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[1] The incision of rivers in bedrock is thought to be an important factor that influences
the evolution of relief in tectonically active orogens. At present, there are at least six
competing models for incision of bedrock rivers, but these models have received little
quantitative testing. We statistically evaluate these models using observations from the
Clearwater River in northwestern Washington State, which crosses the actively rising
forearc high of the Cascadia margin. A previous study has used fluvial terraces along the
Clearwater to estimate bedrock incision rates over the last �150 kyr. They show that
incision rates have been steady over the long-term (>50 kyr), consistent with other
evidence based on isotopic cooling ages, for steady long-term (>1 Myr) erosion rates. The
steady state character of the river allows us to use the relatively simple time-invariant
solutions for the various incision models and also to estimate long-term sediment
discharge along the river, which is a critical variable for some incision models. An
interesting feature of the Clearwater River is that it has a downstream decrease in the rate
of incision, from �0.9 mm/yr in the headwater to <0.1 mm/yr at the coast. None of the
incision models, including the shear stress model, successfully accounts for this
relationship. This result may be due to the simple way in which these models are used,
commonly without consideration for the distribution of discharge with time, and the
variable capacity of the river channel to contain peak flows along its course. We suggest
some general improvements for the incision models, and also guidelines for selecting
those rivers that will allow good discrimination between competing models. INDEX
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1. Introduction

[2] Rivers play a central role in the formation of many
landscapes. They are responsible for a wide variety of
landscape morphologies, such as hillslope gradient and the
distribution of elevation [Strahler, 1964]. They set a limit-
ing constraint upon sediment transport. River incision into
bedrock also has an important influence on orogenic evo-
lution as it links topography to tectonics and climate.

[3] In the last few years, much work has focused on
understanding the process of river incision [e.g., Bull, 1979,
1991; Seidl and Dietrich, 1992; Howard et al., 1994; Kooi
and Beaumont, 1996; Tinkler and Wohl, 1998; Whipple et
al., 2000]. Despite this effort, the processes by which
mountain rivers cut into bedrock remains poorly under-
stood. Important processes may include sediment abrasion,
cavitation, knickpoint propagation, plucking, and mass
wasting by debris flows [e.g., Howard et al., 1994; Sklar
and Dietrich, 1998; Whipple et al., 2000]. These diverse
processes have inspired a variety of quantitative models to
represent bedrock river incision. Our goal is to differentiate
between these various models using appropriate data sets.
[4] Published incision models can be viewed as falling

between two end-members. At one end of the spectrum are
those models where incision is transport limited, in that
incision rate is controlled by transportation of sediment
through the channel [e.g., Chase, 1992; Willgoose et al.,
1991]. At the other end are those models that are production
limited, in that the incision rate is limited by the rate of
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detachment of rock from the bedrock channel and is
independent of the sediment discharge [e.g., Seidl and
Dietrich, 1992; Howard et al., 1994; Tucker and Slinger-
land, 1994]. In either case, incision rate is usually linked to
the basal shear stress or stream power [e.g., Beaumont et al.,
1992; Seidl and Dietrich, 1992; Howard et al., 1994; Tucker
and Slingerland, 1994; Slingerland et al., 1997, 1998]
although more physically prescriptive models have also
been proposed [Sklar and Dietrich, 1998, 2001].

[5] This study assesses the ability of different incision
models to predict the rate of valley incision in the Clear-
water River, which is located in the Olympic Mountains of
NW Washington State. Pazzaglia and Brandon [2001]
identify two major straths preserved along much of the
length of the trunk channel of the Clearwater. These straths
were buried at �65 and �140 ka. Thus the heights of these
different straths provide two independent sets of incision
rates for the Clearwater. The fact that these rates are similar
indicates that bedrock incision has been occurring at a
relatively steady pace on a 50 kry timescale [Pazzaglia
and Brandon, 2001]. This result means that long-term
sediment discharge along the course of the river can be
estimated. This information is important for testing models
that are dependent on sediment discharge. In this study, we
discriminate between competing incision models by using
standard inversion methods and statistical tests.
[6] In our analysis, none of the models examined, includ-

ing the popular ‘‘stream power’’ model, successfully ex-
plain the observed incision rates of the Clearwater River.
The models provide reasonable descriptions of the physics
of incision. Thus we suspect that the difficulties of the
models to fit the Clearwater incision data may be due to the
way they are implemented, and not to the physical princi-
ples on which they are based. We discuss this issue and
suggest ways that the models might be modified to better
represent long-term incision in real rivers.

2. The Clearwater River

[7] The Clearwater River (Figures 1, 2, and 3) occupies a
relatively large drainage, 390 km2, with elevations ranging

Figure 1. Location of the Clearwater River and associated
drainage [from Pazzaglia and Brandon, 2001] (Reprinted
by permission of the American Journal of Science.)

Figure 2. Map of the Clearwater drainage [from Pazzaglia and Brandon, 2001]. The scaled line shows
valley distance in kilometers along the axis of the Clearwater valley. (Reprinted by permission of the
American Journal of Science.)
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from 12 m to 1130 m. Precipitation ranges from about
250 cm/yr. at the mouth of the drainage to 400 cm/yr in the
headwaters. The drainage is underlain by a homogeneous
assemblage of indurated sandstone with minor shale inter-
beds [Tabor and Cady, 1978], minimizing rock type as a
geomorphic variable. Schmidt hammer measurements indi-
cate a compressive strength for the sandstones of�40N/mm2

(range 12 to 56 N/mm2 for 27 measurements) and for
mudstones and fine sandstones of �23 N/mm2 (range 12
to 38 N/mm2 for 5 measurements). The trunk channel of the
Clearwater contains a mix of alluvial and bedrock reaches.
The amount of alluvial cover increases downstream, but it is
almost everywhere less than 3 m, a thickness that can be
easily transported during high flow conditions. On a slope-
area plot (Figure 4), the lower Clearwater plots in the alluvial
field of Montgomery et al. [1996]. However, Pazzaglia and
Brandon [2001] demonstrate that the river is incising into
bedrock along its entire length.
[8] The river seems to have maintained a steady base level,

even in the present of major changes in sea level [Pazzaglia
and Brandon, 2001]. The reason is that the lower reach of the
river has a gradient similar to its submerged course across the
continental shelf, which means that the river sees a steady
base level even as the mouth of the river migrates with
the coastline. The long profile of the river lacks any evidence
of large migrating knickpoints, as might be produced if
eustatic variations could causes changes in base level.
[9] We use remnants of the old river channel, called

straths, to measure fluvial incision [Pazzaglia and Brandon,
2001]. Straths are flat eroded surfaces cut into bedrock.
They are found in the hillslopes above an actively incising
river and are attributed to periods of time when the river was
able to incise into bedrock and to cut a broad flat valley
floor. The Clearwater River is currently eroding into bed-
rock. Thus the height of a strath above the modern river
marks the amount of incision of the river channel into
bedrock. Strath incision rates are shown (Figure 5e) relative
to the valley long profile, which marks the course of the

central axis of the Clearwater valley (Figure 2). This rate is
actually a valley incision rate Ev, since it measures the long-
term rate of down cutting for the entire width of the valley.
The bedrock incision models are usually formulated for a
channel incision rate Ec, so we need to relate Ec to Ev.
[10] There are two end-member relationships that are be

considered. The first is that lateral incision on the valley
floor is relatively ‘‘easy’’ compared to vertical incision of
the channel [e.g., Hancock and Anderson, 2002]. In the
extreme, this view would predict that the vertical incision of
the channel is the rate-limiting process for the vertical
incision of the valley so that Ev should be equal to Ec.
[11] The alternative end-member is channel incision is

responsible for downcutting of the entire valley floor. In this
case, valley incision occurs only because the river channel
is considered to meander across the valley floor so that the
channel erosion is not focused in one location. The long-
term rate of valley incision will be slower in this case then
the rate of channel incision observed over the short term.
The difference in rates is given by

EcWc ¼ EvWv ð1Þ

Ec

Ev

¼ Wv

Wc

: ð2Þ

We follow the usual procedure in which valley and channel
width are considered to vary as as a power function of
drainage area [e.g., Snyder et al., 2001]. Channel width was
measured in the field. The current width of the valley floor
is well defined and measured from 7.50 topographic maps.
These data are represented by the following best fit power
law equations (Figure 6):

Wv ¼ 2:81A0:76 ð3Þ

Wc ¼ 4:20A0:42; ð4Þ

Figure 3. Long profiles of the Clearwater River. The
valley profile indicates a profile relative to valley distance,
as defined in Figure 2. The channel profiles are shown
relative to the distance along the main channel, as
determined by ARCINFO analysis of digital elevation data
or by manual measurements from a 7.50 topographic map.
The difference between the two channel profiles is due to
the fractal geometry of the channel in map view.

