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S U M M A R Y
Geological evidence indicates large-volume lithospheric drip instabilities form under regions
of continental lithosphere. The size of these drips suggests that either the base of the lithosphere
is volumetrically increased or the highly viscous upper lithosphere participates in the drip.
Previous theoretical models using simple rheologies have been unable to produce unforced
large-volume drip instabilities. Thus large drip instabilities are typically induced by thickening
or destabilizing the mobile base of the lithosphere through tectonic forcing, such as convergent
thickening or dense magmatic emplacement following extension. Here, we propose a theory of
lithospheric drip instabilities that may arise naturally from the thermal and rheological structure
of Earth, independent of specific tectonic forcings. Using damage physics relevant for Earth,
we find a large portion of the lithosphere may be mobilized and entrained into growing drip
instabilities. For a critical amount of damage, the growth is accelerated sufficiently that large-
volume drip instabilities may form within geologically feasible time-frames. We therefore
suggest large-volume lithospheric drip instabilities may arise independently of tectonic settings
through damage-assisted mobilization and entrainment of the highly viscous lithosphere.

Key words: Instability analysis; Dynamics of lithosphere and mantle; Mechanics, theory,
and modelling; Rheology: crust and lithosphere; Rheology: mantle.

1 I N T RO D U C T I O N

Lithospheric drips are thought to cause intraplate removal of mantle-
lithosphere material by gravitational convective instabilities. Pertur-
bations to the lithosphere–mantle interface grow due to the negative
buoyancy of the lithosphere, but must overcome viscous resis-
tance of the mantle and lithosphere as well as thermal diffusion.
Seismic, compositional, structural and isotopic data suggest that
large volume lithospheric drip instabilities form in a variety of tec-
tonic settings such as the Tibetan Plateau (Houseman et al. 1981;
England & Houseman 1988, 1989), the Altiplano Plateau in the
central Andes (Ghosh et al. 2006a,b; Garzione et al. 2006; Rowley
& Garzione 2007; Garzione et al. 2008; Hoke & Garzione 2008),
the Sierra Nevada Mountain Range (Humphreys & Clayton 1990;
Jones et al. 1994; Saleeby & Foster 2004; Boyd et al. 2004; Zandt
et al. 2004; Yang & Forsyth 2006; Ducea & Saleeby 1996; Saleeby
et al. 2003), and the Great Basin (West et al. 2009). In basic phys-
ical models (Houseman & McKenzie 1982; Yuen & Fleitout 1985;
Buck & Parmentier 1986; Dumoulin et al. 2001; Huang et al. 2003;
Korenaga & Jordan 2003; Dumoulin et al. 2005), small volume
second-scale convective instabilities arise from the hot, mobile, yet
gravitationally unstable, base of the lithosphere. However, under the
continental lithosphere, the large volume of the observed drips with
diameters of 80−200 km and extending to depths of 100−500 km
(Zandt et al. 2004; West et al. 2009) suggest either the mobile base
of the lithosphere has been volumetrically thickened, or the highly

viscous upper lithosphere is somehow included in the drip. Basic
temperature dependent rheologies of the lithosphere seem to pre-
clude the possibility of colder, stiffer lithosphere being included
in drip instabilities, while non-Newtonian power-law rheology can
completely inhibit the formation of drip instabilities (Houseman
& Molnar 2001). Therefore many models invoke specific tectonic
settings, such as convergence induced thickening or dense magma
emplacement, to increase the volume of the mobile base of the
lithosphere. The subsequent removal of the volumetrically thick-
ened lithospheric base is then used to explain the large volume of
the observed drips. Here, we revisit the possibility that large-volume
lithospheric drips may form through mobilization of the highly vis-
cous lithosphere by including a weakening, damage mechanism
relevant for Earth. By allowing the highly viscous lithosphere to
participate in the growing drip instability we propose a general-
ized theory, independent of tectonic setting, for the formation of
large-volume lithospheric drips as naturally arising features of the
thermal and rheological structure of Earth.

Large volume lithospheric drip instabilities were first proposed
to explain geological data suggesting sudden uplift of the Tibetan
Plateau (Houseman et al. 1981; England & Houseman 1988, 1989).
Although the timing and rate of the surface uplift of Tibet is still
debated, geological data have suggested the Tibetan Plateau experi-
enced uplift (Molnar et al. 1993) followed by a transition from con-
vergent (McKenzie & Sclater 1971; Molnar & Tapponnier 1975;
Molnar et al. 1981; Patriat & Achache 1984; Chang et al. 1986;
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Lin & Watts 1988) to extensional (Molnar & Tapponnier 1975;
Tapponnier et al. 1981; Chen & Molnar 1983; Armijo et al. 1986)
tectonics. Various authors (England & Houseman 1989) have sug-
gested that as the lithosphere thickens through convergence and ther-
mal cooling, its negative buoyancy overcomes diffusive smoothing
and the viscous resistance of the lithosphere and mantle, form-
ing a large-volume lithospheric drip instability. The detachment
of the drip may induce surface uplift of a few kilometres and a
potential energy increase (per unit surface area of lithosphere) of
5–10 × 1012 N m−1 as the system readjusts to isostatic equilibrium
(England & Houseman 1989). The potential energy increase caused
by the large-volume drip instability and subsequent uplift effectively
acts as an additional pressure term in the system, increasing the ver-
tical compressive stresses, which changes the relative magnitude of
the three principal stresses in the system, thus shifting the region
from a compressional to an extensional tectonic regime (England
& Houseman 1989).

