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Abstract

In a nutshell, submodular functions en-
code an intuitive notion of diminishing re-
turns. As a result, submodularity appears
in many important machine learning tasks
such as feature selection and data summa-
rization. Although there has been a large
volume of work devoted to the study of sub-
modular functions in recent years, the vast
majority of this work has been focused on
algorithms that output sets, not sequences.
However, in many settings, the order in
which we output items can be just as im-
portant as the items themselves.

To extend the notion of submodularity to
sequences, we use a directed graph on the
items where the edges encode the addi-
tional value of selecting items in a partic-
ular order. Existing theory is limited to
the case where this underlying graph is a
directed acyclic graph. In this paper, we
introduce two new algorithms that prov-
ably give constant factor approximations
for general graphs and hypergraphs having
bounded in or out degrees. Furthermore,
we show the utility of our new algorithms
for real-world applications in movie recom-
mendation, online link prediction, and the
design of course sequences for MOOCs.

1 Introduction

1.1 Preliminaries and Related Work

Intuitively, submodularity describes the set of func-
tions that exhibit diminishing returns. Mathemati-
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cally, a set function f : 2V ! R is submodular if,
for every two sets A ✓ B ✓ V and element v 2 V \B,
we have f(A [ {v}) � f(A) � f(B [ {v}) � f(B).
That is, the marginal contribution of any element v
to the value of f(A) diminishes as the set A grows.

As such, submodularity commonly appears in a wide
variety of fields including machine learning, combi-
natorial optimization, economics, and beyond. Sam-
ple applications include variable selection (Krause
and Guestrin, 2005), data summarization (Mirza-
soleiman et al., 2016; Lin and Bilmes, 2011;
Kirchho↵ and Bilmes, 2014), recommender sys-
tems (Gabillon et al., 2013), crowd teaching (Singla
et al., 2014), neural network interpretability (Elen-
berg et al., 2017), network monitoring (Gomez Ro-
driguez et al., 2010), and influence maximization in
social networks (Kempe et al., 2003).

A submodular function f is said to be monotone if
f(A)  f(B) for every two sets A ✓ B ✓ V . That
is, adding items to a set cannot decrease its value.
A seminal result in submodularity states that if
our utility function f is monotone submodular (and
non-negative), then the classical greedy algorithm
maximizes f subject to a cardinality constraint up
to an approximation ratio of 1 � 1/e (Nemhauser
et al., 1978). Since then, the study of submodu-
lar functions has been extended to a broad variety
of di↵erent settings, including non-monotone sub-
modularity (Feige et al., 2007; Buchbinder et al.,
2014), adaptive submodularity (Golovin and Krause,
2011), weak submodularity (Das and Kempe, 2011),
and continuous submodularity (Wolsey, 1982; Bach,
2015), just to name a few.

Despite the above, the vast majority of existing re-
sults are limited to the scenario where we wish to
output sets, not sequences. Alaei and Malekian
(2010) and Zhang et al. (2016) consider functions
they call string- or sequence-submodular, but it is in
a di↵erent context. In this paper, we use a directed
graph on the items where the edges encode the addi-
tional value of selecting items in a particular order.
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The only known theoretical result for this setting is
limited to the case where the underlying graph is
a directed acyclic graph (Tschiatschek et al., 2017).
Considering sequences instead of sets causes an ex-
ponential increase in the size of the search space, but
it allows for much more expressive models.

For example, consider the problem of recommending
movies to a user. A recommendation system could
determine that the user might be interested in The
Lord of the Rings franchise. However, if the model
does not consider the order of the movies it recom-
mends, the user may watch The Return of the King
first and The Fellowship of the Ring last, which is
likely to lead make the user totally unsatisfied with
an otherwise excellent recommendation. With this
example as motivation, the next section gives a more
detailed description of the problem we consider.

1.2 Problem Description

Tschiatschek et al. (2017) was the first to consider
this particular submodular sequence setting and we
will closely follow their setup of the problem. Re-
call that the goal is to select a sequence of items
that will maximize some given objective function.
To generalize the problem description, we will refer
to items as vertices from now on.