Figure 4. Slope-area plot for the Clearwater River.
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where A is in km2 and W is in m. Discharge, Q (m3/s) is
related to area: A = 9.37Q1.1. The incision rate ratio of the
channel relative to the valley is

Ec

Ev

¼ 2:81A0:76

4:20A0:42
¼ 0:67A0:34 ¼ 1:43Q0:38 ð5Þ

[12] This relationship indicates that Ec > Ev and that the
difference between the two rates increases downstream as A
and Q increase because the river channel widens down-
stream at a slower rate then the widening of the valley floor.
[13] These end-member options are important for our

analysis because they change the predictions about the
relationship of incision rate to upstream area A. For the
statistical tests employed below, we allow for the full range
of valley widening behavior, ranging from the first case
where Ec = Ev to the second case where Ec is a more
complex function of Ev (equation (5)).
[14] Channel location, drainage area, and discharge were

determined using an overland flow routine in ARCINFO.
Results are reported in Figure 5 and Table 1. Topography
was represented using 30-m gridded elevation data from the
U.S. Geological Survey. The horizontal location of the
channel determined by the ARCINFO routine compares

Figure 5. Data for the Clearwater River as a function of valley distance: (a) area, (b) channel slope,
(c) water discharge, (d) sediment discharge, and (e) valley incision rate.

Figure 6. Channel and valley width data as a function of
drainage area for the Clearwater River. Lines and equations
show best fit power law equations.
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well with the mapped location of the river from 7.50 USGS
contour maps. Longitudinal profiles of the channel are also
similar in shape (Figure 3) but the horizontal length of the
ARCINFO-based profile was 15% shorter than that for the
map-based profile. The fact that the two profiles are scaled
equivalents is predictable given the fractal shape of the
channel and the differences in scale length implicit in the
map and DEM data. Channel slopes were determined by
linear regression of the ARCINFO profile of elevation

versus channel distance using a 3-km-long moving window
(Figure 5b). The objective was to reduce the noise intro-
duced by the discrete nature of the gridded data. The 3-km
window was considered appropriate given that the individ-
ual strath measurements provided incision rates averaged
over the width of the valley, which has a scale length of 100
to 300 m. The fractal shape of the channel is also a factor for
the ARCINFO-based channel slopes, which are greater than
those determined from contour maps by the same 15%.
[15] Figure 5 also provides other data used for our

modeling, including drainage area as determined using
ARCINFO, long-term incision rates from Pazzaglia and
Brandon [2001], and sediment discharge. The sediment
discharge data along the river were estimated assuming
steady state incision of the river valley. Pazzaglia and
Brandon [2001] argue that the Clearwater cut its valley
at a steady rate when averaged over a long time frame
(>50 kyr). Brandon et al. [1998] and Batt et al. [2001]
provide other evidence that indicates that long-term erosion
rates in the Olympics have been fairly steady on a 1 Myr
time frame. Thus we conclude that the hillslopes are
probably being lowered at the same rate that the river is
incising. If correct, then the long-term sediment discharge
carried by the river can be defined as a function of upstream
area A using

q Að Þ ¼
Z A

0

Ev A0ð ÞdA0; ð6Þ

where Ev(A
0) and q(A) are the valley incision rates and

sediment discharge, respectively, with the upstream drain-
age area A defining the location along the river (A0 is a
dummy variable for the integration).
[16] Discharge was determined using a gridded data set

based on a 30-year precipitation record (1961–1990)
(PRISM method [see Daly et al., 1994, 2001]). The PRISM
method interpolates precipitation from monitoring stations
to grid points and takes into account variations due to slope
and elevation. The gridded data are available on a mean
monthly basis or a mean annual basis. The data were used to
construct the density distribution for monthly precipitation
shown in Figure 7. Precipitation rates vary with time, but
the spatial distribution of precipitation across the Olympic
(not shown) is nearly identical on a month-by-month basis.
For our analysis, we use the mean annual precipitation grid,
but any of the monthly grids would have sufficed given the
right scaling factor for the magnitudes of the different
months relative to the mean annual magnitude. Ambiguities
in linear scaling factors (such as this one) are accounted for
in our analysis below. As presently formulated, most models
do not require an explicit definition of the effective dis-
charge. There is one class of models that does, those that
propose that incision does not start until the discharge
exceeds a threshold value [Howard, 1997; Tucker and
Slingerland, 1997]. Such models are sensitive to the actual
distribution of discharge in the channel, as considered
below.
[17] Discharge represents only that portion of precipita-

tion that reaches the river channel. A significant volume of
water is lost to evaporation from vegetation, soil, and water
bodies [Leopold, 1994]. Evapotranspiration data were
obtained from the U.S. Bureau of Reclamation [USDA-

