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[1] An analytical method is presented for converting thermochronometric ages to surface erosion or, equiv-
alently, exhumation rate. The method incorporates the two most important thermal processes during cooling
by erosion: the dependence of closure temperature on cooling rate and the advection of heat by rock motion
toward the Earth’s surface. Two thermal models are considered: (1) a steady state model, valid for low
erosion rates; and (2) an eroding half-space model, which has no steady state, but captures the transient
increase of geothermal gradient with erosion. In each case, it is assumed that data consist of one or more
thermochronometric ages, present-day surface geothermal gradient, and topographic information including
the elevation at which the age was obtained. Analytical solutions are provided to derive the erosion rate
from these data either as an explicit expression for the steady case or as a root-finding problem for the tran-
sient case. A graphical method for plotting age against erosion rate and geothermal gradient is presented as
a method for solving the root finding problem and for tracking analytical errors in observations of age and
surface geothermal gradient. The graphical method is also appropriate for comparing data from different
elevations or from different thermochronometric systems. Examples are provided using synthetic data or
published data from the literature.
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1. Introduction et al., 1998; Hurford, 1991; Kamp et al., 1989;

Parrish, 1983; Reiners and Brandon, 2006; Reiners
[2] Thermochronometric dating of a wide assort- et al., 2003; Wagner, 1968; Zeitler, 1985]. Al-
ment of minerals has become a standard tool in  though a thermochronometric age, by definition is
the analysis of tectonic, metamorphic, and even  a cooling age, its utility is in the interpretation of
geomorphic problems [Bernet et al., 2004; House  that cooling age in terms of erosion, which is
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defined as surface removal of rock, driving exhu-
mation or motion of the datable mineral toward
the surface of the Earth. In either case, the conver-
sion of a thermochronometric age to an erosion rate
requires two components: a kinetic model for the
dating system in order to calculate the temperature
dependence of the closure process, and information
about the motion of the dated mineral through the
Earth’s temperature field, generally through a ther-
mal model.

[3] Thermochronometric systems are defined
through a radiogenic parent-daughter relationship,
where the daughter is either a radiogenic species
or, in the case of fission-track dating, a crystal
damage track. The kinetics of the processes vary,
and there are many reviews of the various systems
[Reiners et al., 2005], but in nearly all cases the
temperature dependence of the loss of the daughter
product can be expressed through an Arrhenius
expression with an activation energy controlling the
rate and thus the effective temperature range of
daughter loss. With an Arrhenius equation and the
simplifying assumption of a constant rate of cooling,
Dodson [1973] demonstrated that one can calculate a
temperature corresponding to the measured age,
which is commonly used as the effective closure
temperature.

[4] A wide variety of approaches have been used
to model the temperature field in the near surface.
For direct interpretation of thermochronometric
ages, some approaches include no heat transfer
at all, instead inferring a temperature history with-
out specifying an erosion function or explicitly
including a heat transfer model [Gallagher et al.,
2005]. In other cases, ages are obtained over a
range of elevations such that the gradient in age
with elevation can be used to directly infer an
erosion rate [Brown, 1991; Fitzgerald et al.,
1995; Valla et al., 2010]; this method implicitly
assumes that temperature is in a steady state. Ana-
lytical solutions have also been used to model the
temperature field [Brown and Summerfield, 1997;
Mancktelow and Grasemann, 1997; Moore and
England, 2001], but many of these also use simpli-
fying assumptions, such as steady state, to be prac-
tical [Brandon et al., 1998; Stuwe et al., 1994].
Numerical models of heat transfer in one [Ehlers
and Farley, 2003; Willett et al., 2003], two [Batt
et al., 2000; Braun, 2002; Ehlers et al., 2003;
Fuller et al., 2006; Herman et al., 2010], or even
three dimensions [Braun, 2003; Herman et al.,
2009] have been used to include a range of tectonic
kinematic models and to calculate heat transfer by
conduction and advection.

[5] In spite of the many complex models available
to convert ages to erosion rates [Ehlers et al.,
2005], in many cases, a simple analytical expres-
sion would be convenient to quickly convert ages
to erosion rates. In this paper, we provide a set of
such expressions based on analytical solutions for
conductive or advective-conductive geotherms in
the Earth. These include representations of the
two most important physical properties in the sys-
tem, an expression for closure of the mineral sys-
tem through a first-order Arrhenius rate equation
and upward advection of heat by the erosion pro-
cess. Our approach is similar to that used by Moore
and England [2001], but an important difference is
that we include the closure behavior for our esti-
mates of cooling ages.

