.82
sa_pup_2 1.94E‐04 0.20 0.68 0.99 0.35 0.68
sa_pup_3 4.88E‐05 0.30 0.72 0.99 0.26 0.47

Generalized Abrasion, Nonlinear
ga_pup_1 6.24E‐05 0.26 0.74 0.94 0.29 0.60
ga_pup_2 1.05E‐04 0.25 0.72 0.95 0.21 0.50
ga_pup_3 1.79E‐05 0.36 0.76 0.94 0.32 0.59

Transport‐Limited, Nonlinear
tl_pup_1 1.51E‐04 0.18 0.69 0.96 0.32 1.00

Stream Power, Nonlinear
sp_pup_1 1.00E‐05 0.50 1.00 1.00 0.50 1.00
sp_pup_2 1.00E‐05 0.50 1.00 1.00 0.50 1.00
sp_pup_3 3.00E‐06 0.50 1.00 1.00 0.50 1.00
sp_pup_4 5.00E‐06 0.50 1.00 1.00 0.50 1.00
sp_pup_5 5.00E‐06 0.50 1.00 1.00 0.50 1.00

Saltation‐Abrasion, Linear
sa_lup_1 2.56E‐05 0.42 1.20 0.87 0.55 1.21
sa_lup_2 3.80E‐05 0.44 1.35 0.79 0.54 1.32
sa_lup_3 5.93E‐05 0.42 1.22 0.87 0.54 1.16

Generalized Abrasion, Linear
ga_lup_1 1.19E‐05 0.47 1.20 0.82 0.56 1.15
ga_lup_2 2.51E‐05 0.46 1.32 0.76 0.64 1.37
ga_lup_3 1.95E‐05 0.48 1.21 0.82 0.59 1.19

Transport‐Limited, Linear
tl_lup_1 3.33E‐05 0.42 1.19 0.88 0.32 1.00
tl_lup_2 2.93E‐05 0.40 1.23 0.85 0.32 1.00

Stream Power, Linear
sp_lup_1 1.00E‐05 0.50 1.00 1.00 0.50 1.00
sp_lup_2 1.00E‐05 0.50 1.00 1.00 0.50 1.00
sp_lup_3 5.00E‐06 0.50 1.00 1.00 0.50 1.00
sp_lup_4 3.00E‐06 0.50 1.00 1.00 0.50 1.00

aUnits consistent with area in square meters, dimensionless slope, and
incision rates in meters per year.
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is related to our assumption that the concavity of the river
channels is relatively uniform over the numerical experiment
(see discussion above in association with equation (24)).
[45] The trends in m′–n′ space for numerical experiments

using the abrasion models have different controlling factors.
The m′–n′ trend for the saltation‐abrasion model is con-
trolled by variation in bed cover, as represented by R. The
equation for the prediction of exponents when using the
abrasion models ((21a) and (21b)) is very sensitive to
changes in R, as represented by the quantity 1�2R0

1�R0
on the

right side of (21a) and (21b). Table 4 shows that small
changes in R0 result in large changes in 1�2R0

1�R0
. The focused

erosion pattern in the numerical experiments with nonlinear
uplift result in more negative values for 1�2R0

1�R0
. This quantity

is present in the predictions for both m′ and n′, so more
focused erosion tends to drive both exponents to smaller
values.
[46] Those numerical experiments using the generalized

abrasion model have a narrower range of R0 values. The
values for 1�2R0

1�R0
also have a narrow range. For these

numerical experiments, the variation in m′ and n′ appears
to be controlled by variation in the spatial pattern of sed-
iment flux, which is expressed in the values of the ex-
ponents m′s and n′s (Table 4). The focused erosion pattern
in the nonlinear uplift numerical experiments results in
larger values for m′s and n′s, relative to those for the linear
uplift experiments. These variations affect both m′ and n′,
which explains why m′ and n′ tend to vary along a specific
trend.
[47] The nonlinear form of R(1 − R), which is present in

both of the abrasion models ((14) and (15)), does not
strongly influence our results. Figure 9 shows a plot of