Table 1. Clearwater River Data

Valley
Distance,

km

Channel
Distance,

km
Area,
km2

Channel
Slope,
10�3

Valley
Slope,
10�3

Discharge,
m3/s

Sediment
Discharge,
104 m3/yr

Incision
Rate,
mm/yr

10.0 14.0 365 1.76 2.10 26.9 14.7 0.0618
10.3 14.4 364 1.66 2.05 26.9 14.7 0.0688
11.2 15.5 363 1.34 1.86 26.8 14.7 0.102
11.7 16.0 362 1.17 1.93 26.7 14.7 0.0967
12.0 17.4 360 0.93 2.16 26.6 14.6 0.173
14.0 20.5 355 3.11 4.23 26.3 14.6 0.237
15.0 22.0 353 2.63 4.13 26.1 14.5 0.176
16.0 23.4 343 3.18 3.72 25.5 14.3 0.194
16.0 23.4 343 3.18 3.72 25.5 14.3 0.231
17.0 24.5 336 3.15 3.56 25.0 14.2 0.189
18.0 25.7 317 2.07 2.85 23.7 13.8 0.236
19.0 26.9 281 3.66 4.24 21.2 13.0 0.165
19.0 26.9 281 3.66 4.24 21.2 13.0 0.251
19.8 27.8 281 4.78 5.28 21.2 13.0 0.273
20.0 28.0 281 4.87 5.58 21.2 13.0 0.295
21.0 29.2 255 4.82 6.08 19.4 12.4 0.110
23.0 31.7 248 4.91 5.98 19.0 12.3 0.140
23.0 31.7 248 4.91 5.89 19.0 12.3 0.209
24.0 33.0 227 4.97 6.10 17.6 11.8 0.238
24.2 33.2 200 4.89 5.94 15.8 11.1 0.106
25.0 34.2 183 3.70 4.94 14.6 10.6 0.365
25.5 34.8 176 3.72 5.35 14.2 10.4 0.242
26.3 35.9 175 5.15 5.59 14.1 10.4 0.300
26.5 36.2 172 5.08 5.55 13.9 10.3 0.627
27.0 36.7 158 4.33 4.89 12.9 9.82 0.189
27.5 37.2 157 3.35 4.67 12.9 9.79 0.563
28.0 37.8 156 2.77 4.29 12.8 9.77 0.245
29.0 39.4 154 4.72 5.91 12.7 9.68 0.282
29.0 39.4 154 4.72 5.91 12.7 9.68 0.420
30.0 40.5 126 6.27 7.97 10.6 8.59 0.329
30.5 41.1 126 7.57 10.2 10.6 8.57 0.478
30.5 41.1 126 7.57 10.2 10.6 8.57 0.478
31.0 41.7 125 9.36 12.2 10.6 8.55 0.450
31.3 42.1 97.8 9.87 12.9 8.18 7.23 0.434
31.4 42.4 83.9 10.0 13.0 6.98 6.57 0.416
32.0 43.2 79.4 9.64 12.8 6.68 6.34 0.454
32.5 43.8 79.1 9.09 12.0 6.66 6.32 0.500
33.0 44.4 78.5 8.86 1.05 6.62 6.28 0.545
33.0 44.4 78.5 8.86 1.05 6.62 6.28 0.612
33.5 44.0 77.6 8.13 9.63 6.56 6.23 0.587
34.0 44.5 76.8 6.86 9.38 6.50 6.18 0.633
34.0 44.5 76.8 6.86 9.38 6.50 6.18 0.894
34.5 46.3 74.2 6.55 9.85 6.33 6.02 0.666
35.0 47.0 73.0 8.08 10.7 6.25 5.93 0.627
35.0 47.0 73.0 8.08 10.7 6.25 5.93 0.882
36.0 48.3 57.8 11.3 12.8 5.15 4.83 0.692
36.0 48.3 57.8 11.3 12.8 5.15 4.83 0.740
36.5 48.8 56.8 10.6 12.2 5.08 4.75 0.750
36.5 48.8 56.8 10.6 12.2 5.08 4.75 0.827
37.0 49.3 55.9 9.75 12.0 5.02 4.69 0.791
37.5 50.0 54.3 11.0 14.0 4.88 4.56 0.823
38.0 50.6 53.5 13.5 15.6 4.81 4.50 0.772
38.5 51.2 52.6 15.4 16.3 4.74 4.43 0.825
39.0 51.7 46.5 14.7 16.0 4.19 3.93 0.895
41.0 53.9 38.6 14.0 15.7 3.49 3.28 1.21
42.0 55.1 31.6 19.4 22.3 2.85 2.70 1.04
44.0 57.3 20.4 27.9 31.2 1.82 1.75 0.616
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NRCS, 1998] for two nearby sites in the Oregon-Washington
Coast Ranges for the 1961–1990 period represented by the
PRISM data set. Evapotranspiration was 0.85 m/yr for
Bandon, Oregon, and 1.2 m/yr for Corvallis, Oregon. We
took the average, 1 m/yr, as representative for the Olympics.
This value was subtracted from each cell of the precipitation
grid. The few cells with <1 m/yr of precipitation were set to
zero. The resulting annual precipitation was then routed
over the landscape to create a discharge grid. River channels
were easily distinguished by areas with high discharge
(>0.01 m3/s). Barbour [1998] did this calculation for the
entire Olympic Peninsula. He tested the accuracy of the
discharge grid by comparison with local discharge measure-
ments at seven gauging stations around the Olympics,
including one from the lower part of the Queets River
(the Clearwater River drains though that part of the Queets).
The ARCINFO estimates were routinely higher than the
mean annual discharge measured at the gauging stations, by
about 10 to 20%. This error could be due to a slight
underestimate of the evapotranspiration correction.
[18] Area A is often used as a substitute for Q and Wc as

these terms are observed to scale approximately with A
according to power laws:

Q ¼ kQA
c ð7Þ

Wc ¼ kwQ
b ¼ kwk

b
QA

bc; ð8Þ

where c is �1 [Dunne and Leopold, 1978] and b is �0.5
[Leopold and Miller, 1956]. For the Clearwater the power

relationship between A (km2) and Q (m3/s) is described by
kQ = 0.1335 and c = 0.90. Using equations (4) and (7), we
can calculate the power law relationship between Wc (m)
and Q (m3/s) with kw = 10.82 and b = 0.47.
[19] The distribution of grain size along the river is shown

in Figure 8, with the symbols indicating the median size and
the bars indicating the 95% range. Clast-size distributions
were measured in channel fill deposits preserved in Holo-
cene and late Pleistocene terrace fill units of the Clearwater
(symbols identify sites by unit and position in the terrace fill
sequence; see caption for details). We emphasize that these
measurements provide a record of channel grain size that
spans the same duration as the incision record provided by
the strath data. At each site, more than 100 clasts were
selected at random using a volleyball net to provide uniform
sample locations. The important observation is that grain
size does not vary significantly downstream. As a result, our
modeling of the Clearwater can ignore this variable.
[20] The chief feature of the data set is a strong correlation

of increasing slope with increasing incision rate (Figure 9a)
and a similar correlation of increasing area with decreasing
incision rate (Figure 9b). It should be remembered that slope
and area characteristically vary together (Figure 4) and the
correlations in Figure 9 do not indicate causation.

3. Proposed River Incision Models

[21] In this section, the models and their parameteriza-
tions are outlined. We focus specifically on the functional
forms of various incision models. This approach is useful

Figure 7. Area distribution for mean monthly precipitation rates for the Olympic Peninsula.
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because it allows entire classes of models to be evaluated,
enabling broad statements to be made about the viability of
the models. Our statistical tests below focus on best fit
values for those parameters most diagnostic of the incision
processes represented by the models. In particular, we focus
on estimates on n and m, which represent exponents for
channel slope and normalized discharge (e.g., Sn and (Q/
Wc)

m). Note that we have substituted n and m instead of the
usual exponent variables n and m. This has been done to
emphasize that our analysis is based not on area A but rather
on normalized discharge, as indicated by Q/WC. The models
contain other fit parameters, but their estimated values are
specific to features in the local setting, such as rock strength
and discharge characteristics, and do not help in comparison
of the models.
[22] An important test is to see if the best fit solution for

each of the models includes physically plausible estimates
for n and m. An extreme example would be a model that
yielded estimates for n or m of less than zero, which would
imply that a decrease in channel slope or a decrease in
normalized discharge would cause an increase in incision
rate. These estimates make no physical sense and thus
would be strong evidence against the model as presently
formulated. There are numerous predictions in the literature,
which we summarize below, about what m and n should be
for specific erosion processes. These predictions can be
used to assess the validity of the fit estimates. However, it is
important to remember that the published predictions for
these parameters are based on simplifying assumptions,
which have yet to be carefully assessed. Furthermore, the
models themselves may not be correctly implemented to
represent long-term incision in real rivers. We have already

discussed an example of this problem above, when we
considered how the long-term incision rate of the valley,
as represented by the strath data in the Clearwater, might be
related to the rate of channel incision. Thus our tests here
focus on the performance of the models as they are currently
implemented. Subsequent discussion considers how the
models might be improved.
[23] Themodels tested here fall into three broad categories:

production-limited incision (models 1, 3, and 4), transport-
limited incision (model 5), and a mixture of the two (model 2,
2a, and 6).