2. Thermochronometry and the Effective

Closure Temperature Concept

[6] Although the kinetics of fission-track annealing
or noble gas loss are complex systems and depend
on a variety of parameters, to first order they can
be treated as Arrhenius processes with an exponen-
tial dependence on temperature. First-order kinetics
can be expressed in terms of two parameters, an
activation energy, £,, and a frequency factor, Q.
Dodson [1973] demonstrated that the Arrhenius
rate equation could be integrated by assuming a
constant cooling rate, 7, to provide parent and
daughter concentrations as a function of time.
These are used to define the closure temperature
of the thermochronometric system as the tempera-
ture at the time corresponding to the measured
age. Although this is a simplification, and is not
valid for complex cooling histories, e.g., reheating
with partial resetting, it provides a useful approxi-
mation and will be used throughout this paper.
Reiners and Brandon [2006] summarized the
kinetic parameters for common thermochronometric
systems. For convenience, given the long mathemat-
ical formulas used through this paper, the gas con-
stant can be combined with the kinetic parameters
such that the rate law is expressed in terms of two
parameters, 4 and £

A="""F="1
E,” R

[7] As discussed in Appendix A, we use an approxi-
mate form of Dodson’s [1973] expression, which is
explicit and depends on the derivative quantity,
T.;9, defined by Reiners and Brandon [2006] as the
closure temperature with a cooling rate of 10°C/
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Myr. The closure temperature in terms of these quan-
tities can be written as

_ E+ 2Tcll)
B 2+1In(AT?%,) — In(T)

c

M

[8] Equation 1 is an approximation of the Dodson
closure temperature expression, but is accurate to
within small fractions of a percent and will be used
throughout this paper.

3. The Thermal Problem of an Eroding
Lithosphere

[9] The concept of a closure temperature greatly
simplifies thermal modeling of thermochronometric
data. With a closure temperature at a known depth,
a thermochronometric age simply corresponds to
the time required to move from that closure depth
to the surface. The main challenge is to determine
the depth to the closure isotherm.

[10] In the sections below, we present some solu-
tions to this problem based on the assumption of
one-dimensional, vertical heat transport. The sim-
plest problem that still maintains a self-consistent
physical model consists of a thermal calculation
based on (1) vertical conduction and advection of
heat, (2) a surface temperature condition, and (3) a
closure temperature calculated from the cooling
rate. The minimum data required for a meaningful
calculation of an erosion rate for this case are
(1) a measured age, (2) the elevation at which the
age was obtained (3) the kinetic parameters, includ-
ing domain size, for closure of the thermochronolo-
gic system, (4) the surface temperature, (5) the
topography of the surface in the vicinity of the sam-
pled age, and (6) an estimate of the surface heat
flow or geothermal gradient. In any thermochrono-
logic study, all but the last are readily available.

[11] Note that we specify only a single temperature
boundary condition here; an alternative formulation
would be based on a surface and a lower boundary
condition. However, lower boundary conditions are
problematic because the only meaningful thermal
boundary is at the base of the lithosphere and in
most cases, it is difficult to obtain either lithosphere
thickness or temperature information. For this
reason, many papers assign a fixed temperature at
some arbitrary depth, such as the base of the crust.
This is not advisable because there is no reason
for the base of the crust, or any other point in the
lithosphere, to remain isothermal. If the lower
boundary condition plays any role, it must be taken

at the base of the lithosphere. An exception might
be in the upper plate above subduction zones,
where the downgoing plate might hold the base of
the fore-arc lithosphere isothermal, but this is a
complex two-dimensional problem, which should
probably not be treated with one-dimensional mod-
els. Fortunately, in many cases, it is not necessary
to select any basal boundary condition. Given that
the thermal timescale of the lithosphere is on the or-
der of 10” Myr, the lower boundary rarely plays any
role in perturbations to the near-surface tempera-
ture, and if we can characterize the initial or final
surface heat flow, the Earth can be treated as infi-
nitely thick, solving the thermal problem for a
half-space domain.

[12] The surface heat flow is a measurable quantity
and all calculations here will be made with this as a
characteristic parameter. If thermal conductivity is
homogeneous, the geothermal gradient and the heat
flow are equivalent quantities and we will, in fact,
use geothermal gradient rather than heat flow for
simplicity. In general, geothermal gradient changes
with time and depth and we will use the present-
day, surface geothermal gradient as the principal
parameter in all calculations as this is the measur-
able quantity. We do not consider the curvature in
the geotherm due to radioactive heat generation.
This is a linear effect and could be added to the
solutions presented here, but for low-temperature
systems it has a negligible effect and in all cases it
is difficult to constrain independently.

[13] An important characteristic of a half-space do-
main with surface erosion is that there is no steady
state solution. With the time-dependent solutions
used here, surface erosion and the resultant heat-
advection produce continuously changing surface
heat flow and temperature. In spite of this, it can
still be useful to assume steady state as an approxi-
mation under some conditions and we consider this
problem initially.