In the case of the Tibetan Plateau, recent palaeoaltimetry isotopic
data indicates that the surface uplift need not be rapid (Rowley &
Garzione 2007; Murphy et al. 2009). However, this same isotopic
method also provides robust evidence for the loss of a large-volume
lithospheric drip under the Altiplano Plateau in the central Andes
(Garzione et al. 2006; Ghosh et al. 2006a,b; Rowley & Garzione
2007; Hoke & Garzione 2008; Garzione et al. 2008). Stable isotope
palaeoelevation data from oxygen isotopes (Garzione et al. 2006)
and clumped CO2 isotope �47 palaeothermometry (Ghosh et al.
2006b) indicate the Altiplano Plateau experienced 2.5–3.7 km of
rapid uplift between 10 and 6.8 Ma. This rapid uplift is induced by
the loss of the dense thickened lower lithosphere through a large-
volume drip instability formed during convergence (Garzione et al.
2006; Ghosh et al. 2006a,b; Rowley & Garzione 2007; Hoke &
Garzione 2008; Garzione et al. 2008).

In addition, seismic (Humphreys & Clayton 1990; Jones et al.
1994; Saleeby & Foster 2004; Boyd et al. 2004; Zandt et al. 2004;
Yang & Forsyth 2006; West et al. 2009) and compositional (Ducea &
Saleeby 1996; Saleeby et al. 2003) studies have also detected large
volume lithospheric drip instabilities. Tomographic evidence from
the Sierra Nevada Mountain Range indicates an isostatically thin
crust (∼35 km) (Jones et al. 1994) overlying a large detached region
of dense lithosphere (Yang & Forsyth 2006). The large-volume drip
beneath the Sierra Nevada Mountain Range is also thought to form
as a result of convergence induced thickening. The data suggest
that the thick lithospheric root detached and dripped into the mantle
producing a seismically fast zone separated from the lithosphere. A
compositional shift in xenolith source material between 10 and 3 Ma
further implies that the seismically fast zone is of lithospheric origin
(Ducea & Saleeby 1996; Saleeby et al. 2003). Older xenoliths (∼10
Ma) consist of dense eclogitic lithosphere derived assemblages,
while younger xenoliths (∼3 Ma) are comprised of peridotitic upper
mantle assemblages (Ducea & Saleeby 1996; Saleeby et al. 2003).
Such a compositional shift is expected if the dense eclogitic root
drips off and is replaced by the upper mantle peridotite between the
occurrence of these two xenolith types.

Seismic shear wave splitting and P wave tomographic models
suggest the formation of another large-volume drip instability be-
neath the Great Basin (West et al. 2009). LPO data indicates a
direction of mantle flow corresponding to the direction of plate mo-
tion in regions surrounding the Great Basin, but a lack of LPO fabric
under the Great Basin. This lack of anisotropy under the Great Basin
could be a result of vertically downward mantle flow in the region
caused by the formation of a drip instability. Tomographic mod-
els image a large-volume velocity anomaly of cold, dense material

under the Great Basin, suggesting a single large-volume drip is driv-
ing the downward flow. However, the Great Basin is an extensional
tectonic region, suggesting that convergence induced thickening is
not responsible for triggering the large-volume drip instability. The
drip instability is instead postulated to have been induced by the
emplacement of dense material at the base of the lithosphere, such
as a magmatic pulse frozen as eclogite or having left a residual
dense mafic cumulate, which has subsequently detached.

The volume of the drip instabilities beneath both the Sierra
Nevada Mountain Range and the Great Basin have been estimated
from seismic data to have radii of 80–200 km and depth extents
of 100–500 km (Zandt et al. 2004; West et al. 2009). The large
volume of the drips does not arise naturally using Rayleigh-Bénard
convection models due to the temperature dependence of the vis-
cosity, which prohibits a large portion of the cold, dense litho-
sphere from becoming entrained in the drip instability. Furthermore,
Houseman & Molnar (2001) found that the addition of non-
Newtonian power-law rheology further suppresses the development
of drip instabilities, requiring the initial perturbation amplitude to
have a significant finite amplitude, most likely resulting from hor-
izontal tectonic shortening. Considerable advancements have been
made to model the rheological behaviour of Earth beyond these
simple temperature dependent and non-Newtonian power-law rhe-
ologies (Tackley 2000; Bercovici et al. 2000; Bercovici 2003), but
few of these results have been applied to study second scale con-
vective features, such as lithospheric drip instabilities. Instead, most
drip models force instabilities by increasing the volume of the mo-
bile base of the lithosphere through convergence induced thicken-
ing (Houseman et al. 1981; Platt & England 1993; Houseman &
Molnar 1997; Conrad 2000; Conrad & Molnar 1997; Molnar et al.
1998; Lev & Hager 2008) or dense magma emplacement (Elkins-
Tanton & Hager 2000; Jull & Kelemen 2001; West et al. 2009),
whichever is most appropriate for the regional tectonics where the
large-volume drip has been detected. These arguments assume that
only the hot, lower lithosphere can be mobilized and entrained in
the growing drip. However, the large volume of these drips can also
be explained by mobilization and entrainment of the cold, highly
viscous, upper lithosphere. Entrainment of the upper lithosphere re-
quires localized weakening to penetrate further into the lithosphere
and accelerate the instabilities enough for large volume drips to
form within geologically feasible timeframes.

Here we develop a general theory for the development of litho-
spheric drip instabilities by using a damage mechanism consistent
with tectonic plate generation on Earth and thus capable of weak-
ening the highly viscous parts of the lithosphere (Bercovici et al.
2001a,b; Bercovici & Ricard 2003, 2005; Landuyt et al. 2008;
Landuyt & Bercovici 2009). Damage induced weakening helps mo-
bilize and entrain the highly viscous lithosphere into the growing
drip, thus increasing the negative buoyancy of the drip and accelerat-
ing its growth such that large volume drips occur within geologically
feasible timeframes. We determine the critical amount of damage
necessary for large-volume lithospheric drip instabilities to form on
Earth, and suggest lithospheric instabilities may form naturally from
perturbations to the lithosphere–mantle interface without requiring
special tectonic conditions or thickening of the lithosphere.