3.1. Model 1: Shear Stress Incision

[24] Howard and Kerby [1983], Seidl and Dietrich
[1992], and Howard et al. [1994], among others, have
proposed that the bedrock incision rate of a river is propor-
tional to the basal shear stress in the river. This model is
formulated using basal shear stress but it is functionally
equivalent to the ‘‘unit stream power’’ model, as noted by
Whipple and Tucker [1999].
[25] The volume of bedrock eroded per unit area of

channel per unit time is given by

Ec ¼ kbtab; ð9Þ

where kb is a dimensional coefficient with a value that
depends on the dominant erosion process and rock strength,

Figure 8. Grain-size distribution as a function of valley
distance for 14 sites along the Clearwater River. The main
conclusion is that median grain size does not change
significantly downstream. The symbols indicate the median
grain size (D50) at each site, and the range indicates the 95%
interval around the median. See text for details about how
data were collected. Symbol fill indicates the age of the
sampled deposit according to Pazzaglia and Brandon
[2001]: white, 4–8 ka (QT5 deposit); gray, 65–60 ka
(QT3 deposit); black, 140–135 ka (QT2 deposit). Shape of
symbol indicates position in terrace deposit: bottom,
inverted triangle; middle, circle; top, triangle.

Figure 9. (a) Channel slope versus valley incision rate,
and (b) drainage area versus valley incision rate for the
Clearwater River.
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tb is the basal shear stress, and a is a positive constant. a
may range from around 1 for an easily eroded material
[Howard and Kerby, 1983], to around 5/2 for impact
abrasion [Hancock et al., 1998].
[26] For a steady, uniform flow, the basal shear stress is

given by

tb ¼ rwk
1
3

f

gSQ

Wc

� �2
3

; ð10Þ

where rw is the density of water, kf is a dimensional
coefficient, g is the acceleration due to gravity, Q is the
steady discharge, S is the channel gradient, and Wc is the
channel width [Howard and Kerby, 1983].
[27] The incision rate may therefore be described as

Ec ¼ k1S
n Q

Wc

� �m

; ð11Þ

where

k1 ¼ kb k
1
3

f rwg
2
3

� �a

; ð12Þ

n ¼ m ¼ 2a

3
: ð13Þ

In practice, there is no general prediction for k1, but m and n
are predicted to be approximately equal and confined to the
range 2/3 to 5/3 [Hancock et al., 1998; Whipple et al.,
2000].
[28] As discussed above, there is an uncertainty about

how Ec described by the incision models is related to Ev as
determined from the strath data. The two end-member
possibilities are that Ec = Ev and that Ec = 1.43 EvQ

0.38

(equation (5)). We can substitute the second expression into
equation 11 to expand the predicted range to include these
two end-member options. This is discussed further in
section 4.2.

3.2. Model 2: Under-Capacity Incision

[29] In this model, the sediment-carrying capacity of a
river is considered to be proportional to basal shear stress
[Armstrong, 1980; Begin et al., 1981]. This concept has
been used to formulate a bedrock incision model [Chase,
1992; Beaumont et al., 1992; Kooi and Beaumont, 1996] in
which bedrock incision is related to the amount of basal
shear stress available above that needed to transport the
ambient sediment discharge. The incision rate is assumed
to decrease linearly with increasing sediment discharge.
The incision rate becomes zero where the sediment dis-
charge matches the maximum ‘‘carrying capacity’’ of the
river.
[30] This model is formulated by Beaumont et al. [1992]

as

Ec ¼ c0S
nQm � c1q: ð14Þ

where c0 and c1 are positive constants and q is the sediment
discharge (the total local sediment load of the river). They

set m and n equal to 1, but these parameters could range
more widely. We also test a variant of this model that
accounts for the change in channel width downstream, as in
model 1. This variant, which we designate as model 2a, is
given by

Ec ¼ c0S
n Q

Wc

� �m

� c1q

Wc

ð15Þ

In this form, the under-capacity model is now given in terms
of excess basal shear stress, so the formulation parallels that
used in model 1. The predicted values of n and m are the
same as those for model 1, for the same reasons outlined
there.

3.3. Model 3: Sediment-Limited Incision

[31] As originally hypothesized by Gilbert [1877], sedi-
ment discharge may influence the rate of bedrock erosion
through two opposing mechanisms: (1) sediment provides
tools for bed abrasion and (2) sediment protects the bedrock
by reducing exposure to the erosional flow. This hypothesis
has seen renewed attention from Sklar and Dietrich [1998,
2001], We attempt a test of Gilbert’s hypothesis using
parabolic equation to represent the effects of sediment
discharge and basal shear stress on incision rate. Tucker
and Whipple [2002] use a similar approach. In models 1 and
2, the higher the basal shear stress, the higher the rate of
incision. The key feature of the model here is that incision
rate is maximized for certain values of sediment discharge
and basal shear stress.
[32] Consider first the role of sediment discharge by

fixing the basal shear stress as constant. At low sediment
discharge, the incision rate is controlled by the availability
of tools and thus incision becomes more rapid as sediment
discharge increases. However, as bed coverage increases the
bed becomes shielded, decreasing the ability of the tools to
work on the bedrock channel. Incision rate therefore reaches
a maximum and then returns to zero as sediment discharge
increases. Further increases in sediment discharge will cause
aggradation and the formation of an alluvial channel.
[33] Consider now the role of changing basal shear stress

at a constant sediment discharge. Basal shear stress is linked
to the incision rate through two opposing mechanisms: (1) it
represents the force per unit area available to abrade the bed,
and (2) it controls the entrainment of sediment in the flow
and thus the frequency of particle/bed impacts. As the basal
shear stress increases, the tools become more energetic and
are more effective at abrading the bed. The frequency of
tool impacts is reduced, however. This effect eventually
outweighs the increased abrasion caused by having higher
energized tools and results in the incision rate falling as the
shear stress increases beyond a maximum value [see Sklar
and Dietrich, 1998, Figure 12].
[34] In an attempt to represent this model with a mini-

mum of free parameters, we propose the following relation-
ship:

Ec ¼ Sn
Q

W

� �m

c

� �
� d2 Sn

Q

W

� �m

c

� �2
" #

� c1
q

Wc

� c2
q2

Wc

� �
; ð16Þ

where c1, c2, and d2 are positive constants (note that no
constant K or c0 is required as it is made redundant by the
other constants here). The defining concept of this model is
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that there is both an optimum sediment load and an
optimum basal shear stress.
[35] Our formulation neglects downstream changes in

grain size. As the grain size does not change appreciably
downstream in the Clearwater (Figure 8), this effect is
unimportant for our analysis here. The expectation for Sklar
and Dietrich’s [1998] sediment limited model is that n and m
should both be approximately 1. Although we are testing a
different sediment-limited model, we anticipate similar
values. It will be shown in the results section that the exact
predictions of n and m values are not needed.

3.4. Model 4: Shear Stress Incision With Threshold

[36] This model is detachment-limited in that the river
must produce a critical basal shear stress tc to detach pieces
of the bedrock channel [Howard, 1997; Tucker and Sling-
erland, 1997]. This model is described by

Ec ¼ kb tb � tcð Þa: ð17Þ

We replace tc with an adjustable constant below, and
rewrite the equation so that it can clearly test this threshold
model:

Ec ¼ k1
SQ

Wc

� b0

� �n

; ð18Þ

where b0 is a constant related to the critical basal shear
stress. In model 1, we noted that the basal shear stress
formulation predicts that n = m and that a is proportional to
these exponents. Thus model 4 shows only one exponent
parameter, n, and thus prescribes that n = m. The predictions
for n and m are the same as those for model 1, for the same
reasons outlined above.

3.5. Model 5: Transport-Limited Stream
Power Incision

[37] In a rapidly uplifting terrain, the rate-limiting aspect
for incision of the channel may be the removal of eroded
materials. This represents a case in which channel incision
is limited by transport processes, rather than by processes
that break down and detach material from the bedrock
channel. If the incision rate is transport limited rather than
detachment limited, one might propose that sediment dis-
charge is controlled by the basal shear stress [Willgoose et
al., 1991]

q ¼ KTS
n Q

Wc

� �mþ1

ð19Þ

where KT is a transport coefficient and n and m are positive
constants.
[38] As q is the product of integrated erosion of the

upstream catchment (equation (6)), we can differentiate
the above with respect to area to obtain an erosion rate. If
we use equation 4 (Wc / A0.42) and use the fact that Q is
approximately linear with respect to A (equation (12)), we
then have

Ec ¼ K mþ 1ð ÞSn Qð Þ0:58 mþ1ð Þ�1; ð20Þ

where K is a constant.