[14] The surface boundary condition must some-
how take into account the roughness of the surface
topography as well as the elevation at which an age
is obtained [Braun, 2002; Stuwe et al., 1994]. The
thermal perturbation due to topography is wave-
length-dependent with short wavelength topogra-
phy having no effect on a given isotherm, whereas
an isotherm will parallel long-wavelength topogra-
phy. The transition from “short” to “long” wave-
length is gradual, but occurs at a length scale ap-
proximately equal to the depth of the isotherm of
interest. In the wave domain, the admittance of sur-
face topography is an exponential function with a
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characteristic length of 2zz., where z,. is the depth
of the closure isotherm [Braun, 2002]. An initial
estimate of the depth of the closure isotherm below
the mean elevation of the Earth’s surface is given
as

et _ (Tero — To)

2 = @)

[15] An averaging circle with radius of zzZ" thus
provides a reasonable basis for averaging the to-
pography and obtaining a mean elevation of the
Earth’s surface (Figure 1). This elevation is then
used as the datum for all thermal calculations in-
cluding the upper boundary condition, where it is
assigned a value of 7). The age is given by the time
it takes the rock to travel from the closure isotherm
to the datum surface, which, in terms of the erosion
rate is simply,

=", ©)

e

where ¢ is the erosion rate. The case of an age
obtained from a rock at an elevation not equal to
the mean elevation is discussed later. It remains to
determine the value of the closure temperature and
its depth, both of which depend on a thermal model.

3.1. Constant, Steady Geothermal Gradient

[16] The simplest possible thermal model is
obtained by assuming steady state heat conduction
with a negligible advective component, resulting
in a geothermal gradient, G, that is constant in
depth and time. This is valid only with very low
erosion rates or perhaps in a case where kinematics
at depth leads to lateral heat flow and a thermal

Temperature

7, T,
dr
= G= -
§ dz
- A\
e
T(z1)

Figure 1. Definitions, boundary conditions, and param-
eters as used for thermal models in this paper. A geotherm
is determined from an average surface elevation, taken at
the datum with z=0 and with an average surface tempera-
ture, Ty. There is no lower boundary condition, so the
geotherm is characterized by the surface gradient, G. The
depth from the mean topographic surface to the closure
temperature of 7, is z,.

steady state. The thermochronometric age in terms
of temperature can thus be given as

T.— Ty
T= e 4)
[17] The travel time equation can be combined with
the closure temperature expression (equation 1),
recognizing that under steady state and a constant
geothermal gradient, the cooling rate is simply Ge.
Combining equations 1 and 4 with this cooling
rate gives the relationship between erosion rate
and age

1Gé = E 4 e -,
[2+In(ATZ,)) —Iné —InG] " ®)

[18] This expression is nonlinear in erosion rate, but
after multiplying out the denominator, there are just
two difficult terms, Iné and élné, each of which can
be linearized using a truncated Taylor series about
an arbitrary expansion point. The logical expansion
point that we adopt is

Tero — Ty
=G

which gives approximations of

_éa

Iné ~ Iné, + ¢

a
élné ~ —é, + (I+1né,)é.

[19] Substituting these expressions, the erosion rate
can be factored out, giving erosion rate as an ex-
plicit function

2
E+Toao = To (Wne-+1n (724-) + 2)

6= o . (6)

G [hn n ln(nmir) R 1]

[20] Equation 6 is a travel time expression that
gives the erosion rate in terms of the surface tem-
perature, the geothermal gradient, and the measured
thermochronometric age, but in a form consistent
with the cooling-rate dependence of the closure
temperature. The Taylor series approximations
used to obtain a linear equation are not very restric-
tive; comparison with numerical solutions of the
exact equation shows differences in predicted ero-
sion rate of small fractions of a percent over a wide
range of typical ages and erosion rate.
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[21] It is interesting that equation 6 has a complex
dependence on the age, but the geothermal gradient
appears only once, in the denominator. This shows
that the estimate of erosion rate depends directly on
the geothermal gradient and any uncertainty in G
propagates directly into the estimate of the erosion
rate.

[22] To illustrate the error propagation from the age
and the geothermal gradient, equation 6 can be
shown graphically, by plotting erosion rate against
geothermal gradient, either on linear or logarithmic
axes. In log-log space, an age appears as a line. For
example, using the kinetic parameters in Table 1, an
apatite fission-track age of 12 Ma and a surface
temperature of 7°C gives the graph in Figure 2. A
geothermal gradient of 30°C predicts an erosion
rate of 0.3 km/Myr; an uncertainty of 10°C/km on
that geothermal gradient propagates into a range
in erosion rate of 0.23 to 0.45 km/Myr. An uncer-
tainty of 2 Ma in the age extends this range to
0.2 to 0.55 km/Myr as shown in the outer dashed
lines in Figure 2. Uncertainty in the kinetic param-
eters could also lead to uncertainty in the erosion
rate estimate, but in most cases, all other sources
of error will be small compared to the uncertainty
on the geothermal gradient or the error associated
with the assumption of a steady, constant gradient.