2 T H E O RY A N D G OV E R N I N G
E Q UAT I O N S

We investigate the formation of lithospheric instabilities as a func-
tion of the damage parameters. We model a gravitationally unstable
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system, with a dense, cold, high viscosity lithosphere over-lying a
less dense, hotter, low viscosity mantle. We approximate both the
lithosphere and mantle as continuous viscous fluids, using Stoke’s
equations for creeping flow. Mass and momentum conservation un-
der the Boussinesq approximation are therefore given by

� · �v = 0, (1)

− � · (2με̇) + �P + ρ�g = 0, (2)

where �v is the velocity, μ is the viscosity, ρ is the density, P is the
pressure, g is gravity and ε̇i j = 1

2 (∂vi/∂x j + ∂v j/∂xi ) is the ijth
component of the strain rate tensor.

To track the thermal evolution of the system, we use conservation
of internal energy,

∂T

∂t
+ �v · �T = κ �2 T, (3)

where T is the temperature, κ is the thermal diffusivity and t is time.
We introduce damage physics with a grain size dependent self-

softening mechanism, which has been shown to produce tectonic
plate like behaviour (Bercovici & Ricard 2005; Landuyt et al. 2008;
Landuyt & Bercovici 2009), to investigate the formation and growth
of lithospheric instabilities.

We assume viscosity is a function of fineness (i.e. inverse grain
size), A, and the temperature-dependence of viscosity as given by
the Frank-Kamenetskii approximation. The viscosity is therefore
written as

μ = μmax

(
A

A0

)−m

exp
(−θT ′) , (4)

where T ′ = (T − Ts)/�T , �T = Tb − Ts, Ts and Tb are the
temperatures at the surface and base of the mantle, θ = ln (μ) is
the Frank-Kamenetskii parameter, μ = μmax/μmin, μmax and μmin

are the maximum and minimum initial viscosities in the system, A0

is the reference fineness and m is chosen for grain size dependent
diffusion creep.

We assume there is an ensemble of grain sizes in our system, such
that diffusion and dislocation are occurring simultaneously (Rozel
et al. 2010). Damage therefore has a viscosity that is sensitive to
grain size and grain size is allowed to evolve over time as a function
of local stress and temperature conditions. Fineness is generated (i.e.
grain size is reduced) by partitioning a fraction of the deformational
work to surface energy used to ‘damage’ the material (Bercovici &
Ricard 2005; Austin & Evans 2007). Fineness is reduced through
surface-tension-driven grain growth. The phenomenological law
governing fineness is given by the competition between these two
processes (Landuyt et al. 2008),

D A

Dt
= f

γ
	 − k Ap, (5)

where 	 = ��v : σ is the viscous deformational work, σ is the
viscous stress tensor, f is the fraction of deformational work used
to create new grain boundaries, γ is the grain boundary surface
energy, k is the healing rate and p = 3 is chosen to reproduce
classical surface tension driven grain growth whereby the grain size
increases with the square root of time (Karato 1989; Evans et al.
2001).

Due to the negative buoyancy of the lithosphere, perturba-
tions to the lithosphere–mantle interface will grow over time. To
examine the growth of lithospheric instabilities we perturb the
lithosphere–mantle system and calculate the characteristic insta-
bility timescale τ , defined as the time required for the perturbation
to grow to half the thickness of the lithosphere, as a function of the
damage parameters. We determine the rheological conditions that
allow perturbations to the interface to grow into large-volume drips
that entrain the highly viscous lithosphere and examine whether the
formation of those drips is possible in geological timeframes.

3 A M P L I T U D E A NA LY S I S

3.1 Model setup

Here, we develop a relationship between perturbation growth and the
damage parameters to predict under what conditions large-volume
lithospheric drip instability growth will occur. We track the ampli-
tude h of the drip instability at the base of the lithosphere by tracking
the evolution of the 0.5�T + Ts isotherm (Fig. 1). This isotherm is
initially at depth H0.

The temperature profile of the lithosphere is defined in terms of
an error function as

T = 0.5�T

erf (1)
erf

(
z

H0 + htot(x, t)

)
+ Ts, (6)

where z is the depth and htot is the variation of the base of the
lithosphere. htot is further divided into two components such that
htot (x, t) = h̃(t) + h(x, t), where h̃(t) is the change in the base of
the lithosphere due to uniform half-space cooling and h(x, t) is the
change in the base of the lithosphere due to a sinusoidal perturbation
(Fig. 1).

Assuming horizontal temperature gradients are much smaller
than vertical temperature gradients (∂T /∂x � ∂T /∂z) at the
maximum amplitude of the growing drip instability, (3) becomes

∂T

∂t
+ w

∂T

∂z
= κ �2 T, (7)

where w is the vertical velocity.

Figure 1. Schematic of the model for the amplitude analysis. The initial system (a) has the base of the lithosphere at depth H0, which is defined by the isotherm
0.5�T + Ts, where �T is the potential temperature drop across the full lithosphere–mantle system (Fig. 5a). At time t > 0 (b), the perturbation height h has
changed and the thickness of the lithosphere has increased by h̃ due to thermal diffusion. h̃ is governed by the cooling of a half space, thus increasing the
lithospheric thickness H0 by ∼(age)1/2.

C© 2012 The Authors, GJI, 189, 717–729

Geophysical Journal International C© 2012 RAS



720 K. Paczkowski et al.

Substituting (6) into (7), evaluating at z = H0 + htot, and solving
for htot gives the evolution of the base of the lithosphere as

dhtot

dt
= w + κ

(
∂2htot

∂x2
+ 2

H0 + htot

)
. (8)

We solve for w in terms of h by balancing the negatively buoyant
stresses driving perturbation growth with the viscous stresses acting
to resist deformation given as

�ρgh(x, t) = σzz ≈ w
μl

H0
, (9)

where �ρ is the density contrast due to thermal contraction, which
is set to correspond to �ρ = ρ l − ρm, the subscripts l and m refer
to the lithosphere and mantle, and σ zz is the non-hydrostatic verti-
cal normal stress at the boundary. Assuming the halfspace cooling
by itself is a solution to (8), we obtain a system of two coupled
differential equations for h and h̃ as

dh(x, t)

dt
= �ρgH0

μl
h(x, t) + κ

(
∂2h(x, t)