Let V = {v
1

, v
2

, . . . , v
n

} be the set of n vertices
(items) we can pick from. A set of edges E encodes
the fact that there is additional value in picking cer-
tain vertices in a certain order. More specifically,
an edge e

ij

= (v
i

, v
j

) encodes the fact that there is
additional utility in selecting v

j

after v
i

has already
been chosen. Self-loops (i.e., edges that begin and
end at the same vertex) encode the fact that there
is some individual utility in selecting a vertex.

In general, our input consists of a directed graph
G = (V,E), a non-negative monotone submodular
set function h : 2E ! R�0

, and a parameter k. The
objective is to output a non-repeating sequence � of
k unique nodes that maximizes the objective func-
tion:

f(�) = h
�
E(�)

�
,

where

E(�) =
�
(�

i

,�
j

) | (�
i

,�
j

) 2 E, i  j
 

.

We say that E(�) is the set of edges induced by the
sequence �. It is important to note that the function
h is a submodular set function over the edges, not
over the vertices. Furthermore, the objective func-
tion f is neither a set function, nor is it necessarily
submodular on the vertices.

F T R

Fellowship 
of the Ring

The  
Two Towers

The Return 
of the King

Figure 1: Graph for The Lord of the Rings fran-
chise. The self-loops encode the fact that each movie
has some individual value. The edges encode the
fact that there is additional utility in watching the
movies in the correct order. Notice that the util-
ity of watching The Return of the King after having
already seen both The Fellowship of the Ring and
The Two Towers is higher than the utility of watch-
ing The Return of the King after having seen just
one of the two.

For example, consider the graph in Figure 1, and let
h
�
E(�)

�
= |E(�)|. That is, the value of a sequence

is simply the number of edges induced by that se-
quence. Consider the sequence �

A

= (F ) where the
user has watched only The Fellowship of the Ring,
the sequence �

B

= (T ) where the user watched only
The Two Towers, and the sequence �

C

= (F, T )
where the user watched The Fellowship of the Ring
and then The Two Towers:

f(�
A

) = f(F ) = h
�
(F, F )

�
= 1 .

f(�
B

) = f(T ) = h
�
(T, T )

�
= 1 .

f(�
C

) = f(F, T ) = h
�
(F, F ), (F, T ), (T, T )

�
= 3 .

This example shows that although the marginal gain
of the edges is non-increasing in the context of a
growing set of edges (i.e., the function h is submod-
ular on the edges), it is clear that the function f is
not submodular on the vertices. In particular, the
marginal gain of The Two Towers is larger once the
user has already viewed The Fellowship of the Ring.

Furthermore, just to fully clarify the concept of
edges being induced by a sequence, consider the se-
quence �

D

= (T, F ) where the user watched The
Two Towers and then The Fellowship of the Ring.

f(�
D

) = f(T, F ) = h
�
(T, T ), (F, F )

�
= 2 .

Notice that although sequences �
C

and �
D

contain
the same movies, the order of �

D

means that the
edge (F, T ) is not induced, and thus, the value of
the sequence is lower.
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1.3 Our Contributions

Throughout this paper we use the notation � =
min{d

in

, d
out

}, where d
in

= max
v2V

d
in

(v) and
d
out

= max
v2V

d
out

(v). The previous work on our
problem, due to Tschiatschek et al. (2017), pre-
sented an algorithm (OMegA) enjoying a (1�e� 1

2� )-
approximation guarantee when the underlying graph
G is a directed acyclic graph (except for self-loops).

In this paper, we present two new algorithms:
Sequence-Greedy and Hyper Sequence-Greedy,
which also provably achieve constant factor approx-
imations (when � is constant), but their guaran-
tees hold for general graphs and hypergraphs, re-
spectively. Although the example given in Figure 1
is indeed a directed acyclic graph, many real-world
problems require a general graph or hypergraph.

We showcase the utility of our algorithms on real
world applications in movie recommendation, online
link prediction, and the design of course sequences
for massive open online courses (MOOCs). Further-
more, we show that even when the underlying graph
is a directed acyclic graph, our general graph algo-
rithm performs comparably well. Our experiments
also demonstrate the power of being able to utilize
hypergraphs and hyperedges.

2 Theoretical Results

All proofs are given in the Appendix.

2.1 General Graphs

In this section, we present our first algorithm,
Sequence-Greedy. Sequence-Greedy is essentially
the same as the classical greedy algorithm, but in-
stead of choosing the most valuable vertex at each
step, it chooses the most valuable valid edge.