[23] Other thermochronometric systems can be
plotted on the same graph. In fact, given that the
slope of an age line is always —1.0 on this graph,
any age for any thermochronometer appears as a
parallel line. For example, a zircon fission-track of
25.5 Ma, using the kinetic parameters in Table 1
appears identical to the apatite fission track (AFT)
age shown in Figure 2. In principle, a plot like Fig-
ure 2 is trivial as there is no slope variation and one
could reduce all information to a scalar quantity,
corresponding to some intercept of the age lines
or even just the erosion rate from equation 6, but
it remains useful to plot the information in a two di-
mensional space to illustrate the range and sensitiv-
ity to measurement errors, and as is illustrated be-
low, more complex thermal models can also be
illustrated on such a G — ¢ plot.
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Figure 2. Parametric determination of erosion rate by
plotting a thermochronometric age as a function of geo-
thermal gradient and erosion rate through equation 6
with kinetic parameters from Table 1. Erosion rate is de-
termined from the intersection of the observed geother-
mal gradient and the line representing the age. In this
example, an AFT age of 12 Ma and a geothermal gradi-
ent of 30°C/km imply an erosion rate of 0.3 km/Ma.
Uncertainties (gray areas) in the age and the geothermal
gradient imply a range of erosion rate as shown by
dashed lines. Note that a zircon fission track age of
25.5 Ma and the corresponding kinetic parameters in
Table 1 gives an identical graph.

3.2. Elevation Correction to Constant
Geothermal Gradient

[24] In the analysis above, it was assumed that the
age came from the surface corresponding to the
average elevation. This is not the case in general
and if ages are obtained from elevations signifi-
cantly different from the mean elevation, this will
result in variation in the inferred erosion rate. The
elevation at which an age is obtained, /4, relative
to the mean elevation, taken to be positive upward
(Figure 1), can simply be added to the travel time,
so that the age corresponds to

-y )

e

[25] Following the same analysis given above, we
obtain an erosion rate expression

Table 1. Kinematic Parameters for Example Thermochronometric Systems. From Reiners and Brandon [2006]
Thermochronometric System E 5 (kJ/mol) Qih Te10 (°C)
(U-Th)/He [Farley, 2002] 138 7.64E+07 67
(U-Th)/He [Reiners, 2005] 169 7.03E+05 183
Fission track apatite [Ketcham et al., 1999] 147 2.05E+06 116
Fission track zircon [Brandon et al., 1998] 208 1.00E+08 232
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6=
AT Ty—hG
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[26] The dependence on geothermal gradient is more
complex in this case, but the erosion rate can still be
expressed explicitly for a given geothermal gradient.
An age can also still be easily plotted in G — e space,
although it now appears as a curved function for
h # 0. If multiple ages at different elevations are
available, they can all be plotted together in this
space. Such a plot has the interesting characteristic
that if the ages are colinear in elevation, they imply
a constant rate of erosion, and if this rate of erosion
is constant to the present day, all ages plot with a
common intersection point (Figure 3). In this case,
it is not necessary to know the geothermal gradient
from independent data, both gradient and erosion rate
can be estimated together. However, the estimated
geothermal gradient will depend on the datum
(h=0) selected for the data elevation correction, so
this must be selected carefully.

[27] The example in Figure 3 shows the ideal case
where a single erosion rate can predict a suite of
ages over the time interval of the ages, as well as
for the time interval from the youngest age to the
present day. It is important to note this last require-
ment, that the erosion rate has remained constant
since closure of the youngest age. This is a major
limitation to this approach as it precludes the appli-
cation to the common situation in which rapid

erosion occurred somewhere in the past, but has
not continued to the present day. However, there
is a workaround to this limitation as we demon-
strate in the natural example at the end of this paper.
This method is also not generally an improvement
to plotting ages against elevation. In fact, it is worse
as far as minimizing the influence of data errors, but
it does give additional information regarding the
erosion rate over the time interval from the youn-
gest age to the present day. If, however, the age
lines do not have a common point, it suggests that
the erosion rate has changed at some time between
the present day and closure of the oldest sample.

3.3. Temperature in an Exhuming Half-Space

[28] The process of erosion that cools rocks as they
move to the Earth’s surface also advects heat
upward, and thereby changes the geotherm. This
effect is significant once erosion rates exceed a
few tenths of a millimeter per year. Thus, any inter-
nally self-consistent method for calculating cooling
ages through erosion should include this transient
effect on the depth to the closure isotherm, as well
as the aforementioned cooling rate dependence on
the closure temperature. Somewhat surprisingly, it
is possible to include all these effects in a single
analytical approach. Treating the Earth as an infinite
half-space with a fixed temperature at the surface and
a constant, steady vertical velocity, temperature as a
function of depth and time is given by Carslaw and
Jaeger [1959, p. 388]

Age
A 0 20
70 o B )
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60 2000 ‘m
=) B
E‘ 50 é | ]
= § 1000
¥ a0 E &
= ) D
3 o m
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&)
=
£
5}
= 20
o
O
&)
10 -
0.1 0.5 1.0

Erosion Rate [km/Ma]