∂x2

+ 2

H0 + h̃(t) + h(x, t)
− 2

H0 + h̃(t)

)
(10)

∂ h̃(t)

∂t
= 2κ

H0 + h̃(t)
. (11)

Because the drip is entraining material from the entire lithosphere,
not just the 0.5�T + Ts isotherm, for a conservative estimate of the
viscous resistance in the system we evaluate (4) at the maximum
model temperature, Ts, which results in

μl = μmax

(
A

A0

)−m

. (12)

We also assume the stresses in the system are entirely driven by
the negative buoyancy of the growing perturbation, thus 	 =
(�ρgh)2/μl. Fineness evolution (5) can then be approximated as

d A

dt
= f

γ

(�ρgh)2

μl
− k Ap. (13)

We substitute (12) into (10), (11) and (13) and non-dimensionalized
by h = H0h′, h̃ = H0h̃′, t = (μmax/�ρgH0)t′ and A = A0A, and
subsequently drop the primes to obtain

dh

dt
= Amh + 1

R
(

d2h

dx2
+ 2

1 + h̃ + h
− 2

1 + h̃

)
(14)

dh̃

dt
= 1

R
(

2

1 + h̃

)
(15)

dA
dt

= f̃ h2Am − k̃Ap, (16)

where here we introduce the local Rayleigh number of the system,
R, and the non-dimensional damage number, f̃ , and healing rate,
k̃, as

R = �ρgH 3
0

κμmax
(17)

f̃ = �ρgH0

A0γ
f (18)

k̃ = Ap−1
0 μmax

�ρgH0
k. (19)

Assuming the perturbation has an initial amplitude h0 and a wave-
length λ, the three coupled equations mentioned above are solved
to determine the time evolution of the perturbation as a function
of damage parameters. We calculate the characteristic instability
timescale τ , defined as the time at which the perturbation amplitude
reaches 0.5H0.

3.2 Results

3.2.1 Newtonian rheology

First, we examine the case of a constant Newtonian lithospheric
viscosity by setting f̃ = k̃ = 0. The lithospheric viscosity is set
to μmax = 1025 Pa s to correspond to highly viscous but still duc-
tile lithosphere, which must be mobilized and entrained in the drip
instability for large-volume drip formation. We select the pertur-
bation wavelength λ = 11.4 H0 to correspond to the least stable
mode, which is found in the linear stability analysis (Appendix A)
for the initial viscosity ratio μ = 102. We set R = 3.3 by selecting
H0 = 320 km, κ = 10−6 m2 s−1, �ρ = 100 kg m−3 and set our
initial conditions to be h = 0.05H0 and h̃ = 0. We set m = 2 for
grain size dependent diffusion creep (Karato 1989) and p = 3 to
match experiments explained in Section 2. Using these parameters
we integrate (14)–(16) and find τ = 2 billion years (Fig. 2). This
timescale suggests a more complex rheological mechanism must
be at work to produce lithospheric drip instabilities that entrain the
highly viscous part of the lithosphere within geologically reasonable
timeframes.

3.2.2 Cases with damage

We now set f̃ 	= 0 and k̃ 	= 0 to determine the effect of dam-
age on the growth rate of lithospheric drip instabilities. The initial
lithospheric viscosity is again set to μmax = 1025 Pa s to correspond

Figure 2. Non-dimensional perturbation amplitude as a function of time
for the amplitude analysis. When the perturbation amplitude reaches 0.5H0

the characteristic instability time has been reached and a lithospheric drip
instability has developed. The blue line is the Newtonian case ( f̃ = k̃ = 0)
which has an instability timescale of τ = 2 billion years. The other lines
include damage with k̃ = 6.7 (corresponding to k = 10−22 m2 s−1) and
R = 3.3. Here H0 = 320 km, λ = 11.4H0, μmax = 1025 Pa s and �ρ =
100 kg m−3. The initial conditions are set to h0 = 0.05H0, h̃0 = 0 and
A = 1. For this system f̃ = 15 × 104 f . The lines are labelled for f so
the results are easier to physically interpret. For f = 1, the timescale is
reduced to τ = 1 million years. Here, only f = 1, 10−1 and 10−2 enhance
perturbation growth relative to the Newtonian viscosity. All smaller values
of f collapse down to the f = 0, k̃ 	= 0 case (black line).
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to the highly viscous lithosphere. We set γ = 1 N m−1, A0 = 103 m−1

(corresponding to 1 mm grain size), and use the initial condition
A = 1. All other parameters are identical to the isoviscous case in
Section 3.2.1.

Using the above mentioned parameters, we vary the amount of
damage and healing, f̃ and k̃, to determine the sensitivity of per-
turbation growth to the damage mechanism. We examine three
cases k̃ = 6.7, 67 and 670, corresponding to k = 10−22, 10−21

and 10−20 m2 s−1, which are calculated for olivine using an activa-
tion energy of 200 kJ mol−1 at the temperature of our 0.5�T + Ts

isotherm of 900 K (Karato 1989). For each case we vary the damage
number f̃ between 0 and 15 × 104, corresponding to f between 0
and 1 (Fig. 2). We find there is a maximum reduction in the insta-
bility timescale when f̃ = 15 × 104, the largest damage fraction
physically possible (f = 1). For R = 3.3, k̃ = 6.7 and f = 1, the
characteristic instability timescale is reduced to τ = 1 million years.