[39] The expected values for n and m are debatable.
Willgoose et al. [1991] use a total load equation, which
gives n = 2 and m = 1. In contrast, a bed load-transport
relation predicts n = 1, but provides no strong prediction for
m because of uncertainties related to downstream fining. We
expect that m in this case should be close to zero, but grain
size may influence the sensitivity of incision to discharge.
Given this lack of consensus, we allow a large range for
values of n, between 1 and 2, and m, between 0 and 1.

3.6. Model 6: Shear Stress Incision With Sediment
Carrying Capacity and Sediment Tools

[40] This model is an extension of model 2a in that
increasing sediment discharge creates more tools for bed-
rock incision but transport of the sediment decreases the
basal shear stress available for incision. The formulation
used here is a simplified version of that suggested by
Slingerland et al. [1997, 1998] in that the carrying capacity
is assumed to be linear in slope and discharge. It has the
same form as that of model 2a (equation (14)), save for the
introduction of the positive constant c2 that linearly links
sediment discharge q to the rate of incision,

Ec ¼ c0S
n Q

Wc

� �m

�c1q

� �
1þ c2qð Þ: ð21Þ

As formulated here, this model is an extension of model 2a
and thus has the same expected values of m and n.

4. Model Testing

4.1. Statistical Methods

[41] Least squares analysis is used to test which of the
competing channel incision models best accounts for the
pattern of long-term incision rates for the Clearwater River.
With each model, we find values for the free parameters (m,
n, c0, c1, c2, and b0, as recast in Table 2) that allow the
model to best fit the data. With this information, we can
apply three tests:
[42] 1. Do the best fit models have physically plausible

values? As noted above, we focus specifically on best fit
estimates and uncertainties for the parameters n and m. At a
minimum, we require that estimates of n and m should be
greater than zero. We also consider how close the estimates
come to the predictions from the literature, as outlined above.
[43] 2. Does a candidate best fit model fit the data well? A

good fit will have residuals that are consistent with the
predicted errors associated with the observed values for the
model variables.

Table 2. Model Functional Forms

Model Functional Form

1, Shear stress Ec = c0S
n Q

Wc

� �
m

2, Under-capacity Ec = c0S
nQm � c1q

2a, Under-capacity with
channel width

Ec = c0S
n Q

Wc

� �
m � c1

q
Wc

3, Sediment-limited Ec = Sn
Q
Wc

� �m� �
� d2 Sn

Q
Wc

� �m� �2
� 	

c1q � c2q2

 �

4, Threshold shear-stress Ec = c0
SQ
Wc

� b0

� �
n

5, Transport-limited Ec = c0S
n Q

Wc

� �
m

6, Sediment carrying and
capacity sediment tools

Ec = (c0S
n Q

Wc

� �
m � c1q)(1 + c2q)

TOMKIN ET AL.: QUANTITATIVE TESTING OF RIVER INCISION MODELS ETG 10 - 9



[44] 3. Are the residuals randomly distributed as a func-
tion of location along the river? The opposite case, where
residuals show a correlated behavior, indicates a poor fit.
Many of the solutions discussed below show correlated
residuals. An example might be that the residuals are all
positive along the lower reach of the river, and all negative
along the upper reach.
[45] To summarize, we will reject a model if it fails to

produce physically plausible parameters, or if its residuals
are anomalously large or show systematic correlations along
the length of the river.
[46] Our Clearwater data set (Table 1) is made up of

measurements at i = 1 to N locations along the river, where
N = 57. The model functions have up to five measured
variables: long-term valley incision rate Ev,i, channel gradi-
ent Si, mean annual water discharge Qi, channel width Wc,i,
and long-term sediment discharge qi. We anticipate signifi-
cant random errors for all of these measured variables.
Furthermore, we expect that the random errors associated
with the measured variables in this problem are roughly
proportional to the magnitude of the variable (this result is
commonly observed in ratioed data, such as the rate and
slope data used here; see Aitchison [1986] for details). The
implication is that the relative standard deviation for each of
the variables in the data set is approximately constant.
[47] For situations like this, it is common practice to

recast the model in a log-transformed form [Aitchison,
1986]. In our case, we define a generic least squares model

ri ¼ ln
f Si;Qi;Wc;i; qi

 �

Ev;i

� 	
þ
X

�ij
 �

; ð22Þ

where ri is the dependent variable. Random errors
associated with measurements of Ev,i, Si, Qi, Wc,i, and qi
are represented by �ij, where j = 1 to 5 for the five variables.
The � values for the jth variable are considered to have a
mean of zero and a standard deviation of aj, indicating that
there are five a values to represent the variation associated
with the five variables.
[48] If an incision model is appropriate and the errors in

the variables are random and uncorrelated, then ri will have
an expected value E[ri] = 0. Thus ri represents the residuals
for the model fit.
[49] To explain the log transform, consider the fact that all

of the incision models are based on the product of the
observed variables. Furthermore, we have argued that the
variables have approximately constant relative standard
deviations. The log transform allows us to represent this
situation using an a for each variable. Consider Ev,i as an
example. With the log transform, the errors for this variable
are represented by ln[Ev,i] + (�i)E, which means that the
standard deviation of ln[Ev,i] is aEv

. Consider that when aEv

is small (<�0.07), then ln[Ev] ± aEv
� ln[(1 ± aEv

)Ev]. Thus
aEv

is approximately equal to the relative standard deviation
of Ev. The same can be said of for each a , except for the
fact that the errors for the other variables are multiplied by
the parameters and coefficients in the best fit equation.
[50] It is important to emphasize that our analysis is

similar to a conventional Least squares fit with ln[Ev] set
as the dependent variable. One of the advantages of a log-
transformed least squares function is that the errors associ-
ated with the observed variables end up being lumped

together, so that they can be treated collectively as errors
in the dependent variable ri . This point can be illustrated by
using the approximate formula for error propagation

s2r �
X

a2
j ð23Þ

which shows that sr, the expected standard deviation of r, is
constant and independent of the actual value of ri (i.e., the
variance of the residuals has been standardized to a common
range).
[51] We do not know exactly what the a values are, but

we expect that for individual variables, the relative standard
deviations are on the order of 10 to 20%. In general, the best
fit values for the parameters m and n have absolute values
less than 1. Thus equation (23) indicates that sr should be
no greater than 0.22 to 0.45, depending on how many
variables are used in the fit equation and the estimated
values for the parameters m and n. Note that this estimate
only accounts for random errors, which is appropriate given
that the least squares analysis is only able to resolve random
errors. Any systematic errors are thought to be much smaller
than 10%, but such errors would end up embedded in our
estimate of the best fit parameters, and not in the residuals.
[52] The fit of a model to the data is defined by the chi-

square statistic

c2 ¼
X ri

sr

� �2

: ð24Þ

A best fit model is determined by searching for a set of
parameters that minimize c2 relative to the observed data.
sr is an unknown constant, so in reality we end up
minimizing �ri

2. An important advantage of our model
function (equation 22) is that it has a linear form relative to
the log-transformed parameters. Thus we can be assured
that there is one and only one cmin

2 solution. If the model is
correct, then the expectation is that cmin

2 ’ (N � p), which
is the degrees of freedom for the model fit with p = number
of fit parameters in the model function. Thus sr can be
estimated for a given best fit model using

s2r ¼
P

r2i
N � pð Þ : ð25Þ

The c2 statistic can also be used to determine confidence
intervals for the estimated parameters [Press et al., 1992,
pp. 688–690]. We focus here on defining a joint confidence
region for estimates of the m and n parameters. The objective
is to determine if the 95% confidence region for the best fit
solution includes physically plausible values for m and n.
The method involves calculating cmin