Figure 3. Geothermal gradient, erosion rate plot for four apatite fission track ages using equation 6 and kinetic
parameters of Table 1. The ages comprise a linear age elevation profile (inset). The intersection of the age plots gives
an erosion rate of 0.3 km/Ma and the geothermal gradient of 30°C/km. Mean elevation (datum) is 1000 m.
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where o is the thermal diffusivity, Gy is the initial
geothermal gradient, which is taken as constant
with depth at time 0, and ¢ s the erosion rate, which
is taken to be positive in the negative z direction.
This solution was applied to thermochronometry
data by Brown and Summerfield [1997] and ana-
lyzed in detail for inverting suites of thermochro-
nometric ages by Moore and England [2001].
Note that in this formulation, t is time, not age, run-
ning forward from zero at the time of initiation of
erosion. Following Moore and England [2001],
we note that a material point that is at the surface
at the present day will have a temperature history
determined by setting z = é(#; — ), where #; is the
present day relative to the time at which erosion ini-
tiated. Restated another way, to be clear, time starts
at zero when erosion initiates and runs forward to
the present day, reaching this at #;. The temperature
for a material point at the surface (z=0) at the present
day (t=t;) as a function of time is

T=Ty+ % {(rl ~2)exp (7 é2(t‘a* ’))erfc F(;‘\;a_tzt)} (10)

éty
—t —| +24}.
jerfc {2\/@} 1}

[29] The cooling rate along this material path is cal-
culated from the time derivative of equation 10 as

Temperature [°C]

dT é £\ rut
— =G 2ét- -1 2 11
dt 02\/mxt{ ¢ exp< 4at) + o (22 an

+(2t — 1,)é*)exp <(t 7: éz)) erfe [(“2}5?8} }

[30] Because we want to calibrate this solution to
the modern surface geothermal gradient, we also
need the derivative of equation 9 with respect to
z, evaluated at z=0, giving
Go
0

26t ét
= D 2 exp( - 12
2=0 * 2 \/mcteXp( 40() (12)
&t &t ét
+—+(2+— —
z ( a)”f(zx/aJ

[31] Example solutions of equations 10 and 11 are
shown in Figure 4. The geotherm in this case is a
function of time and erosion rate, and there is no
steady state. As shown in Figure 4, both tempera-
ture and cooling rate vary continuously with time.
In fact, at long time, the surface geothermal gradi-
ent varies approximately linearly with time. It is
thus important that we take this time dependence
into account for the temperature, but also for the
cooling rate and its influence on the closure temper-
ature. Parameters needed for any given solution
include the erosion rate, the thermal diffusivity,
the initial geothermal gradient, Gy and the time
between the present and the initiation of erosion,
which has a magnitude of #.

T

G=""
dz

[32] To predict an age, we need to calculate the clo-
sure temperature as a function of depth and time.
As in the section above, we will parameterize the

Cooling Rate [°C/Ma]
50

200 400 600 800

gl 70 Ma

Depth [km]
S

0 Ma

20

Depth [km]
>

0 20 30 40
Ma
70 Ma

Figure 4.

(a) Geotherms for an exhuming half-space as a function of time in 10 Myr steps. Initial gradient is 25°C/km;

erosion rate is 0.6 km/Ma; thermal diffusivity is 32 km?*/Ma. (b) Material reference frame cooling rates for geotherms in

Figure 4a.
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problem in terms of the modern surface geothermal
gradient. For a given surface geothermal gradient
and time since onset of erosion, #;, we obtain a suite
of geotherms as shown in Figure 5. Closure tempera-
tures are also shown for each geotherm with the clo-
sure temperature calculated from equations 1 and 11.
An age is calculated by finding the intersection of the
geotherm with its corresponding closure tempera-
ture, which gives z.; the age is simply this depth
divided by the corresponding erosion rate.

[33] The inverse problem can also be treated analyt-
ically. As with the steady state case discussed
previously, we need an estimate of the geothermal
gradient; in this case defined to be at the surface at
the present day. In addition, we also need to know
when erosion initiated, #;. It is often possible to
estimate this time based on geological information,
but if this is not the case and this quantity needs to
be guessed, we will show below that results are not
strongly sensitive to this parameter. It can also be
helpful, and is sometimes possible, to have an
estimate of G, the initial geothermal gradient, and

Temperature [°C]

50 100 200

0.5 km/Ma

5.5 km/Ma

1.3 Ma

Depth [km]
()}

12

Figure 5. Temperature and AFT closure temperature
(near vertical curves) for an exhuming half-space. Erosion
rates vary from 0.5 to 5.5 km/Ma in 1.0 km/Ma incre-
ments. Duration of erosion is constant at 10 Ma, and initial
geothermal gradient is selected so that the final surface
geothermal gradient is 30°C/km. Closure temperature
varies with cooling rate and thus with depth as indicated.
The applicable closure depth is defined by the intersection
of the geotherm and its corresponding closure temperature
as shown by the square symbols. Ages are determined by
travel time from this depth to the surface.

the analysis that follows can easily be modified to
express everything in terms of G, rather than G.

[34] Equations 10, 11 and 12 are all complicated
functions of 7 and e. To simplify the algebra, we will
keep G, explicit, but otherwise define functions:
Fr, Fr, and Fg, such that equations 10, 11, and 12
can be expressed as

T =Ty + GoFr(1), (13)
T
E: G()FR(I), (14)
G = GoFg(t) (15)

with the functions easily defined by comparison
with equations 10, 11, and 12.