As f̃ is decreased a critical point is reached where grain growth
and thermal diffusion stabilize the perturbation. We define this crit-
ical value as f̃crit. When f̃ < f̃crit, grain growth causes the litho-
sphere to strengthen, slowing the perturbation growth relative to the
case with Newtonian viscosity. We find that the critical amount of
damage necessary for the formation of lithospheric drip instabili-
ties, f̃crit can be robustly predicted by R and k̃ of the system (Fig. 3).
The resulting empirical scaling relationship for f̃crit for the initial
conditions h0 = 0.05 H0, h̃0 = 0 and A = 1 and our choice of m
and p is given as

f̃crit

k̃
∼ R− 1

2 . (20)

By including the damage mechanism, the lithosphere can be
sufficiently weakened to become entrained in lithospheric drip in-
stabilities. The stress caused by the growing drip mobilizes the
highly viscous lithosphere by grain size reduction. However, there
is a trade-off between damage and healing such that a minimum
amount of damage, f̃crit is required to reduce the characteristic in-
stability timescale. For the realistic rheological parameter values
used earlier, the characteristic instability timescale may be reduced
to geologically feasible timeframes.

Figure 3. Ratio of f̃crit to k̃ as a function of R from the amplitude analysis
with initial conditions h0 = 0.05H0, h̃0 = 0 and A = 1. f̃crit/k̃ varies as
R−1/2. Using this relationship we can predict the critical amount of dam-
age necessary for lithospheric drip instabilities to form within geologically
reasonable timeframes for a given R and k̃ of the system.

4 N U M E R I C A L S I M U L AT I O N O F D R I P S
W I T H DA M A G E

4.1 Model set-up

We employ a 2-D Rayleigh-Bénard convection model to examine
the full non-linear development of lithospheric drip instabilities with
damage (Landuyt 2009). The model solves Stokes equations for
creeping flow with an infinite Prandtl number under the Boussinesq
approximation. Unlike previous models that have used simple stress
and temperature dependent rheologies, we include damage theory
as outlined previously (Bercovici & Ricard 2005; Landuyt et al.
2008; Landuyt & Bercovici 2009).

The conservation eqs (1)–(3) are non-dimensionalized according
to x = Dx′, t = (D2/κ)t′, �v = (κ/D) �v′, P = (κμmin/D2), μ =
μminμ

′, ε̇ = (
κ/D2

)
ε̇ ′and T = �TT ′, where D is the total depth of

the lithosphere–mantle system, �T is the temperature drop across
D, α is the thermal expansivity, μmin is the initial viscosity at the
bottom of the system and ẑ is the vertical unit vector. The primes
are subsequently dropped resulting in (1) being unchanged and (2)
and (3) becoming

− � P + � · (2με̇) − Ra0T ẑ = 0, (21)

∂T

∂t
+ �v · �T = �2T (22)

where the Rayleigh number is given as

Ra0 = ρg�T αD3

κμmin
. (23)

These equations are discretized using finite-volumes with a stag-
gered grid and solved via a multigrid method (Landuyt 2009)
(Fig. 5a for basic model setup).

The velocity boundary conditions are set to be free slip on the top
and bottom and periodic on the sides. The thermal boundary con-
ditions are constant temperature top and bottom boundaries, with
bottom heating and no internal heating. We begin with a temperature
profile defined by an error function at the top boundary, consistent
with that of a half-space cooling model. This temperature profile
produces a gravitationally unstable system due to the linear depen-
dence of density on temperature. The viscosity everywhere is grain
size and temperature dependent as given by eqs (4) and (5).

We perturb the temperature profile with sinusoids of amplitude
0.05H0 and track the 0.5�T + Ts isotherm which we define as
the base of the lithosphere. This isotherm is initially located at
depth H0 = 0.15D. Due to the finite domain of the model, we
use perturbation wavenumbers that correspond to integer multiples
of the model width. The simulations are run at Ra0 = 105 which
corresponds to αρ�T = �ρ = 100 kg m−3, D = 2150 km, κ =
10−6 m2 s−1 and lower mantle viscosity μmin = 1023 Pa s. Due to the
low Rayleigh number, D is set to produce a thinner than usual mantle
to compensate for the less vigorous than expected convection. Using
(4) the Frank-Kamenetskii viscosity ratio μ is set to 102, resulting
in an initial lithospheric viscosity (μmax) equal to 1025 Pa s. These
models have a local Rayleigh number ofR = 3.3 and an aspect ratio
of 4. Our resolution is equispaced in the horizontal x̂ and vertical
ẑ directions, with 64 × 256 nodes. This analysis is extended to
Ra0 = 106 (Appendix B).

To benchmark the numerical model, we compare the Newtonian
( f̃ = k̃ = 0) perturbation growth rates to those predicted from a lin-
ear stability analysis (Appendix A). For μ = 102 we find the fastest
growing perturbations have wavelengths of λ = 13.3H0 compared
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Figure 4. Pertubation amplitude from numerical model as a function of time for perturbations of different initial wavelengths. Plots are for Newtonian rheology
and viscosity contrasts a) μ = 102 and b) μ = 103. The least stable wavelength predicted by the linear stability analysis (Appendix A) is indicated as λls on
each plot.

to λls = 11.4H0 predicted by the linear stability analysis. This is the
closest possible values allowed by the finite domain of the numeri-
cal model. We also find that the growth rates for each mode agree
well initially between the linear stability analysis and the numer-
ical model. The growth of the perturbation over time is found by
tracking the evolution of the temperature field, where we track the
base of the lithosphere as the 0.5�T + Ts isotherm (Fig. 5). In the
numerical model, the formation of a lithospheric drip instability us-
ing a Newtonian lithospheric viscosity of μmax = 1025 Pa s requires
∼2 billion years, consistent with the linear stability analysis.

4.2 Damage results

We now include the grain size dependence in the numerical model
by setting f̃ 	= 0 and k̃ 	= 0. As in the previous sections, we set
μ = 102 with Ra0 = 105 to produce an initial lithospheric viscosity
of 1025 Pa s. We use initial perturbations corresponding to the least

stable mode, as described earlier. Similar to the amplitude analysis,
we set m = 2 and p = 3 to match experiments. We consider three
values of k̃, k̃ = 3.1, 31 and 310, corresponding to the same k values
in the amplitude analysis; k = 10−22, 10−21 and 10−20 m2 s−1, we
vary f between 0 and 1, which now corresponds to f̃ between 0 and
32 × 104. We set γ = 1 N m−1, use the initial condition A = 1 and
all other values are as in the Newtonian viscosity case mentioned
above.