More specifically, we start o↵ with an empty se-
quence �. At each step, we define E to be the set of
all edges whose end point is not already in �. We
then greedily select the edge e

ij

2 E with maximum
marginal gain h

�
e
ij

| E(�)
�
, where

h
�
e
ij

| E(�)
�
= h

�
E(�) [ e

ij

�
� h

�
E(�)

�
.

Recall that e
ij

= (v
i

, v
j

). That is, v
i

is the start
point of e

ij

and v
j

is the endpoint. If e
ij

is a self-
loop, then j = i and we append the single vertex
v
j

to �. Similarly, if j 6= i, but v
i

is already in
�, then we still only append v

j

. Finally, if e
ij

has
two distinct vertices and neither of them is already
in the sequence, we append v

i

and then v
j

to �.
This description is summarized in pseudo-code in
Algorithm 1.

Algorithm 1: Sequence-Greedy (Forward)

Input: Directed graph G = (V,E)
Monotone submodular function h : 2E ! R
Cardinality parameter k

1 Let �  ().
2 while |�|  k � 2 do
3 E = {e

ij

2 E | v
j

/2 �}. // e
ij

= (v
i

, v
j

)
4 if E = ? then Exit the loop.
5 e

ij

= argmax
e2E h(e | E(�)).

6 if v
j

= v
i

or v
i

2 � then
7 � = � � v

j

. // � means concatenate

8 else
9 � = � � v

i

� v
j

.

10 return �.

Theorem 2.1. The approximation ratio of Algo-

rithm 1 is at least 1�e

�(1� 1
k

)

2din+1

.

Notice that the approximation guarantee of Algo-
rithm 1 depends on the maximum in-degree d

in

. In-
tuitively, this is because Algorithm 1 builds � by
appending vertices to the end of the sequence. This
means that each vertex we add to � decreases the
size of E by at most d

in

.

However, one can easily modify Algorithm 1 to build
� backwards by prepending vertices to the start of
the sequence at each step. More specifically, we re-
define E to be the set of all edges whose start point is
not already in �. Again we greedily select the edge
e
ij

2 E that maximizes h
�
e
ij

| E(�)
�
. Now, if e

ij

is a
self-loop or v

j

is already in �, we prepend the single
vertex v

i

to the start of �. Otherwise, if e
ij

has two
distinct vertices and neither of them is already in the
sequence, we prepend v

j

to � first, and then prepend
v
i

(thus, maintaining the order). This description is
summarized in pseudo-code in Algorithm 2 with the
main di↵erences noted as comments.

Algorithm 2 gives the same approximation ratio as
Algorithm 1, but with a dependence on d

out

instead
of d

in

. Thus, if we run both the forwards and back-
wards version of Sequence-Greedy and take the max-
imum, we get an approximation ratio that depends
on � = min{d

in

, d
out

}. Furthermore, notice that the
approximation ratio improves as k increases. There-
fore, we can summarize the approximation ratio of
Sequence-Greedy as follows.

Theorem 2.2. As k !1, the approximation ratio

of Sequence-Greedy approaches
1� 1

e
2�+1

.
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Algorithm 2: Sequence-Greedy (Backward)

Input: Directed graph G = (V,E)
Monotone submodular function h : 2E ! R
Cardinality parameter k

1 Let �  ().
2 while |�|  k � 2 do
3 E = {e

ij

2 E | v
i

/2 �}. // different set E
4 if E = ? then Exit the loop.
5 e

ij

= argmax
e2E h(e | E(�)).

6 if v
i

= v
j

or v
j

2 � then
7 � = v

i

� �.
8 else
9 � = v

i

� v
j

� �.

// vertices appended to beginning of �

10 return �.

This is comparable to the (1�e�
1

2� )-approximation
guarantee that is achieved by the existing algorithm
OMegA, except that our guarantee is valid on gen-
eral graphs, not just directed acyclic graphs.

In addition to this provable approximation ratio,
Sequence-Greedy has the strong advantage of being
computationally e�cient. Both finding E and iden-
tifying the most valuable edge in E can be done in
O(m) time, where m = |E|. Thus, Sequence-Greedy
runs in O(km) time. This is faster than OMegA,
which runs in O(m�k2 log k).