2 as a function of
various values of fixed m and n. Of course, cmin

2 (m, n) will
increase from its global minimized value at the best fit
solution for m and n, to higher values as we select less
optimal values for m and n. Note that the other parameters of
the model are allowed to take on optimal values for each m,
n pair. Thus the resulting plot of cmin

2 (m, n) represents a
projection of cmin

2 in the full parameter space down on to
the m , n plane. Confidence regions are defined by the
relative value of c2 in the m, n plane as given by

�c2 m; nð Þ ¼ c2
min m; nð Þ � c2

min mbest; nbestð Þ: ð26Þ

The 95% confidence region for two parameters is defined
by the region where�c2 � 6.17 [Press et al., 1992, p. 617].
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[53] We use the Durbin-Watson method to test for serial
correlations in residuals [Draper and Smith, 1998, pp. 181–
182]. First, ri is sorted so that the indice i indicates the
residuals relative to their location upstream along the valley
profile. The statistic for the test is given by

d ¼

XN
i¼2

ri � ri�1ð Þ2
h i
XN
i¼1

r2i
 � ; ð27Þ

and has an expected value of d = 2 for no serial correlation
in the residuals. We test for cases where there is a positive
serial correlation, indicated by d < 2. Critical values depend
on the number of residuals N, and also on the number of fit
parameters, which ranges from 3 to 5 for the models
considered here. Critical values of d are given as a range (du
and dl). We use the smaller d of this range to avoid false
rejections of model solutions. Values for d < 1.48 to 1.41
(for models with 3 to 5 parameters, respectively) are
considered evidence of significant positive serial correlation
[Draper and Smith, 1998]. These values are given at the 5%
significance level, so we are accepting that 1 out of 20
times, the failure of the test will be false.
[54] In our analysis below, we found that the Durbin-

Watson test was strongly influenced by the last measure-
ment at valley km 44. Almost all best fit solutions failed the
test when this residual was included. This point may be an
outlier, given that its incision rate is much lower than nearby
measurements. Even so, this measurement had little influ-
ence on estimates of the parameters and their uncertainties.
Thus we choose to retain the datum in our analysis, but to
ignore it when calculating the Durbin-Watson statistic. This
makes our criterion for rejection due to correlation even
more conservative.
[55] These procedures provide the tools for implementing

our three tests. The 95% confidence region allows us to test
if the model and data predict physically plausible values for
m and n. Estimates for sr allow us to judge the quality of the
fit. Our estimate of errors suggests that a good model should
have sr less than �0.4. Finally, randomly distributed
residuals would require that d passes at the 5% significance
level.

4.2. Model Comparison

[56] In this section, we judge the best fit estimates for
each of the models. The results are illustrated in Figures 10,
11, 12, 13, 14, and 15, which show plots of sr and 95%
and 99% confidence regions for the estimates of n and m
(Table 2). Figures 10–15 also show the expected range for
n and m as discussed for each model above. The residuals
of the six models at their best fit solutions are shown in
Figure 16. The best fit solutions shown in these figures have
been calculated assuming the case of ‘‘hard incision,’’ where
channel incision is assumed to be fully responsible for the
rate of valley incision. To do this, equation (2) was used to
convert the observed valley incision rates to corresponding
channel incision rates, which were then fit relative to the
model equations (Table 2). The estimated n and m are thus
representative of this hard incision case, which we suspect is
the more likely situation. We have not shown solutions for

‘‘easy incision,’’ where En = Ec, but in all cases these
solutions are the same as those for hard incision, except
that they are offset downward parallel to the m axis by 0.72.
This offset is based on the following scaling relationship,
En / Ec (Q/Wc)

f, derived from (5) and (8). Form the Clear-
water, f = 0.38/(b � 1) = 0.72. This relationship shows that
the difference between En and Ec can be entirely represented
by the normalized discharge raised to a power. As such, the
difference between easy and hard incision only affects the
predictions for m and by a specific offset equal to f.

Figure 10. Results for model 1, shear stress incision. The
diagonal line marks m = n and is used in the discussion of
model 4, the threshold shear stress model. (a) Contour map
for estimates of sr as a function of m and n. The intervals are
equal to 0.1 where sr � 1 and 5 where sr > 1. (b) Contour
map showing 95% and 99% confidence regions for best fit
estimates of m and n. The black line shows the range of m
and n predicted for model. The best fit point is m = �0.40,
n = 0.35 (with c0 = 7.0).
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[57] Three tests are applied to the models (in accordance
with section 4.1). A general conclusion is that none of the
incision models provide a good fit to the Clearwater data.
The problem is that the best fit solutions always give
unacceptably low estimates for m or n. They otherwise
have reasonable residuals, both in size (sr < 0.4) and
random distribution. We have also tried fitting the models
to parts of the river, with the idea that the upper or lower
reaches of the river might be influenced by different
fluvial processes. Even in these cases, the best fit solutions
indicate very small values for m and n. We have explored
solutions where m and n are forced to take on values
within the predicted ranges, but those solutions always

have strongly correlated residuals. We now examine this
conclusion on a case-by-case basis.
4.2.1. Model 1: Shear Stress Incision
[58] Using the Clearwater data, the best fit solution for the

model gives n = 0.35 and m = �0.40, as defined by the
minimum sr in Figure 10a. The best fit solution has a
tolerable sr value (i.e., <0.4), but the solution seems
implausible in that the estimated m is negative. The 95%
confidence region includes positive estimates for both n
and m, but the residuals become more highly correlated
away from the best fit solution. For instance, the 95%
confidence region permits more plausible estimates of
m = 0.1 and n = 0.7, but these extreme values cause the model

Figure 11. Results for model 2, under-capacity incision.
Contour maps show (a) sr estimates as a function of m and
n, and (b) 95% and 99% confidence estimates of m and n
(see Figure 10 for details). The best fit point is m = 0.4, n =
0.0 (with c0 = 3.8, and c1 = �9 � 10�5).

Figure 12. Results for model 2a, under-capacity incision
with channel width correction. Contour maps show (a) sr
estimates as a function of m and n, and (b) 95% and 99%
confidence estimates of m and n (see Figure 10 for details).
The best fit point is m = �0.25, n = 0.15 (with c0 = 5.0, and
c1 = �4.6 � 10�4).
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to systematically underestimate incision rates in the upper
part of the drainage (d = 0.34). In summary, the shear stress
incision model is incompatible with the Clearwater data.
4.2.2. Model 2: Under-Capacity Incision
[59] The best fit estimates (Figure 11) for the under-

capacity model, n = 0.0 and m = 0.4, are physically
implausible in that the estimated n is zero. The 95%
confidence interval permits values n of up to 0.2, but even
this value is too small to be plausible. Furthermore, esti-
mates other than the best fit values tend to give strongly
correlated residuals. Recall that model 2 has an extra term
that accounts for varying sediment discharge. This might
lead one to expect that model 2 would out perform model 1.
The opposite is the case: model 2 does a poorer job than
model 1 in fitting the Clearwater data.

[60] Model 2a, which is normalized to account for the
width of the channel, is also deficient. The best fit
estimates of n = 0.15 and m = �0.25 (Figure 12) give a
tolerable sr value (i.e., <0.4), but the negative m renders
the solution implausible. The 95% confidence region
includes positive estimates for both n and m of up to 0.5
and 0.1, respectively, but at these n and m values the
residuals are serially correlated, with a Durbin-Watson
statistic of 1.19.
4.2.3. Model 3: Sediment-Limited Incision
[61] The best fit solution for this model gives n = 0.35

and m = �0.95, with an acceptable sr of less than
0.4 (Figure 13a). All m values in the 95% confidence
region are negative and are thus physically implausible.