We use the amplitude analysis to predict f̃crit for the R and k̃
values of each numerical case (indicated on Fig. 6). Using the nu-
merical model, we find that in all cases perturbation growth is only
enhanced for f̃ > f̃crit, where the instability timescale can be re-
duced to τ =10 million years (Fig. 6a). For f̃ > f̃crit the amount of
damage is sufficient to localize deformation through grain size re-
duction. The corresponding fineness fields show a significant grain
size reduction localized where the stresses from the growing per-
turbations are high (Figs 7a–c), which in turn creates localized
weakening in the highly viscous lithosphere (Figs 7d–f). Relative to
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Figure 5. Time progression of the thermal field for the numerical model with a Newtonian viscosity ( f̃ = k̃ = 0), μ = 102, Ra0 = 105 and λ = 13.3H0. a, b,
c and d correspond to 0, 15, 30 and 45 billion years. The perturbation growth is given by the time evolution of the 0.5�T + Ts isotherm, initially located at
H0 = 0.15D (a), where �T is the potential temperature drop over the depth D of the lithosphere–mantle system. A width of 4D is used for μ = 102, Ra0 =
105 runs and in Appendix B a width of 8D is used for the μ = 103 and Ra0 = 106 runs. All cases are run with a depth D and an equispaced grid of 64 × 256
or 64 × 512 nodes.

the Newtonian case, this localized weakening effectively mobilizes
the highly viscous upper lithosphere (Figs 7h–i). The flow patterns
indicate substantially more movement of the highly viscous litho-
sphere when f > f crit (Fig. 8a), with the higher rms velocity in the
upper viscous lithosphere when significant damage is present than
for only a Newtonian viscosity (Fig. 8b).

For cases with f̃ < f̃crit the perturbation decays. The corre-
sponding fineness fields for these cases reveal a gradual, overall
grain growth and associated viscosity increase. The increase in
viscosity reduces the growth rate of the perturbation enough for
thermal diffusion to dominate, causing the perturbation to decay.
This suppresses the development of drip instabilities relative to the
cases with Newtonian viscosity.

5 D I S C U S S I O N

We use our model to explain the observed formation of large vol-
ume drip instabilities in convergent and extensional tectonic set-
tings (Houseman et al. 1981; England & Houseman 1988, 1989;
Ghosh et al. 2006a,b; Garzione et al. 2006; Rowley & Garzione
2007; Hoke & Garzione 2008; Garzione et al. 2008; Humphreys &
Clayton 1990; Jones et al. 1994; Saleeby & Foster 2004; Boyd et al.
2004; Zandt et al. 2004; Yang & Forsyth 2006; Ducea & Saleeby
1996; Saleeby et al. 2003; West et al. 2009). The added damage
physics (Bercovici & Ricard 2005; Landuyt et al. 2008; Landuyt
& Bercovici 2009) results in localized weakening and mobiliza-
tion of the highly viscous lithosphere suggesting lithospheric drip
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Figure 6. Perturbation amplitude as a function of time for the numerical model with μ = 102, λ = 13.3H0, H0 = 0.15D, D = 2150 km and Ra0 = 105.
When the perturbation amplitude reaches 0.5H0 a lithospheric drip instability has developed. Healing rate k̃ is constant as shown on each plot while f is varied
between 0 and 1. In all cases above R = 3.3. The amplitude analysis is used to calculate f̃crit, which is converted to f crit and shown on each plot. Only for
cases where f > f crit (solid lines) is perturbation growth enhanced relative to the Newtonian viscosity ( f = k̃ = 0) shown in blue. Cases with f < f crit are
shown in dashed lines. All cases with f < f crit collapse down to the f = 0, k̃ 	= 0 case (black line).

instabilities can form from small perturbations, as a natural con-
sequence of the thermal and rheological properties of the Earth,
independent of tectonic setting. Our model does not include any
external forcing (e.g. convergence), and the drips arise from only
small perturbations to the thermal structure of the system. Such
small perturbations could be present in convergent, extensional,
or non-tectonically active zones, greatly expanding possible lo-
cations for large volume drips. The relatively short timescales of
large volume drip formation and the expanded tectonic settings
suggest a new mechanism for large-volume lithospheric recycling
and has implications for the overall stability and longevity of the
lithosphere.

Although relatively small perturbations may lead to large volume
drip formation, these perturbations do not always form into large
volume drip instabilities. Instead, we find that a critical amount of
damage f̃crit is necessary for a drip instability to develop. f̃crit is

largely dependent on quantities from mineral physics experiments,
specifically the value of k and how k varies with temperature. In
this study, we chose k based on the (Karato 1989) experiments for
olivine with activation energy of 200 kJ mol−1, which can be con-
sidered a lower limit compared to more recent values (Evans et al.
2001). If higher activation energies are used, grain growth is slowed
by several orders of magnitude, further enhancing drip formation.
Better mineral physics constraints on f and k, through improved
understanding of grain size evolution and grain size dependent rhe-
ologies, will allow for the prediction of lithospheric drip formation
in specific geographic regions.

Drip formation is also somewhat sensitive to the initial perturba-
tion amplitude. We find there exists a minimum initial perturbation
amplitude, h0 = 0.05H0, below which perturbations decay due to
thermal diffusion. For perturbations larger than h0 = 0.05H0, in-
stability growth is possible when sufficient amounts of damage
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Figure 7. Time progression of the fineness (a–c), viscosity (d–f) and velocity (g–i) fields from the numerical model with f = 1, such that f̃ > f̃crit. Here
μ = 102, Ra0 = 105, λ = 13.3H0 and k = 10−22 m2 s−1, corresponding to R = 3.3 and k̃ = 3.1. Because f̃ > f̃crit, grain size is locally reduced in regions of
high stress around the perturbation. The reduced grain size weakens the material, resulting in an enhanced perturbation growth rate. Plots progress forward in
time down the page with times 0, 6 and 9 million years.

exist in the system. To generalize our analysis we have used the
smallest initial perturbation amplitude that leads to damage en-
hanced lithospheric drip growth. Furthermore, larger initial per-
turbations also have larger growth rates, suggesting instabilities
will develop most rapidly in regions containing large perturbations,
such as convergent tectonic settings. Therefore, although we sug-
gest large-volume lithospheric instabilities may arise independently
of tectonic settings, when f̃ > f̃crit, our results do not exclude
instability-enhancing tectonic forcing, including convergence in-
duced thickening or dense magmatic emplacement.