2.2 Extension to Hypergraphs

Extending our results to hypergraphs allows us to
encode increasingly sophisticated models. For exam-
ple, looking back on Figure 1, we see that the value
of watching all three movies is just the sum of the
pairwise additional values. However, hyperedges al-
low us to encode the fact that there is even further
utility in watching the entire franchise in order.

From this point on, we replace the directed graph G
with a directed hypergraph H = (V,E). Each edge
e 2 E of this directed hypergraph is a non-empty
non-repeating sequence of vertices from V . Let V (e)
be the set of vertices found in the hyperedge e. We
assume that the intersection of a sequence and a set
maintains the order of the sequence, which allows us
to redefine E(�) as

E(�) = {e 2 E | � \ V (e) = e} .

Informally, E(�) contains an edge e 2 E if and only
if all the vertices of e appear in � in the proper order.

We also need to explain how the concept of in-

degrees and out-degrees extends to hypergraphs.
Self-loops contribute 1 to both the in-degree and the
out-degree of that vertex. For all other edges e 2 E
such that v 2 V (e), they will contribute 1 to d

in

(v)
if v is not the first vertex of e, and 1 to d

out

(v) if
v is not the last vertex of e. Finally, we define r as
the maximum size of any edge in E. More formally,
r = max

e2E

|e|.

Aside from the above redefinition of E(�), there is no
need to make other changes in the definition of the
objective function f . Specifically, it is still defined
as f(�) = h(E(�)), where h : 2E ! R�0

is a non-
negative monotone submodular function.

Our algorithm for hypergraphs, Hyper Sequence-
Greedy, is an extension of the original Sequence-
Greedy. Again, we start o↵ with an empty sequence
�. This time, at each step we define E to be the set
of all hyperedges e 2 E such that �\V (e) is a prefix
of e. The idea is that we can only select a hyper-
edge e if the vertices of e included in our sequence �
form a prefix of e, and they appear in � in the right
order. We then select the hyperedge e⇤ 2 E that has
the maximum marginal gain, and append the ver-
tices of e⇤ (that are not already in our sequence) to
� without changing their order. This description is
summarized in pseudo-code in Algorithm 3.

Algorithm 3: Hyper Sequence-Greedy (Forward)

Input: Directed hypergraph H = (V,E)
Monotone submodular function h
Cardinality parameter k

1 Let �  ().
2 while |�|  k � r do
3 Let E = {e 2 E | � \ V (e) is a prefix of e}.
4 if E = ? then Exit the loop.
5 e⇤ = argmax

e2E h(e | E(�)).
6 for every v 2 e⇤ in order do
7 if v /2 � then � = � � v.

8 return �.

Theorem 2.3. The approximation ratio of Algo-

rithm 3 is at least 1�e

�(1� r
k

)

rdin+1

.

As with Sequence-Greedy, we can also run Hyper
Sequence-Greedy backwards and take the maximum
of the two results. In the backwards version, we
prepend the vertices to the start of the sequence and
we can only select a hyperedge e if V (e)\� is a su�x
of e. Once more, this improves the approximation
ratio in the sense that the dependence on d

in

is re-
placed with a dependence on � = min{d

in

, d
out

}.
Additionally notice that, as before, our approxi-
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mation ratio improves as k increases. Thus, we
can summarize the performance guarantee of Hyper
Sequence-Greedy as follows.

Theorem 2.4. As k !1, the approximation ratio

of Hyper Sequence-Greedy approaches
1� 1

e
r�+1

.

Remarks: One can observe that this hypergraph
setting is a generalization of the previous directed
graph setting. Specifically, Sequence-Greedy and
the associated theory is a special case of Hyper
Sequence-Greedy for r = 2. Furthermore, if r = 1
(i.e., our graph has only self-loops) then Hyper
Sequence-Greedy is the same as the classical greedy
algorithm.

We also note that while Algorithm 3 may select fewer
than k vertices, the theoretical guarantees still hold.
Furthermore, since we assume that h is monotone,
we can safely select k vertices in practice every time.
One simple heuristic for extending � to k vertices is
to only consider hyperedges with at most k � |�|
vertices.

3 Applications

3.1 Movie Recommendation

In this application, we use the Movielens 1M
dataset (Harper and Konstan, 2015) to recommend
movies to users based on the films they have re-
viewed in the past. This dataset contains 1,000,209
anonymous, time-stamped ratings made by 6,040
users for 3,706 di↵erent movies. As in Tschiatschek
et al. (2017), we do not want to predict a user’s rat-
ing for a given movie, instead we want to predict
which movies the user will review next.