[35] Using the cooling rate from equation 14 in the
closure temperature expression (equation 1), we
obtain a time-dependent closure temperature. We
need to equate the temperature from equation 13
to the closure temperature, with both evaluated at
the time of closure of the system. For a thermochro-
nometric age of 7, closure occurs at a time of #; — 7.
This is expressed as

_ E+2T.10
2+ 1In(4T%,) — In(GoFr(ty — 7))
a7

Ty + GoFr(t — 1)

[36] We can eliminate the initial gradient, Gy, by
expressing it in terms of the modern gradient, G,
through equation 15 evaluated at #;, giving

GFr(t —
ry+ S0 =)
_ o E+ 2T
" 2+1In(47%y) — InG + InFg(t) — InFr(t; — 7).

(18)

[37] This is an implicit expression for erosion rate
and modern geothermal gradient, and cannot be
explicitly solved for é, but it is straightforward to
find the root with respect to é, for example by
expressing (18) as,

(E + 2T£10)F6([1) — (T()Fg(h) + GFT(tl — ’C))

19
(2+In(4T%y) — InG + InFg(t) — InFr(t; — 7)) =0 "

and, with known values for 7 and G, using standard
root finding techniques to solve for é. There should
be a single root for the expression if reasonable
bounds for é are known.

[38] This can also be solved parametrically using the
graphical representation of (18) as a function of G
and ¢ as was done for the constant gradient case.
Solving equation 18 for G, as best we can, we obtain
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G (E+2T.10)Fs(th)
- 2
FT(tl — ‘L') (2 + ln(AT“O) —InG + ll’lF(;(tl) — ll’lFR(tl - ‘E))

_ToFg(t))
FT(ZI — ‘E) ’

(20

[39] This expression is not quite an explicit relation-
ship between modern gradient (G) and erosion rate,
but it is close. There remains one InG term on the
right side of equation 20. However, InG varies little
and in practice, G can be determined by direct
iteration and converges in just a few iterations.
Equation 20 thus gives us an expression for the
modern geothermal gradient in terms of a single
age, the presumed known kinetic and thermal param-
eters, a known onset time of erosion, and the
unknown erosion rate. As done previously, we can
determine the erosion rate graphically by plotting
gradient against erosion rate. The same example used
in Figure 2, an apatite fission-track age of 12 Ma with
a modern geothermal gradient of 30°C/km, is shown
in Figure 6. In addition to the previous information
we now need to know the onset of erosion, #,, which,
for this example, we assume to be 30 Ma. The
inferred erosion rate is 0.33 km/Myr, close to the
0.3 km/Myr obtained with the assumption of a con-
stant gradient. As with the constant gradient method,
the relationship between modern gradient and ero-
sion rate is nearly linear in log-log space, indicating
that the inferred erosion rate is very sensitive to the
estimate of the modern geothermal gradient. Fortu-
nately, this is not the case for #;. Figure 6 shows the
same data plotted with #; assumed to be 15 Myr
and 100 Myr; the inferred erosion rate varies by only

80
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Figure 6. Geothermal gradient, erosion rate plot for an
apatite fission track age of 12 Ma, using transient solution
of equation 20 and an assumed onset of erosion at 30 Ma.
Observed geothermal gradient of 30°C/km implies an
erosion rate of 0.33 km/Ma. Dashed lines are for assumed
onset of erosion at 15 Ma (upper) and 100 Ma (lower).

a small percentage. However, for other cases, partic-
ularly higher erosion rates and the case where the
age 1is close to the onset of erosion, this effect can
be larger.

3.4. Elevation Correction to an Exhuming

Half-Space

[40] For ages obtained from elevations other than
z,,, the temperature history can again be corrected
by a simple vertical extension of the cooling path.
For an age at an elevation, h, above the mean eleva-
tion, i.e., positive is up, even though z is positive
down, the temperature history is calculated by sub-
stituting z = é(¢; — ) — h in the analysis above.
This modifies equations 10 and 11 so that the
equivalent functions in equations 13 and 14 become

Fr(t) =% 2ét) — 2h + (éty — 2ét — h)exp —M) 21)

erfe [éll — 26t — h} (et — Werfe {étl — h”

2/ 2/t
é , (té — h)?
Fr(t) = 2étexp| — 22
#(7) 2 nat{ etexp( 4ot 22)
Vot hé+ (t —1))é
+ Z“ (200 + é(h + 216 — 1,6))exp (y

[41] As an example, three ages generated using the
half-space solution are plotted in G — e space in
Figure 7. The data are error free and were generated
with an erosion rate of 0.5 km/Myr and thus plot
with a single crossing point, reproducing perfectly
the underlying erosion rate and the modern geother-
mal gradient. The 4 km of relief used for this exam-
ple is admittedly extreme, but serves to emphasize
the changing form of the age functions. Note that
these data are not collinear in age-elevation space,
as the closure isotherm is not constant with time.