In areas of convergence the lithosphere has been thickened, in-
creasing H0, which results in larger R values. Similarly, in areas of
dense magma emplacement the density contrast, �ρ, is increased
resulting in an increase in R. Our amplitude analysis indicates that
the minimum amount of damage required for a drip instability to
develop, f̃crit, is related to the non-dimensional healing rate k̃ and
local Rayleigh number R by (20). In both of these settings, the ef-
fect of increasing R will result in decreasing f̃crit. Lower f̃crit means
that in addition to overall faster rates of perturbation growth in these
settings, a smaller amount of damage is required for a drip insta-
bility to develop. Therefore, although our theory predicts that drip
instabilities can develop independent of tectonic forcing, regions
of convergent thickening and dense magmatic emplacement may
be more prone to developing large volume drip instabilities. The
lithospheric thickening and dense magmatic emplacement present
in these tectonic settings all lower f̃crit such that less damage induced
weakening is required to reach the criteria f̃ > f̃crit. Reduced f̃crit

in these areas may explain why the majority or large volume drips
have been found in tectonic settings with convergent thickening and
dense magmatic emplacement.

6 C O N C LU S I O N S

Large volume lithospheric drip instabilities are second-scale con-
vective features that have been found under regions of continental
lithosphere. Previous models suggested that the formation of these
instabilities required forced thickening of the mobile base of the
lithosphere or magmatic emplacement of dense lithosphere. Here,
we use damage physics appropriate for plate generation on Earth
to re-examine the formation of these instabilities in the absence of
such tectonic forcing. By partitioning a fraction of deformational
work into surface energy to reduce grain size, the damage mecha-
nism creates localized weakening that mobilizes the highly viscous
lithosphere, which facilitates entrainment of upper lithosphere in
the growing drip instability, increasing both the volume and the
growth rate of the drip instability.

Our system can be parameterized by a critical damage value f̃crit,
which is easily estimated by the amplitude analysis using R and
k̃, and accurately predicts the behaviour of the numerical model.
For f̃ < f̃crit thermal diffusion and grain growth dominate, and
perturbations to the base of the lithosphere decay due to diffusive
smoothing, thus perturbation growth is suppressed relative to the
case of Newtonian viscosity. For f̃ > f̃crit, the localized weaken-
ing mobilizes the highly viscous lithosphere, allowing it to become
entrained in the growing drip at a rate faster than with a Newtonian
viscosity. The inclusion of the highly viscous lithosphere increases
the volume of the drip instability. As the drip continues to grow,
the increase in negative buoyancy, combined with damage induced
weakening, accelerates the growth of the drip instability such that
drip formation occurs within geologically feasible timeframes. The
numerical results indicate that the characteristic instability timescale
may be reduced from ∼2 billion years, as with a Newtonian
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Figure 8. Effects of damage on the streamlines and RMS velocity in the
highly viscous upper lithosphere. Newtonian viscosity ( f̃ = k̃ = 0) is
shown in blue, while damage ( f̃ > fcrit, k̃ 	= 0) is shown in green. Dam-
age is plotted for f̃ = 32 × 104, k̃ = 3.1, corresponding to f = 1, k =
10−22 m2 s−1. In both cases μ = 102, λ = 13.3H0, H0 = 0.15D, D =
2150 km, Ra0 = 105 and R = 3.3. All plots centred around a down-
welling drip and are shown for perturbation height of 0.1H0, which occurs at
1 billion years for the Newtonian case and 10 million years for the damage
case. The two stream function plots have the same contour interval and the
RMS velocities are depth averaged and normalized by their respective aver-
age non-dimensional RMS velocity, three for the Newtonian viscosity and
6500 for the case with damage.

viscosity, to ∼10 million years for plausible damage parameters.
Our results suggest that when localized weakening is included, large
volume lithospheric drip instabilities may form independent of ex-
ternal tectonic forcing.
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A P P E N D I X A : L I N E A R S TA B I L I T Y

We perform a linear stability analysis to determine the least sta-
ble mode for perturbations to a system with a dense lithospheric
layer over-lying a less dense mantle half-space. The least stable
mode corresponds to the perturbation wavelength with the fastest
initial growth rate and is therefore most likely to control the for-
mation of a lithospheric drip instability. Both of these regions have
constant, Newtonian viscosities, defined by the viscosity contrast
μ = μmax/μmin, where we set μl = μmax and μm = μmin, and the
subscripts l and m refer to the lithosphere and mantle. The density
difference between the layer and the half space is �ρ = ρ l − ρm.
Here we approximate a lithospheric drip instability as a Rayleigh-
Taylor instability by assuming the perturbation growth rates are
much faster than thermal diffusion.