One issue with this dataset is that the distribution of
the number of ratings per user (shown in Figure 2a)
has a very long tail, with the most prolific reviewer
having reviewed 2,314 movies. In order for our data
to be representative of the general population, we
remove all users who have rated fewer than 20 movies
or more than 50 movies. We also remove all movies
with fewer than 1,000 reviews. This leaves us with
67,757 ratings made by 2,047 users for 207 di↵erent
movies.

We first group and sort all the reviews by user and
time-stamp, so that each user i has an associated se-
quence �i of movies they have rated, where �i

j

refers

to the jth movie that user i has reviewed. We use a
90/10 training/testing split of the data and 10-fold
cross validation.

For each user i in the test set (D
test

), we use their

first 8 movies as a given starting sequence S
i

=
{�i

1

. . .�i

8

}. We want to use S
i

to select k movies that
we think user i will review in the future. Therefore,
for each user i, we build a hypergraph H

i

= (V,E
i

),
where V = {v

1

, . . . , v
n

} is the set of all movies, and
E

i

is a set of hyperedges. Each hyperedge e
s

has
value p

s

, where s is a movie sequence of length at
most 3. Intuitively, p

s

is the conditional probability
of reviewing the last movie in s given that the rest
of the movies in s have already been reviewed in the
proper order.

Since we use empirical frequencies in the training
data to calculate these conditional probabilities, we
may run into the issue of overfitting to rare se-
quences. To avoid this, we add a parameter d to the
denominator of our calculation of each edge value.
This will increase the relative value for sequences
that appear more often. In this experiment, we use
d = 20.

More formally, define N
s

to be the number of users
in the training set (D

train

) that have reviewed all
the movies in the sequence s in the proper order.
Also define s

l

to be last element in s, and s0 to be
s with s

l

removed. Now we can define the value of
each edge e

s

as follows:

p
s

=

8
>><

>>:

N
s

N
s

0 + d
s0 ✓ S

i

,

p
s

0
N

s

N
s

0 + d
otherwise .

(1)

As mentioned above, the idea is that p
s

represents
the conditional probability of reviewing s

l

given that
all the movies in s0 have already been reviewed in
the proper order. If user i has not reviewed all the
movies in s0, then we scale down the value of that
edge by p

s

0 (i.e., the conditional probability of re-
viewing all the movies in s0).

Note that if s0 = ?, then we define N
s

0 = |D
train

|,
thus ensuring that this definition also applies for self-
loops. A small subgraph of a fully trained hyper-
graph is shown in Figure 2b.

We use a probabilistic coverage utility function as
our non-negative monotone submodular function h.
Mathematically,

h(E) =
X

v2nodes(E)

h
1�

Y

s2E|sl=v

(1� p
s

)
i

We compare the performance of our algorithms,
Sequence-Greedy and Hyper Sequence-Greedy,
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(a)

0.129

0.07

0.0570.052

0.107

101  
Dalmatians Tarzan

Toy Story

(b) (c)

Figure 2: (a) Shows the long-tailed distribution of the number of ratings per user in the Movielens 1M
dataset. (b) Shows a small subgraph of the overall hypergraph H that we train. For clarity, we only show
edges with value p

s

> 0.05, as defined in equation (1). We also highlight the size 3 hyperedge in green.
(c) Shows the performance of our algorithms against existing baselines for various cardinalities k.

to the existing submodular sequence baseline
(OMegA), as well as a naive baseline (Frequency),
which just outputs the most popular movies that the
user has not yet reviewed.

We also compare to a simple long short-term mem-
ory (LSTM) recurrent neural network (RNN). In ad-
dition to tuning parameters, we experimented with
various frameworks such as training on uniform vs.
variable-sized sequences. In the end, we obtained
the best results when we trained the neural network
on the first k movies of each �i, where the target is to
predict the next k movies that the user i will review.
In terms of the architecture, we use one layer of 512
LSTM nodes (with a dropout of 0.5) followed by a
dense layer with a softmax activation that returns
a 207 ⇥ 1 vector P , where entry P

i

is the probabil-
ity that movie i will be reviewed. For each k, we
simply return the k highest values in P . As before,
we used a 90/10 training/testing split with 10-fold
cross validation.