4. Example: Denali Massif Fission-Track
Data

[42] As an example as to how this analysis can be
used, we use a suite of data taken from the literature
[Fitzgerald et al., 1995]. This suite of data contains
15 fission-track ages, distributed over nearly 4 km
of elevation (Figure 8). The elevation range is
important as it permits the gradient in age with ele-
vation to be used to directly infer erosion rate and
therefore test our solution. The ages (Figure 8)
show a well defined increase in age with elevation,
including a break in the slope that can be
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Figure 7. Model-generated ages distributed over 4 km of elevation difference (inset) and plotted in G — é space
according to equations 20, 21, and 22, and assuming the onset of erosion at 15 Ma. The erosion rate and present-
day geothermal gradient are recovered exactly by the intersection point of the three curves. Depth of zero is defined

to be at the mean topography for the problem.
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Figure 8. Apatite fission-track ages from the Denali
Massif, taken from Fitzgerald ef al. [1995], as a function
of sampled elevation. Black and grey points are modeled
separately and shown in Figure 9.

interpreted as representing a change in erosion rate.
The Denali region has the disadvantage that we
know little about the heat flow or geothermal gradi-
ent of the region, but the redundancy provided by
the large number of ages allows us to independently
estimate the geothermal gradient.

[43] The two slopes in the age, elevation data imply a
change in erosion rate which violates the assump-
tions of the analytical solutions, but we can analyze
the ages that cooled during each erosion phase. The

younger ages (black points in Figure 8) represent
the most recent cooling that we assume has contin-
ued to the present day. As such we can use equation
20 with the functions of equations 15, 21, and 22, to
transform each age into a function in geothermal gra-
dient (modern), erosion rate space. We need an upper
boundary condition which we take as a temperature
of —10°C at the mean elevation, which we estimate
at 3.5 km above sea level. We use the kinetic para-
meters from Table 1 and assume an onset of erosion
at 6.5 Ma. Using equation 20 with these data yields
the result shown in Figure 9a. In principle, all age
functions should have a common crossing point,
but in practice there is scatter in the ages (Figure 8)
resulting from analytical error and physical pro-
cesses. However, the age functions do converge in
an area supporting an erosion rate in the range of
0.65 to 1.2 mm/yr and a modern geothermal gradient
of 30 to 35°C/km. The inverse gradient of age
with elevation for these data is 1.2 mm/yr but as
Fitzgerald et al. [1995] noted, this is likely too high
due to heat advection and they estimated an erosion
rate of 0.9 to 1.1 mm/yr, similar to our estimate. They
also noted the lack of thermal data to constrain this
calculation, but estimate a geothermal gradient above
30°C/km. A lower gradient would fit the data equally
well and would imply a higher erosion rate, but a
geothermal gradient below 30°C/km is unlikely for
a region with prolonged tectonic activity and erosion.

[44] The older, higher elevation ages can also be
analyzed by our method, although only with some
modification. We need to apply the thermal solution
for conditions at 6.5 Ma, directly following the
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Figure 9. Geothermal gradient, erosion rate plots for
fission track ages shown in Figure 8. (a) Lower elevation
samples shown in black in Figure 8. These were
modeled assuming an onset of erosion 6.5 Ma and using
the half-space solution. A present-day geothermal gradi-
ent of 30 to 35°C/km implies an erosion rate of 0.65 to
1.2 km/Ma, consistent with all data. Kinetic parameters
from Table 1 were used. (b) Model for the high-elevation
samples shown in grey on Figure 8. Erosion was as-
sumed to be active at this rate from 20 Ma to 6.5 Ma.
A geothermal gradient of 22 to 28°C/km at 6.5 Ma and
an erosion rate of 0.15 to 0.21 km/Ma are inferred.

period of slower erosion, but before the period of
rapid erosion. To correct the data back to this age,
we take the mean erosion rate from the analysis
above (0.9 mm/yr) and reduce the elevation of all
the ages by this times 6.5 Ma. We are thus restoring
5.9 km of erosion. We also reduce each age by
6.5 Ma. These modified age, elevation pairs can
then be transformed into gradient, erosion rate
functions as we did above. Results are in Figure 9b.
These data converge nicely to a single point in
gradient, erosion rate space, with the exception of
one age, which is somewhat of an outlier for its
elevation (age of 9.3 Ma at 5.3 km). Otherwise,
the ages suggest an erosion rate of just under

0.2 mm/yr and a geothermal gradient at 6.5 Ma of
25°C/Myr. This geothermal gradient matches the
initial gradient used for the analysis of the ages
from 6.5 Ma to the present.

5. Discussion and Conclusions

[45] The analysis presented here provides a simple
method for converting thermochronometric ages
to erosion rate. The more general, transient solution
includes the two physical phenomena that must be
present for thermochronometric ages that are set
during erosional cooling: advection of heat by the
erosion process and the cooling rate dependence
of the closure temperature. The significance of the
method presented here is that these phenomena
can be included in simple analytical expressions;
any of the solutions presented here can be imple-
mented with just a few lines of code (Appendix B).