The location of the interface between the layer and the half space
is perturbed by h (a white noise wavenumber power spectrum).
The growth rate of this perturbation is calculated as a function of
the perturbation wavenumber, ν, and μ. We begin our analysis by
determining the velocity field in both the lithosphere and the mantle.
Eqs (1) and (2) for an incompressible, isoviscous fluid become

� · �vi = 0, i = l, m (A1)

− � pi + μi �2 �vi + ρi g = 0, i = l, m. (A2)

Eq. (A1) is used to write the 2-D velocity fields in terms of the
streamfunction, ψ , as

vi = � × ψi ŷ, i = l, m, (A3)

where ŷ = ẑ × x̂ and x̂ and ẑ are unit vectors in the horizontal
and vertical directions. For an isoviscous lithosphere and mantle,
inserting (A3) into (A2) we obtain the differential equation for ψ as

�4ψi = 0, i = l, m. (A4)

Assuming our system is periodic in the horizontal direction, we
write the solutions in terms of a Fourier series, solving for the
growth rate as a function of ν. The general form for the solution to
the biharmonic equation (A4) in terms of ν is given by

ψ =
∞∑

ν=−∞

(
(Aν + Bννz) eνz + (Cν + Dννz) e−νz

)
eiνx , (A5)

where the subscript ν indicates the function is in Fourier space.
We examine a lithosphere–mantle system with a free-slip top

boundary such that there is zero vertical velocity (�v · n̂ = 0) and
no shear stress (n̂ × σ tot · n̂ = 0), where n̂ is the unit normal
vector defining the top boundary and σ tot is the total stress tensor.
At the lithosphere–mantle interface (z = h) velocity and stress are
continuous, so the jump in shear velocity, normal velocity, shear
stress and normal stress must be zero across the interface. This
equates to [�v × n̂]l

m = 0, [�v · n̂]l
m = 0, [n̂ × σ tot · n̂]l

m = 0 and
[n̂ · σ tot · n̂]l

m = 0, where here n̂ defines the lithosphere–mantle
interface. The flow must also be finite as z → −∞.
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Using the boundary conditions above to solve (A4) and lineariz-
ing around z = 0 (i.e. ||h|| < <1), we calculate the streamfunction
in both the lithosphere and the mantle. We then calculate the per-
turbation growth rate using the kinematic constraint that the nor-
mal component of the velocity evaluated at the lithosphere–mantle
interface (z = h) equals the growth rate S of the perturba-
tion to that interface as a function of perturbation wavenumber
ν and μ,

S = 1

hν

iνψν |z=h . (A6)

For a given μm, as μ increases the maximum growth rate decreases
following the function Smax = 0.23μ−1. For a constant μl, Smax

becomes invariant to changes in μ, and is 2.3 × 10−16 s−1 for μl =
1025 Pa s. This indicates the initial growth rate of the lithospheric
drip instabilities is determined solely by the viscous resistance of
the lithosphere μl, the region of the system with the highest viscos-
ity. The wavelengths of the least stable modes, λls, for the viscosity
contrasts used in this study μ = 102 and 103 are 10–20 lithospheric
thicknesses, H0, a result consistent with a free surface top bound-
ary condition under convergence (Conrad & Molnar 1997; Neil &
Houseman 1999).

To benchmark the numerical model, we compare the Newtonian
( f̃ = k̃ = 0) perturbation growth rates to those predicted from a
linear stability analysis. For μ = 102 and 103 we find the fastest
growing perturbations have wavelengths that are the closest possible
values to those predicted by the linear stability analysis allowed by
the finite domain of the numerical model (Fig. 4). We therefore
use λ = 13.3H0 and λ = 17.8H0 for our numerical models with
μ = 102 and 103, respectively.

A P P E N D I X B : E X T E N S I O N T O H I G H E R
R AY L E I G H N U M B E R

We run our numerical model for Ra0 = 106, which corresponds
to a lower mantle viscosity of μmin = 1022 Pa s since D and �T
are kept the same as the Ra0 = 105 case. Using (4) the Frank-
Kamenetskii viscosity ratio μ is set to 103, resulting in an initial
lithospheric viscosity (μmax) equal to 1025 Pa s. Similarly to the
Ra0 = 105 cases, the local Rayleigh number is R = 3.3. For μ =
103 we find that the fastest growing perturbation has a wavelength
of λ = 17.8H0 (Fig. 4b), which matches that predicted by the linear
stability analysis (Appendix A). These μ = 103 runs have an aspect
ratio of 8 to accommodate their longer least stable wavelength. The
resolution is equispaced in the horizontal x̂ and vertical ẑ directions,
with 64 × 512 nodes.

We begin with the case of a Newtonian viscosity ( f̃ = k̃ = 0)
and find that the formation of lithospheric drip instabilities requires
τ = 1 billion years. We then consider the same three cases for k̃ as
with the Ra0 = 105 runs, k̃ = 3.1, 31 and 310, which correspond to
k = 10−22, 10−21 and 10−20 m2 s−1. We vary f between 0 and 1 ( f̃
between 0 and 32 × 104). All other variables are kept the same as
the Ra0 = 105 case. We use the amplitude analysis to predict f̃crit for
the R and k̃ values of each numerical case (indicated on Fig. B1).
Similarly to the Ra0 = 105 cases, we find that perturbation growth is
only enhanced for f̃ > f̃crit (Fig. B1). The characteristic instability
timescale is reduced to τ = 4 million years (Fig. B1a). Furthermore,
all of these cases follow the scaling relation give in (20), indicating
that the amplitude analysis can be extended to predict the behaviour
of systems with higher convective Rayleigh numbers, closer to those
expected on Earth.
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Figure B1. Perturbation amplitude as a function of time for the numerical model with μ = 103, λ = 17.8H0, H0 = 0.15D, D = 2150 km and Ra0 = 106.
When the perturbation amplitude equals 0.5H0 a lithospheric drip instability has developed. Healing rate k̃ is constant while f is varied between 0 and 1 for
each plot. In all cases above R = 3.3. The amplitude analysis is used to calculate f̃crit, and it is converted to f crit and shown on each plot. Only for cases where
f > f crit (solid lines) is perturbation growth enhanced relative to the Newtonian viscosity ( f = k̃ = 0) shown in blue. Cases with f < f crit are shown in dashed
lines. For k̃ = 3.1 the f = 10−3 case does not decay although f < f crit, however it does grow slower than the Newtonian case. All other cases with f < f crit

collapse down to the f = 0, k̃ 	= 0 case (black line).

C© 2012 The Authors, GJI, 189, 717–729

Geophysical Journal International C© 2012 RAS