R(1 − R) as a function of the flux‐capacity ratio R. The
function R(1 − R) has the form of an inverted parabola,
with the tools dominating on the low side (R < 0.5), and
cover, on the high side (R > 0.5). The power law approx-
imation for R(1 − R) only applies when the fluvial system
is located entirely on one side or the other of this parabola.
This is illustrated by the log‐log plot (Figure 9b). The flanks
of the parabola have relatively constant slopes in log‐log
space. The top of the parabola does not. Our experimental
runs all lie on the high side, or “cover side” of the parabola
(see R0 and Rmax–Rmin in Table 4), which means that the
power law approximation is appropriate.
[48] We summarize the results of the numerical experi-

ment with five general observations.
[49] (1) The predictions show that the power law

approximation for incision rates (equation (1)) applies for all
of the tested incision models.
[50] (2) The numerical experiments show that the power

law approximation applies over a range of at least an order
of magnitude or more in area and slope values.
[51] (3) The numerical experiments show that the power

law approximation holds for different patterns of uplift.
[52] (4) The power law exponents m′ and n′ are strongly

dependent on the distribution of erosion. The m′/n′ ratio
remains fairly constant for any specific incision model, but
the values themselves tend to become smaller as erosion

Table 4. Observed Values for Power Law Approximation for
Sediment Flux

Experiment K′s
a m′s n′s Rfit

2 R0
b Rmax–Rmin (1−2R0)/(1−R0)

Saltation‐Abrasion, Nonlinear
sa_pup_1 3.41E‐06 1.52 0.98 1.00 0.96 1.0–0.83 −20.8
sa_pup_2 6.64E‐06 1.52 0.99 1.00 0.95 1.0–0.82 −20.2
sa_pup_3 7.57E‐06 1.52 1.00 1.00 0.97 1.0–0.91 −31.3

Generalized Abrasion, Nonlinear
ga_pup_1 7.37E‐07 1.64 1.08 1.00 0.86 0.98–0.54 −5.3
ga_pup_2 1.50E‐06 1.63 1.08 1.00 0.88 0.98–0.54 −6.1
ga_pup_3 1.40E‐06 1.64 1.08 1.00 0.86 0.97–0.54 −5.0

Transport‐Limited, Nonlinear
tl_pup_1 3.40E‐06 1.51 1.00 1.00 0.99 1.0–0.94 –

Saltation‐Abrasion, Linear
sa_lup_1 3.17E‐06 1.51 0.95 1.00 0.94 1.0–0.77 −14.4
sa_lup_2 4.89E‐06 1.49 0.73 0.99 0.89 1.0–0.43 −7.1
sa_lup_3 6.09E‐06 1.51 0.95 1.00 0.94 1.0–0.76 −14.0

Generalized Abrasion, Linear
ga_lup_1 1.14E‐06 1.58 0.97 1.00 0.86 0.99–0.54 −5.3
ga_lup_2 2.81E‐06 1.56 0.94 1.00 0.88 1.0–0.55 −6.1
ga_lup_3 2.04E‐06 1.58 0.96 1.00 0.86 0.99–0.54 −5.2

Transport‐Limited, Linear
tl_lup_1 5.02E‐06 1.51 1.00 1.00 0.99 1.0–0.93 –
tl_lup_2 3.40E‐06 1.51 0.99 1.00 0.99 1.0–0.93 –

aConstant assumes area is in square meters, slope is dimensionless, and
sediment flux is in cubic meters per year.

bLog mean of observed R values in experiment.

Figure 8. Comparison of observed (black symbols) and pre-
dicted (gray symbols) values for m′ and n′ for (a) saltation‐
abrasion, (b) generalized abrasion, and (c) transport‐limited
incisionmodels. The circles are values from experiments with
the linear uplift pattern; the triangles are values from experi-
ments with the nonlinear uplift pattern. The black line marks
the average trend for the observed m′ and n′ values.
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becomes more focused within the highest part of the
drainage.
[53] (5) The values of m′ and n′, by themselves, cannot be

used to identify the processes controlling bedrock incision.

6. Discussion

[54] The stream power model provides a simple frame-
work for understanding the evolution of bedrock channels in
tectonically active landscapes. However, our understanding
of bedrock incision has improved over the last decade, most
notably due to the introduction of the saltation‐abrasion
model of Sklar and Dietrich [2004], which was one of the
first incision models to explicitly address how sediment
flux affects incision. In hindsight, the stream power model
appears too simple for any real application, and we find it
surprising that incision rates governed by the more complex
sediment‐flux‐dependent incision models can be described
as a power law function with the same form as the stream
power model.
[55] In the numerical examples, the power law approxi-

mation applies because the influence of sediment flux on
channel incision, as described by the functionR(1 −R), can
be approximated with a power law function of drainage area
and slope (Figure 9). A power law approximation of R(1 −
R) only holds when the results fall entirely on the “tools” or
“cover” side of function. In our examples, all of the channels
are cover dominated, and the expectation is that most river