Figure 13. Results for model 3, sediment-limited incision.
Contour maps show (a) sr estimates as a function of m and
n, and (b) 95% and 99% confidence estimates of m and n
(see Figure 10 for details). The best fit point is m = �0.95,
n = 0.35 (with c1 = d1 = 0.0, and c2 = 1.5 � 10�3).

Figure 14. Results for model 5, transport-limited incision.
Contour maps show (a) sr estimates as a function of m and
n, and (b) 95% and 99% confidence estimates of m and n
(see Figure 10 for details). The best fit point is m = �0.10,
n = 0.30 (with c0 = 5.0).
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No solution to the data is compatible with the Clearwater
data.
4.2.4. Model 4: Threshold Shear Stress Incision
[62] The best fit solution for the model gives n = 0.55

(with c0 = 68.9, b0 = 0.00050). Note that the estimated b0
value is very small, which means that there is little differ-
ence between this model and model 1, other than the fact
that model 4 specifies that n = m. As a result, the best fit
solution is already illustrated in Figure 10, with the restric-
tion that the solution must lie along the diagonal lines
marking m = n. The sr value is 0.45, which is unacceptably
large. In addition, the residuals are serially correlated for
this solution, with a Durbin-Watson value of 1.02. Other

values of n give even worse fits, with larger sr and more
strongly correlated residuals.
[63] The b0 parameter in model 4 is meant to account for

a threshold shear stress nedded to initiate incision. The
threshold parameter in model 4 makes the incision rate
sensitive to the distribution of discharges in the river
[Tucker and Slingerland, 1997]. For our analysis, we have
represented the discharge at each position along the river by
a single value, the mean annual discharge. This compromise
is common in studies of mountain rivers where long
discharge records are typically not available. Nonetheless,
we can infer how model 4 might perform if detailed
discharge information were available for the Clearwater.
For physically plausible values of n (i.e., n > 0), an increase
in the b0 threshold would lead to greater incision down-
stream where peak discharges would be larger. Our solution
for model 4, which ignores the distribution of discharge,
already overpredicts incision rates along the lower reach of
the river. This shows up as a systematic misfit along the
lower reach (Figure 16). Thus addition of discharge distri-
butions to the model would not improve the fit to the data.
From this, we conclude that threshold effect is probably not
an important factor for long-term incision of the Clearwater.
4.2.5. Model 5: Transport-Limited Stream Power
[64] The best fit solution for this model gives n = 0.30

and m = �0.10, with an acceptable sr of less than 0.4
(Figure 14a). This solution is implausible in that the esti-
mated m is negative. The 95% confidence region includes
positive estimates for both n and m, but the residuals become
more highly correlated away from the best fit solution. For
instance, the 95% confidence region permits high estimates
of m = 0.95 and n = 0.6, but the Durbin-Watson statistic of
1.16 at this point indicates that the residuals are strongly
serially correlated for this m, n estimate.
4.2.6. Model 6: Shear Stress Incision With Sediment
Carrying Capacity and Sediment Tools
[65] The best fit solution for this model gives n = 0.15

and m = �0.40, with an acceptable sr of less than 0.4
(Figure 15a). This solution is implausible in that the
estimated m is negative. The model has a result similar to
those of models 1 and 2, and fails in the same way as well.
Although the 95% confidence region includes positive
estimates for both n and m, but the residuals become more
highly correlated away from the best fit solution. This
model is incompatible with the Clearwater data.

5. Valley Slope Versus Channel Slope

[66] Our analysis suggests that none of the available
incision models provides a good fit to the Clearwater data.
Discharge increases downstream, so some other factor is
needed to allow the river to compensate for the observed
downstream decrease in the long-term incision rate. Sedi-
ment discharge increases downstream, but models that
incorporate q (models 2, 3, and 6) indicate that this variable
does not provide an obvious solution. Channel slope
decreases downstream, but, as illustrated by the fit using
model 1, the downstream change in slope is not large
enough to give physically plausible parameters, where m
and n are both greater than zero.
[67] One problem with our analysis is that we have mixed

long-term features of the river, such as incision rates and

Figure 15. Results for model 6, sediment carrying
capacity and sediment tools incision. Contour maps show
(a) sr estimates as a function of m and n, and (b) 95% and
99% confidence estimates of m and n (see Figure 10 for
details). The best fit point is m = �0.40, n = 0.15 (with c0 =
3.25, c1 = �3.0 � 10�4, and c2 = 6.0 � 10�6).
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sediment discharge, with short-term features, such as the
modern water discharge, channel width, and channel slope.
An important question is if the modern data are in fact
representative of the long-term character of the river. Water
and sediment discharges are expected to vary with climate,
but both of these variables would still increase steadily
downstream, in a manner similar to modern water and
sediment discharges.

[68] In contrast, channel slope can change rapidly and
independently at any point along the river. Our channel
slope measurements show considerable variance at short
wavelengths along the river. Some of this variation is
mirrored by short-wavelength variations in incision rate.
For instance, Pazzaglia and Brandon [2001] argue that the
pattern of channel sinuosity between km 20 and 28 of the
river indicates a slowly growing anticline there. The straths

Figure 16. (a) Pattern of residuals for the 6 models at their best fit points as a function of valley distance,
and (b) the pattern of residuals of model 1 when valley slopes are used in place of channel slopes.
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show a corresponding upwarping across this region, con-
sistent with an actively rising structure. However, there is
little further evidence that short-wavelength variations in
channel slope are everywhere matched by corresponding
variations in rock uplift rate.
[69] In addition, it can be stated that neither the upwarp-

ing, nor the poor fit between the data and the models, is a
consequence of different processes operating in the bed-
rock-dominated upper reach versus the alluvial-dominated
lower reach. If the data are split into two sections (one
below the major confluence of the Snahapish River (which
joins the Clearwater River at about the 25 km mark) and
one above) the individual data sets produce best fit m or n
values that are very similar to those produced by the full
data set.
[70] An alternative explanation is that variance in chan-

nel slope is due to small migrating knickpoints. Short-
wavelength features in the channel should propagate
relatively quickly along the length of the channel [Whipple
and Tucker, 1999]. These ephemeral features would appear
as noise in our analysis. We have attempted to reduce the
influence of these features by using a 3-km-long moving
regression window to smooth out local features in the
channel. This level of smoothing is used by others
studying bedrock incision (K. Whipple, personal commu-
nication, 2001), so our analysis is on a similar footing. The
problem, however, is that the selected level of smoothing
is ad hoc. There is no assurance that we have fully
removed the influence of short-term features from the
channel data.
[71] In fact, we are left to wonder if one of the incision

models might show a better fit if the slope data were more
heavily smoothed. To consider this question, we repeat our
analysis for model 1 using the slope of the Clearwater valley
as a proxy for the long-term slope of the river. As noted
above, the straths record long-term incision of the river
valley. The inference is that the valley slope should be a
more stable feature of the landscape, and thus should be
more closely linked to the timescale represented by the
straths. Valley slope is steeper than the channel slope
because of the sinuosity of the channel. The valley slope
is smoother as well because of the longer length scale used
to make this measurement.
[72] Our analysis of model 1 using valley slopes is shown

in Figure 17. The best fit solution, with m = �0.35 and n =
0.45, is similar to that for the original analysis of model 1
using channel slopes. The negative value for m makes the
best fit solution physically implausible. An important dif-
ference of the fit for the valley slope model is that the 95
percent uncertainty region for m and n is much larger. This
near overlap does not indicate that any values within the
confidence region provide a successful fit to the data. In
fact, the residuals become strongly correlated away from
the best fit solution. For example, a predicted solution with
m = n = 0.65 has d = 0.83, which indicates a strong failure of
the Durbin-Watson test. The predicted region is thus
rejected as a solution because of strongly correlated resid-
uals in that part of the parameter space.
[73] All of the models show the same result when using

more highly smoothed slope data. The smoothed slope data
will tend to increase the correlation of m and n, and thus will
extend the long axis of the elliptical uncertainty region for m

and n in the direction of their common correlation. Thus an
important conclusion is that regression analysis of incision
models is best conducted for rivers that have a low
correlation between slope and discharge. This condition is
provided by using rivers that have spatially varying rock
uplift rates along their course. A river crossing an actively
growing anticline would be a good example.
[74] A second conclusion, however, is that even when the

uncertainty region is large, a model can fail due to strong
serial correlation in its residual. On this basis, we conclude
that none of the models, as presently implemented, is