With enough data, neural networks will likely signif-
icantly outperform our algorithms. However, with
this comparison, we would like to show that in situ-
ations where data is relatively scarce, our algorithms
are competitive with existing neural network frame-
works.

To measure the accuracy of a prediction, we use
a modified version of the Kendall tau distance
(Kendall, 1938). First, for any sequence �, we
define T (�) to be the set of all ordered pairs in
�. For example, if � = {1, 3, 2}, then T (�) =⇥
(1, 3), (1, 2), (3, 2)

⇤
.

Let P
i

be our predicted sequence for the next k
movies that user i will review, and let Q

i

be the
next k movies that user i actually reviewed. Then,
we define the accuracy of the prediction P

i

as fol-
lows.

⌧(P
i

, Q
i

) =
|T (P

i

) \ T (Q
i

)|
|T (Q

i

)|

In other words, ⌧(P
i

, Q
i

) is the fraction of ordered
pairs of the true answer Q

i

that appear in our pre-
diction P

i

. Our experimental results in terms of this
accuracy measure are summarized in Figure 2c.

These results showcase the power of using hyper-
graphs, as Hyper Sequence-Greedy consistently out-
performs Sequence-Greedy. We also notice that Hy-
per Sequence-Greedy outperforms the score of the
existing baseline OMegA by roughly 50%.

3.2 Online Link Prediction

In this application, we consider users who are search-
ing throughWikipedia for some target article. Given
a sequence of articles they have previously visited,
we want to predict which link they will follow next.
We use the Wikispeedia dataset (West et al., 2009),
which consists of 51,138 completed search paths on a
condensed version of Wikipedia that contains 4,604
articles and 119,882 links between them.

The setup for this problem is similar to that of sec-
tion 3.1, so we will only go over the main di↵erences.
Again we will use a 90/10 training/testing split of
the data with 10-fold cross validation.
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For each training set D
train

, we build the underlying
hypergraph H = (V,E). This time, V is the set of
all articles, and E is a set of hyperedges e

s

where p
s

is the conditional probability of moving to article s
l

given that the user had just visited s0 in succession.

For each testing set D
test

, we will use the last article
in each completed path as the target, and the previ-
ous 3 articles as the given sequence. This means we
will be able to use hyperedges of up to size 4. We em-
ploy the same probabilistic coverage function h and
the same baseline comparisons as in Section 3.1. For
this application, our neural network was most e↵ec-
tive when we used a single layer of 32 LSTM nodes
(with a dropout of 0.2). Our results are shown in
Figure 3.

Figure 3: Given a sequence of articles a Wikipedia
user has visited, we want to predict the next link
they will click. This bar chart shows the prediction
accuracy, as well as the objective function value, of
various algorithms.

In this case, Hyper Sequence-Greedy exhibits the
best performance. We see that the simple neural
network implementation is outperformed by Hyper
Sequence-Greedy as well as by some of the baselines.
This is likely a result of the data in this experiment
being more sparse. Although in this application we
technically have more data than in the previous one,
here we attempt to choose between 4,604 articles,
rather than just 207 movies.

We also show the results that the various algorithms
achieve when evaluated on our objective function
f(�) = h

�
E(�)

�
. Asides from the LSTM-RNN,

which doesn’t consider the objective function at all,
we see that the objective function values are rela-
tively in line with the prediction accuracy. This
demonstrates that the probabilistic coverage func-
tion was a good choice for the objective function.

3.3 Course Sequence Design

In this final application we want to use historical
enrollment data in Massive Open Online Courses
(MOOCs) to generate a sequence of courses that
we think would be of interest to users. We use a
publicly available dataset (Ho et al., 2014) that cov-
ers the first year of open online courses o↵ered by
edX. The dataset consists of 641,139 registrations
from 476,532 unique users across 13 di↵erent on-
line courses o↵ered by Harvard and MIT. Amongst a
plethora of other statistics, the data contains infor-
mation on when each user first and last accessed each
course, how many course chapters they accessed, and
the grade they achieved if they were ultimately cer-
tified (i.e., fully completed) in the course.