channels will tend to evolve toward the cover side of the
parabola. The reason is that channels that lie on the tools
side will generate more sediment and bedcover. As a result,
“tools‐side” channels are unstable, and will tend to migrate
toward a “cover‐side” condition. Channels with a “cover‐
side” condition will tend to be stable because of the negative
feedback on this side of the parabola. Any increase in
sediment (and bedcover) will result in a decrease in channel
erosion. Laboratory experiments support this theory
[Johnson and Whipple, 2007].
[56] Our examples illustrate how a power law approxi-

mation holds for channel incision when the influence of the
sediment flux can also be approximated by a power law.
However, we surmise that a power law relationship between
channel incision, slope and drainage area will also apply
when other variables beyond sediment flux influence inci-
sion rate. The key for the power law approximation is that
the variables that influence bedrock incision must vary as a
power law function of channel slope and (or) drainage area.
An example of such a variable is channel width, which can
often be described as a power law function of drainage area
[e.g., Montgomery and Gran, 2001].
[57] An important distinction between the results pre-

sented in our study and the stream power model is that the
power law parameters produced from the best fit to model
data are not only a function of local incision processes, but
also dependent on the distribution of bedrock uplift rates and
sediment production within the drainage. This relationship
indicates that there is a more complex interaction between
tectonics and fluvial incision. In other words, one needs to
consider not only the uplift rate at a point, but also the
pattern of uplift rates across a drainage. Many analytical
analyses of the interaction of tectonics and climate in con-
vergent wedges have assumed that uplift rates are uniform
across the landscape and that incision rates are governed by
a stream power relationship with fixed values for m and n
[Roe et al., 2006; Whipple and Meade, 2004; Whipple,
2009]. However, our analysis suggests that if uplift rates
are not uniform, the values of m and n may not be fixed
among different landscapes.
[58] Existing geodynamic modeling provides some guid-

ance about why uplift rates may vary across an orogenic
wedge. For this purpose, we refer to the numerical model of
Fuller et al. [2006], which explores the full evolution of a
generic convergent wedge, where accretion, heat transport,
rheology, and flexural isostasy are all accounted for in a
geologically realistic manner. For our purposes here, the
important conclusion of this work is that as a wedge grows,
uplift rates tend to get localized into the central and highest
part of the wedge. The reason is that as the wedge grows and
thickens, the base of the wedge will become hot enough for
viscous deformation to outpace frictional deformation. This
thermally activated viscous softening starts when the max-
imum thickness of the wedge exceeds about 20 km. The
central part of the wedge is now weaker and will tend to
thicken faster than other parts of the wedge. Faster thick-
ening will result in faster rock uplift at the surface of the
wedge, which will lead to faster incision and erosion. Faster
erosion will also cause isotherms to migrate upward beneath
the center of the wedge, resulting in a larger viscous region
at the base of the wedge. This localization of uplift and

Figure 9. Plots showing R(1 − R) as a function of R. (a)
The inverted parabolic form of this function. (b) The same
with log‐log axes. The diamonds and squares show R0

values for those experiments using the saltation‐abrasion
or general abrasion incision model, respectively. The range
labeled in Figure 9a shows the range in R values within the
model domain for these experiments.
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erosion is similar to the tectonic aneurysm of Koons et al.
[2002].
[59] A number of recent studies [Hilley et al., 2004; Roe

et al., 2006, 2008; Whipple and Meade, 2004, 2006] indi-
cate that m′ is the essential variable for understanding the
sensitivity of an orogenic wedge to changes in climate or
tectonic forcing. We focus here on how the width, L, of a
steady state orogenic wedge is influenced by tectonic forcing,
as represented by the accretion rate, F, and climatic forcing,
as represented by the precipitation rate, P. Roe et al. [2006]
show that

