
Introduction to
Parallel Computing
DESIGN OF NEW MATERIALS USING SUPERCOMPUTERS

Day 2:
YALE PATHWAYS TO
SCIENCE SUMMER
WORKSHOP 2021

Aakash Kumar
aakash.kumar@yale.edu

mailto:aakash.kumar@yale.edu

LEARNING GOALS

´ What is the difference between serial and parallel computing? Why do we need
parallel computing?

´ introduction to programing

´ How supercomputers apply parallel computing

´ Message Passing Interface to apply parallel computing

´ Think of some examples where you benefit/can benefit from parallelization !!

SERIAL PROGRAMING

´ QUIZ: Which is a programing language?
A) Rattlesnake
B) Garden snake
C) King Cobra
D) Python

´ Serial computing example next

LEARNING GOALS

´ What is an Operating System?
´ Some example of supercomputers in action

PYTHON

´ Scripting language
´ Object-oriented
´ Easy to read, friendly design
[Terminal] python
>>> a = 2
>>> b = 3
>>> c = a + b
>>> c
5
´ We can also write the above code in a file sum.py
´ then run it as
[Terminal] python sum.py

EXAMPLE

´ Write the code in a file sum.py
a = 2
b = 3
c = a + b
print(c)
print("The sum is", c)
´ numpy is a useful module in Python for numbers
import numpy as np

np.a = 2
np.b = 3

np.c = np.a + np.b

print(np.c)

EXAMPLE 2
´ Array is a list of data, represented in [], so a = [1 , 2, 3] is an array of size 3
´ Its elements are a[0], a[1], a[2]
´ numpy module can be used to create an array -> numpy provides functions
np.arange(3.0) [0, 1.0, 2.0]
´ directly define the array
2. np.a = np.array([3, 6, 3])
3. np.b = np.array([5, 5, 4])

´ Now these two arrays can be summed up
np.c = np.a + np.b
print(np.c)
>>[8, 11, 7]

SERIAL COMPUTING

´ Uses one process to do all the work
´ Heavy computations will be slow

´ What if we could do the work in parallel?
1. We could save time and money
2. We could work on more complex problems (climate change, energy, big data)

Start
Do All the

work!

DIVIDE AND CONQUER

´ Divide the problem into smaller pieces - subtasks
´ Different processors

´ Activity: Breakout rooms 2 students each (grab a pen and a sheet of paper)
´ Isn’t Parallel computing fun?

Problem

Subtask1 Subtask2 Subtask3

DIVIDE AND CONQUER

´ Divide the problem into smaller pieces - subtasks
´ Different processors

Problem

Subtask2 Subtask3 Subtask4Subtask1 Subtask5 Subtask6

HEAD NODE & COMPUTE NODES

´ User communicates to the “Head Node”
´ “Head Node” instructs the ”Compute Nodes”
to carry out the job.

Head Node

Compute
node2

Compute
node3

Compute
node4

Compute
node1

Compute
node5

compute
node6

Summit – ORNL, Tennessee

FASTEST SUPERCOMPUTERS

´ www.top500.org lists the fastest machines
´ Summit at Oak Ridge national lab
in Tennessee

Fugaku
(https://www.fujitsu.com/global/about/innovation/fugaku/)

http://www.top500.org/
https://www.fujitsu.com/global/about/innovation/fugaku/

SHARED MEMORY SYSTEMS

´ Entire memory shared between all CPUs here
´ CPUs perform their subtasks individually

´ Think of 4 members making a dish for a party!
´ Thanksgiving turkey? MemoryCPU CPU

CPU

CPU

DISTRIBUTED MEMORY SYSTEMS

´ CPUs have different local memory
´ CPUs perform their subtasks without any interference

´ Communication network required to connect
inter-process memory

Example: musicians (from our workshop) performing together

´ Most modern computing systems use a hybrid shared-distributed
memory

Memory
CPU

Memory
CPU

Memory
CPU

CPU
Memory

Network

HOW TO USE PARALLEL MACHINES
´ Message Passing Interface (MPI) is a commonly used system
´ Data moved from one part to another using
cooperation between CPUs