One natural way to think about the value of a se-
quence of courses is in terms of prerequisites. That
is, in what order should we o↵er courses to students
in order to help them learn as much as possible.
This model comes with a natural measure of suc-
cess as well, which is the grade each student gets
in each course. Unfortunately, out of the 476,532
unique users in this dataset only 180 were certified
(and thus, received grades) in 3 or more courses.
Furthermore, this dataset only contains 13 di↵erent
courses (shown in Figure 4a), none of which are log-
ical prerequisites for each other.

Instead, we can think about a sequence of courses
being valuable if they will all be interesting to a user
who registers for them. Similarly to the prerequisites
model where the order of courses a↵ects the user’s
grade, the order in which a user registers for courses
should also a↵ect their interest. In this dataset, we
can measure interest by the percentage of the course
that the user accessed. In particular, we say that if
a user was interested in a course i if she accessed at
least one-third of all the chapters for course i.

As always, we need to build the underlying hyper-
graph H = (V,E) for each training set. In this case,
V is the set of all courses and E is a set of hyperedges
of form e

s

, where s is a sequence of at most 3 courses
and p

s

is the probability that a user will be interested
in s

l

given that she previously showed interest in s0

in the proper order. Recall that s
l

is the last course
in s, and s0 is the sequence obtained from s after
deleting s

l

. As in section 3.1, we also use a param-
eter d to avoid overfitting to rare sequences. In this
case we use d = 100. However, unlike Section 3.1, we
are not making recommendations based on a user’s
history. Instead each algorithm will use the under-
lying hypergraph to build a single sequence �. Since
we are not starting with any given sequence, we can
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Figure 4: (a) shows the 13 di↵erent courses that were available to students in this dataset. (b) is a histogram
of the value of every 4 course sequence that appears in the dataset. The values of the courses selected by the
various algorithms are overlayed on top of the corresponding bar in the histogram. (c) shows representative
course sequences selected by OMegA and Hyper Sequence-Greedy.

finally run Sequence-Greedy and Hyper Sequence-
Greedy both forwards and backwards, and take the
maximum of the two results.

Di↵erent users will naturally have di↵erent interests,
so it is unreasonable to expect that any single se-
quence � will work for all users. However, if � is
a “good” sequence, we could expect that users who
start all the courses in � in the correct order ul-
timately end up showing interest in those courses.
Intuitively, the idea is that � should capture a se-
quence of courses with some common theme and
present them in the best possible order. Therefore,
if a user begins all the courses in � they likely have
some interest in this common theme. Hence, if � is
a good sequence, it will present these courses in a
good order and properly pique the interest of these
users.

Mathematically, we define S
�

to be the set of users
who started all the courses in � in the proper order,
and c

ij

to be the percentage of course j that user i
completed. Therefore, the value of � for a given test
set D

test

is defined as:

D
test

(�) =

X

i2S�

X

j2�

c
ij

�
|S

�

|+ d
�
|�|

Using a 75/25 training/testing split of the data and
4-fold cross validation, we compare the e↵ective-
ness of Hyper Sequence-Greedy, Sequence Greedy,
OMegA, and Frequency for the task of selecting a
sequence of 4 courses. Note that due to the inher-
ent randomness in the training/testing split, there is
some variance in the results. To be conservative, the
results shown in Figure 4b are actually on the lower

end of the performance we see from our algorithms.
Figure 4c shows some representative sequences.

We see that Hyper Sequence-Greedy outperforms
the other algorithms, as expected. From the his-
togram, we also see that Hyper Sequence-Greedy
tends to select one of the best possible sequences,
with Sequence-Greedy and OMegA both perform-
ing in the 90th percentile. Somewhat surprisingly,
OMegA (which has to use a random topological or-
der in the absence of a directed acyclic graph) out-
performs Sequence-Greedy. However, this may be
explained by the fact that k = 4 is relatively small.
Unfortunately, only 1,153 users even started more
than 4 courses, meaning that we cannot e↵ectively
test sequences of larger length with this dataset.

4 Conclusion

Building on existing work, this paper extended re-
sults on submodular sequences from directed acyclic
graphs to general graphs and hypergraphs. Our
theoretical results showed that both our algorithms,
Sequence-Greedy and Hyper Sequence-Greedy,
approach a constant factor approximation to the
optimal solution (for constant �). Furthermore,
we demonstrated the utility of our algorithms, in
particular the power of using hyperedges, on real
world applications in movie recommendation, online
link prediction, and the design of course sequences
for MOOCs.
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