DL

L
¼ h

m′þ h

� �
DF

F
� m′h

m′þ h

� �
DP

P
; ð27Þ

where h is Hack’s constant [Hack, 1957]. (Note that Roe et al.
[2006] use the reciprocal of this variable, but it is more typical
to define h as used here.) Equation (27) shows how L will
change given a change in F or P. As m′ increases, the sensi-
tivity of L to changes in P increases and to changes in F
decreases. To say more, we need to know what the likely
values of m′ might be.
[60] In the past, m′ was thought to fall somewhere in the

range 1/3 to 1 [e.g., Roe et al., 2006], but those estimates did
not account for the role of sediment flux. Our work here
shows that for abrasion‐dependent incision, m′ is a function
of the distribution of sediment flux, which is controlled by
the distribution of incision rates. Our numerical experiments
indicate that under some conditions, m′ values can be
smaller. A low m′ value means a weak sensitivity to climate
change but a strong sensitivity to tectonic change. Consider
our lowest value, m′ ≈ 0.2. A doubling of precipitation rate
would cause the width of the orogen to decrease by only
15%. In contrast, a doubling of the accretion rate would
cause orogen width to increase by 50%. As m′ goes to zero,
the climate sensitivity of the orogen goes to zero, and the
tectonic sensitivity goes to one.
[61] A similar issue concerns the sensitivity of incision

and erosion rates to changes in the character of fluvial dis-
charge [e.g.; Molnar, 2001; Snyder et al., 2003; Tucker,
2004]. In particular, Molnar [2001] has argued that Qua-
ternary climate may be dominated by flashier discharges. He
proposed this idea to explain the large increase, by a factor
of 2 to 4, in the delivery of continent‐derived sediments to
the deep oceans over the last several million years. Pelletier
[2009] has argued that Quaternary incision is faster in the
Rockies due to an increased snowpack which leads to
flashier discharges when the snowpack melts. These argu-
ments imply incision rates are highly sensitive to discharge.
Our results suggest that if m′ is small, these conclusions may
not apply.
[62] We consider an artificial example, where during a

warm climate regime, the runoff moves off the landscape at
a steady rate. A change to a colder climate regime would
cause winter precipitation to be stored as snow. To a first
approximation, we might expect the discharge to increase by
a factor of two, since the annual precipitation is now moving
through the drainage in half the time. If m′ ≈ 0.2, then this
doubling in discharge would result in a 15% increase in
incision rates. If flashier discharges were the cause of the
increased sedimentation rates by a factor of 2 or more in the
deep oceans [Molnar, 2001], then effective discharge would

have to increase by a factor of 32. Our analysis here is
simplified, mainly because the incision models we have
examined provide only a limited approximation for the
effect of a threshold shear stress (see discussion associated
with equations (6) and (7)). Our intention is not to make
specific predictions but rather to show the important influ-
ence that sediment flux may have in suppressing the incision
process in bedrock rivers.
[63] We are left with an important question: Is there a

lower limit for m′? The prediction equation (21a) allows
both positive and negative values. We contend that the
practical lower limit for m′ is zero. If m′ were less then zero,
the result would look nothing like a fluvial landscape. The
reason is that the channel localization process would be
inverted. Areas where overland flow converged would erode
more slowly than areas where flow diverged. In other words,
“incision” would be fastest on interfluves and slowest in
valleys. The resulting landscape would be smooth, rather
than channelized. The expectation is that m′ is always
greater than zero in natural settings.
[64] There are few examples where m′ and n′ have been

measured in real fluvial landscapes. Stock and Montgomery
[1999] analyzed rivers from Hawaii, Australia, California,
and Japan where long‐term incision rates could be esti-
mated. They inverted for K′, m′ and n′ using a power law
formulation. Seven of the rivers had low m′ values (0.1 to
0.2), three had values 0.3 to 0.5, and one >2. van der Beek
and Bishop [2003] reanalyzed some of the Australian rivers
and found similar m′ values. These m′ values estimated from
real landscapes are in the same range as those estimated
from our numerical experiments.
[65] There is much debate at present about the influence

of Late Cenozoic climate change on mountainous topogra-
phy [e.g., Molnar, 2004; Zhang et al., 2001]. Increases in
alpine glaciation may play an important role in this debate,
but our results suggest that some uplift patterns may lead to
fluvial incision rates that are relatively insensitive to chan-
ges in discharge. This result may account for the prolonged
steadiness of topography in the Olympic Mountains, which
has remained close to a flux steady state since about 15 Ma
[Batt et al., 2001; Brandon et al., 1998; Pazzaglia and
Brandon, 2001]. Rock uplift and erosion are focused in
the core of that range, so low m′ values would be expected
and have been demonstrated locally for the Clearwater
drainage [Tomkin et al., 2003].
[66] A number of recent studies have debated the possi-