For our workshop:
´ Python programing language
´ mpi4py python module

How to run in parallel:
´ serial:
python program.py

´ On n=6 cores,
mpirun –n 6 python program.py

Memory
CPU

Memory
CPU

Memory
CPU

CPU
Memory

MPI MPI
Network

MPI

MPI

EXAMPLE: PRINT “HELLO”

´ hello.py
´ Code snippet:

from mpi4py import MPI

comm = MPI.COMM_WORLD # comm is the MPI object we will use

size = comm.Get_size() # how many processes (1 on each core)
rank = comm.Get_rank() # rank of processor (ID) 0 is head processor

print("Hello world from rank", str(rank), "of", str(size))

mpirun –n 4 python hello.py

Hello world from rank 0 of 4
Hello world from rank 1 of 4
Hello world from rank 2 of 4
Hello world from rank 3 of 4

BROADCAST
´ broadcast data to all cores
´ Code snippet:

if rank == 0:
data = np.arange(4.0)

else:
data = None

data = comm.bcast(data, root=0)

if rank == 0:
print('Process {} broadcast data:' .format(rank), data)

else:
print('Process {} received data:' .format(rank), data)

Process 0 broadcast data: [0. 1. 2. 3.]
Process 2 received data: [0. 1. 2. 3.]
Process 1 received data: [0. 1. 2. 3.]
Process 3 received data: [0. 1. 2. 3.]

mpirun –n 4 python bcast.py

ZOOM POLL

´ Amber alert for thunderstorms is an example of broadcast?
A) True
B) False

´ If hurricane Elsa reaches Miami, FL in the morning and New Haven in the afternoon, should
we send same messages by broadcasting to the two states?

We could, but separate alerts might be better -> scatter message to different states

Weather
Department

County1 County2 County3

Broadcast

SCATTER
´ scatter data to various cores
´ Code snippet:

if rank == 0:
data = np.arange(4.0)

else:
data = None

data = comm.scatter(data, root=0)

if rank == 0:
print('Process {} broadcast data:' .format(rank), data)

else:
print('Process {} received data:' .format(rank), data)

Process 0 has data: 0.0
Process 1 has data: 1.0
Process 2 has data: 2.0
Process 3 has data: 3.0

mpirun –n 4 python scatter.py

GATHER
´ Gather data from all cores and do something (SUM it up, etc.)
´ Code snippet:

do something.
…………
create an array -> data = np.arange(16.0). [0, 1.0, 2.0, ….,15.0]
scatter this data to all cores -> np.array_split(data, size)
…………

partial_sum = comm.gather(partial_sum, root=0)

if rank == 0:
print(Sum is {} from all data:' .format(sum(partial_sum)))

mpirun –n 4 python scatter_sum.py

Process 0 has data: [0. 1. 2. 3.]
Process 1 has data: [4. 5. 6. 7.]
Process 2 has data: [8. 9. 10. 11.]
Process 3 has data: [12. 13. 14. 15.]

Sum is 120.0 from all data

KEY POINTS
´ python language is useful for serial and parallel computing

´ Supercomputers have a hybrid of shared & distributed memory systems

´ For parallel computing, we use mpi4py module

´ basic communication techniques
A) broadcast – send the entire data to all processors
B) scatter – send different data to different processors
C) gather – gather the data from all processors and do some operation

RESOURCES

´ https://hpc.llnl.gov/training/tutorials/introduction-parallel-computing-tutorial

´ https://towardsdatascience.com/parallel-programming-in-python-with-message-
passing-interface-mpi4py-551e3f198053

´ https://www.kth.se/blogs/pdc/2019/08/parallel-programming-in-python-mpi4py-
part-1/

https://hpc.llnl.gov/training/tutorials/introduction-parallel-computing-tutorial
https://towardsdatascience.com/parallel-programming-in-python-with-message-passing-interface-mpi4py-551e3f198053
https://www.kth.se/blogs/pdc/2019/08/parallel-programming-in-python-mpi4py-part-1/