Figure 17. Results for model 1, shear stress incision,
when valley slope replaces channel slope. Contour maps
show (a) sr estimates as a function of m and n, and (b) 95%
and 99% confidence estimates of m and n (see Figure 10
for details). The best fit point is m = �0.45, n = 0.35 (with
c0 = 6.0).
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successful in fit the data. Either the best fit parameters are
physically implausible (i.e., m and n less than zero) or the
predicted values for the parameters have strongly correlated
residuals.

6. Discussion

[75] Our analysis prompts us to question the applicability
of available bedrock incision models for the Clearwater
River. In particular, the popular shear stress incision model
seems incompatible with our incision data for the Clear-
water. Others [Siedel and Dietrich, 1992; Stock and Mont-
gomery, 1999; Wohl, 2000, pp. 54–55] have encountered
difficulties when comparing the stream power model with
real incision data. The problems are usually attributed to
changes in base level, migrating knickpoints, or nonuniform
lithology along the channel. In most of these studies, rock
uplift velocities were unknown and were assumed to be
uniform along the analyzed stretch of the river. All of these
factors can be accounted for in our Clearwater study. Uplift
velocities are well constrained and known to be steady over
the timescale represented by the incision data. Lithology is
fairly homogeneous, base level has been relatively steady,
and major knickpoints are not present.
[76] Failure of the shear stress model motivated the

analysis in this paper of a variety of incision models. We
were surprised to find that none of the available incision
models provided an adequate fit. Nonetheless, we agree that
the physical processes represented by the models, such as
abrasion, bed coverage, tool impact, etc., should be useful in
predicting the rate of bedrock incision. If this intuition is
correct, then something must be missing from the way the
models are implemented. If we use the Clearwater as a
guide, then there must be a physically plausible explanation
as to how increasing incision rate correlates with decreasing
normalized discharge (Q/Wc).
[77] We propose that assumptions about discharge may be

the critical factor. Discharge in a river is neither steady nor
always confined to the channel [Tucker and Bras, 2000].
The power exponent for discharge, defined by m in this
paper, determines the influence of stochastic flow variability
on the incision process. When m is less than one, most of the
incision will be done during the smaller steady discharges,
but when m is greater than one, incision will occur mainly
during the largest discharges. Thus we can define an
effective discharge that corresponds to the discharge that
does most of the incision [Knighton, 1984, pp. 94–96;
Wohl, 2000, p. 111]. However, there is another factor, in that
the size of the channel determines the bankfull discharge,
which is the maximum discharge that the river can pass
without over spilling its banks [Knighton, 1984; Wohl,
2000]. When the discharge goes beyond bankfull, the
excess flow is no longer confined, and will spread out
laterally and slow down. As a result, the overbank flow
contributes nothing to incision of the channel. Thus incision
models should ignore discharge greater than bankfull.
[78] The problem with mountain rivers is that the channel

configuration varies greatly along the length of the river.
Deeply incised gorges are common in the upper reaches.
Such gorges probably rarely, if ever, see a bankfull dis-
charge. Thus all parts of the discharge distribution will
contribute to channel incision. In contrast, the lower reaches

commonly have broader river valleys, which will frequently
have flows that exceed bankfull.
[79] We have already noted that the threshold shear stress

model can have a strong sensitivity to the distribution in
discharge. Our discussion here indicates that all incision
models are sensitive to the discharge distribution because of
natural variations in the channel size along the course of the
river. In other words, a big storm might cause a lot of
incision in the upper reach of a mountain river, but the
lower reach will be less affected because the flow will
exceed bankfull.
[80] In our analysis above, we have normalized the mean

discharge by the width of the channel. Thus our suggestion
here is that upper reach of the Clearwater has seen more
frequent deeper and faster flows relative to the lower reach.
In other words, our prediction is that the normalized
effective discharge decreases downstream. Normalized
effective discharge may also have an important influence
on strath formation. Incision may operate rapidly when the
river is confined to a narrow gorge, but as the river is able
to widen the adjacent valley floor (i.e., cut a strath), more
of the largest discharges are passed as overbank flows. The
rate of vertical incision should slow as a consequence.
[81] We have no direct evidence for that these ideas, but

they highlight the simplifications implicit in many of the
models that all of the flow in the river contributes equally to
bedrock incision. This assumption is inherent in the proposal
that incision rate should be proportional to (Q/Wc)

m, as
specified here, or Am, as invoked in the stream power model.
We speculate that for the Clearwater, the bankfull discharge
might account for why the lower reach of the river is able to
adjust to a slower long-term uplift rate, while the upper reach
is still able to keep pace with the faster uplift rate there.

7. Concluding Remarks

[82] Our study is the first to make detailed tests of a range
of competing incision models using long-term incision rate
data. The results are surprising, in that none of the models
are able to account for the observations. Several conclusions
are indicated:
[83] 1. Previous attempts to test incision models have

sometimes assumed that rock uplift rates were uniform
along the length of the river. The Clearwater River provides
a clear example where this is not the case. We hope that
future work will attempt to incorporate independent infor-
mation about rock uplift rates. Horizontal shortening may
also be important in some cases, as discussed by Pazzaglia
and Brandon [2001].
[84] 2. We see little reason at this time to favor any

specific model for bedrock incision. Further testing is
needed on well characterized rivers before any firm con-
clusions can be made about the viability of specific models.
As a result, we advise caution in using any of the available
incision models for modeling or analysis of tectonic prob-
lems. Likewise, use of slope-area plots as an interpretational
tool should be avoided, given that it relies on the assump-
tion that incision along the course of the river can be
described by a single stream power relationship and that
rock uplift is uniform along the river.
[85] 3. There is clearly a problem in relating long-term

incision rate determined from straths to the modern meas-
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urements of discharge and channel form. Slope and width
data are commonly smoothed, but there has been no study
of whether smoothing is really needed, and how much
smoothing should be applied. In fact, the short-wavelength
variations in slope and width may contain some information
about incision processes. Further consideration is needed to
determine what measure of slope, either channel or valley
slope, is best related to long-term incision rate.
[86] 4. Our study highlights the importance of finding

rivers where rock uplift rates vary spatially along the length
of the river and where the steadiness of that uplift can be
assessed. Greater variability in uplift along the river would
decrease the correlation between slope and area, and would
allow better resolution of parameters using regression
analysis. A good example of an ideal study area would be
a river that crossed one or more short-wavelength anticlines.
[87] 5. For all the models considered, including those in

which sediment discharge is included as a variable, both m
and n tend to be lower than predicted. This has implications
for the response time of the Clearwater drainage to tectonic
and climatic changes. A low value for m implies that large
changes in discharge will cause relatively small changes in
incision rate. In contrast, a low value for n implies that
changes in the rock uplift rate would require large changes
in channel slope, and, by association, topographic relief. As
a result, our analysis suggests that topography in the
Olympics Mountains would respond relatively quickly to
change in climate, but relatively slowly to changes in rock
uplift rates.
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