bility of large changes in the size of the Alps, starting at
about 6 Ma [Cederbom et al., 2004; Champagnac et al.,
2009; Kuhlemann, 2000; Willett et al., 2006]. Kuhlemann
[2000] showed that the sediment flux from the Alps
increased several fold at about 5 Ma, but it is not known if
that increase was due primarily to faster erosion of bedrock
in the mountainous parts of the Alps or to removal of
foreland basin sediments. Others have made arguments
based on a change to a wetter climate over the Alps in the
last 6 Ma [Willett et al., 2006]. In contrast, Bernet et al.
[2001, 2009] have reported an extensive suite of detrital
cooling ages derived from the basement core of the Alps and
deposited over the last 30 Ma in sedimentary basins sur-
rounding the Alps. These data indicate that erosion rates in
the core of the Alps have been steady over the last 30 Ma.
While we do not intend to resolve this debate, we point out
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that in the Alps uplift and erosion are focused in the highest
part of the drainage [Bernet et al., 2001, 2009; Champagnac
et al., 2009; Wittmann et al., 2007]. Our results suggest that
this situation may lead to fluvial incision rates in the Alps
that are largely insensitive to changes in discharges.

7. Conclusions

[67] Our study suggests that a power law scaling rela-
tionship between incision rate, drainage area, and channel
gradient likely applies in many settings, but the values of the
scaling exponents vary depending on the pattern of rock
uplift rates and the distribution of sediment flux across a
drainage network. In mountain belts where high uplift rates
are concentrated at the core of the range, the drainage area
exponent is suppressed. Although we only explore incision
models that include channel gradient, sediment flux, and
drainage area, we surmise that a power law relationship will
also exist even where other variables influence incision rate,
so long as they vary smoothly and monotonically across a
drainage network. This may explain why the stream power
model, which seems incomplete, appears to explain the
relationship between area, gradient and incision rate.
[68] Because scaling exponents in the incision relationship

are likely not uniform among mountain ranges, incision
rates in different settings will have different sensitivities to
changes in discharge and climate. Furthermore, because the
scaling exponent between incision rate and drainage area
controls the sensitivity of orogen width to changes in both
incoming accretionary flux and precipitation rate, regional
uplift patterns play a first order role in controlling the size of
mountain belts.

Notation

i, a, s natural log of incision rate, drainage area, and
change gradient.

i0, a0, s0 center point for power law approximation in
i–a–s space.

ii
obs, ii

pred observation and prediction for incision rate at ith
point in i–a–s space.

tb, tc basal and critical shear stress, [M L−1 T−2].
b area exponent in width‐discharge equation.
c area exponent in area‐discharge equation.

f(Qs) sediment‐flux erodibility function, [L2 T−1].
h Hack’s exponent.

m′, hm′i observed and predicted area exponent for power
law approximation.

m′s empirical area exponent for power law approxi-
mation for sediment flux.

mi area exponent for detachment‐limited equations.
mt area exponent for sediment‐transport equation.

n′, hn′i observed and predicted slope exponent for power
law approximation.

n′s observed area exponent for power law approxi-
mation for sediment flux.

ni slope exponent for detachment‐limited equations.
nt slope exponent for sediment‐transport equation.
p1 shear‐stress exponent for detachment‐limited

equations.
p2 water‐discharge exponent for basal shear‐stress

equation.

p3 slope exponent for basal shear‐stress equation.
p4 exponent for transport‐capacity equation.
s downstream channel length, [L].
A drainage area, [L2].
A0 area at center point for power law approximation,

[L2].
F accretion rate, [L2 T−1].
I incision rate, [L T−1].
I0 incision rate at center point for power law appr-

oximation, [L T−1].
K′ constant in power law approximation for incision

rate, [L1−2m′T−1].
K′s constant in power law approximation for sedi-

ment flux, [L3−2m′sT−1].
KGA constant in generalized abrasion model, [L−1].
KSA constant in saltation‐abrasion model, [L−0.5].
KSP constant in stream power model, [L1–2mT−1].
Kh constant in Hack’s law, [L1–2 h].
Kt constant in sediment‐transport equation,

[L3−2mtT−1].
L width of an orogenic wedge, [L].
P precipitation rate, [L T−1].
Qs sediment flux, [L3 T−1].
Qt sediment‐transport capacity, [L3 T−1].
Qw water discharge, [L3 T−1].
R flux‐capacity ratio.
R0 flux‐capacity ratio rate at center point for power

law approximation.
Rfit
2 quality index for best fit solution for power law

approximation to data.
S channel gradient or slope.
S0 channel gradient at center point for power law

approximation.
U uplift rate, [L T−1].
W channel width, [L].

Ydivide distance from open boundary to opposite closed
boundary, [L].

M mass.
L length.
T time.
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