[46] The analysis also demonstrates the minimum
data needed for even a minimalistic calculation: a
thermochronometric age with the kinetic information
for calculating closure of the system and an estimate
of the present-day geothermal gradient. Secondary
information includes the surface topography in the
vicinity of a measured age, surface temperature,
and duration of erosion prior to the present. Although
these latter quantities can often be estimated roughly,
any estimate of erosion rate depends directly on the
present-day geothermal gradient and the accuracy
of the estimate is as sensitive to the geothermal
gradient as it is to the measured age.

[47] This sensitivity to geothermal gradient can be
demonstrated and assessed through a simple graphi-
cal exercise of plotting an age against geothermal
gradient and erosion rate through one of the expres-
sions derived here. This serves not only to provide
an estimate of the erosion rate at a given geothermal
gradient, solving the root-finding problem inherent
to the transient solution, but also shows graphically
how error propagates into the erosion rate estimate,
by plotting the range of age or of geothermal gradi-
ent (e.g., Figure 2). This graphical tool is also use-
ful to show data from different elevations or from
different mineral systems to test for internal self-
consistency.

[4s] The largest limitation of the method is the
requirement that the erosion rate must be constant
from the time of closure to the present day. This
is a stricter requirement than that of age-elevation
plots that resolve erosion rate directly over the
measured age range. Given that erosion rate should
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be constant until the present day, the expressions
derived here are best applied to active tectonic
environments where erosion is on-going.

[49] This restriction can be avoided in some cases.
For example, if one can reconstruct the erosion his-
tory in steps such that the youngest erosion steps
are estimated, the ages can be analyzed by incre-
mental application of the expressions derived
above. We demonstrated this process in the example
from Alaska. However, we violate some of our
assumptions through this process. For example, the
assumption of a linear initial geotherm is not consis-
tent with stepwise erosion. At some point, it is simply
easier to use a numerical model, and these analytical
expressions will be limited in application.

[s0] In conclusion, this method, although not of
universal application, should provide a useful tool
for age interpretation. The inclusion, in a self-
consistent manner, of a cooling-rate dependent
closure temperature with an exhuming half-space
thermal model captures the essential physics of the
thermal processes, and remains simple enough
for easy application without the use of simplistic
assumptions such as steady state or arbitrary fixed-
temperature boundary conditions.

Appendix A

[s1] Dodson [1973] considered a system where the
loss of a daughter product was temperature-dependent
through a first-order rate equation, and where the
inverse temperature evolved on a monotonic cool-
ing path which can be approximated by a constant
cooling rate, 7. Under these conditions, the daugh-
ter, parent ratio defining the age corresponds to a
single temperature, 7., which defines the closure
temperature. Dodson expressed this as an implicit
relationship in terms of the closure temperature

. E
T = ATCZexp(— F)’
.

where T is the closure temperature and 4 and £ are
the kinetic parameters as defined in the main body
of this paper. It would be convenient to invert
equation A.1 to obtain an explicit expression for 7,
but this is not possible. However, by linearizing the
expressions using truncated Taylor series expan-
sions, we can obtain an approximate solution. giv-
ing T, explicitly. By transforming the temperature
variable:

(A.1)

T =_

~

and taking the logarithm of equation A.1, we obtain

In(7T) = In(4) — 2In(T}) — ET}. (A2)
[52] This has a near linear form and thus the Taylor
series approximation is more accurate. Reiners and
Brandon [2006] used 10°C/Myr rate as a typical
geologic cooling rate and tabulated values of 7. for
various thermochronometric systems using this cool-
ing rate and equation A.l. This makes this a conve-
nient expansion point, which we refer to as 7.

[53] The transformed expansion point is thus 77}, =
1/T.10, and the Taylor-series approximation for the
logarithmic term is
* * l * *
In(77) ~ In(77) T (T2 = T2y)-
cl0

[s4] Substituting this back into (A.2), we obtain an
expression linear in 7. Solving this and inverting

gives us an explicit expression for closure tempera-
ture as a function of cooling rate

T E+2T.
© 24 1In(4T%) —In(T)

(A3)

[ss] Although equation A.3 is an approximation,
the Arrhenius rate equation on which equation
A.1 is close to linear in log time, inverse tempera-
ture space, so this approximation is imperceptible
over several orders of magnitude. For kinematic
parameters other than those given by Reiners and
Brandon [2006], it is necessary to solve (A.1) for

T.;pusing T = 10.

Appendix B

[ss] Matlab script for solving for erosion rate from
a thermochronometric age. This script solves the
exhuming half-space problem (equations 13, 14,
15, 20, 21, and 22).
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ed at time of closure (tl-tau)

*(£1-t)-h.*u) /alpha) ) . *erfe ((u.*t1-2*u.¥t-
h) ./ (2¥sqrt (alpha*t)))) /2;

e (tl-tam)

a) . *erfe(((t1-2%t).*u-h)./(2*sqrt (alpha*t)));

+(Gobs=G (1)) /(G(i+1) =G (1)) * (u(i+1)-u(i))

0 (1) + (Gobs2-G (1)) / (G (1+1) =G (1)) * (u (i+1) ~u (1))
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