Introduction to
Parallel Computing

DESIGN OF NEW MATERIALS USING SUPERCOMPUTERS

mailto:aakash.kumar@yale.edu

LEARNING GOALS

= What is the difference between serial and parallel computing? Why do we need
parallel computing?

= introduction to programing
= How supercomputers apply parallel computing
= Message Passing Interface to apply parallel computing

= Think of some examples where you benefit/can benefit from parallelization !

SERIAL PROGRAMING

» QUIZ: Which is a programing language?
A) Rattlesnake

B) Garden snake

C) King Cobra

D) Python

= Serial computing example next

: File Edit View Run Kernel Tabs Settings Help

OPEN TABS Close All

B ak2589@c16n06.grace:~
[Z Launcher

i O ®

KERNELS Shut Down All
TERMINALS Shut Down All
* B terminals/1

Simple(. © 1Mo @&

c [ak2589@c16n06.grace:~ X | [4 Launcher

scratch60

|E| Notebook

"

Python 3 Python 3
=k

Console

M

v

Terminal Markdown File

=1

Show
Contextual Help

Launcher

= Scripting language

» Object-oriented

= Easy to read, friendly design

[Terminal] python

>>> ad = 2

>>> b = 3

>>> C=0ad + b
C

>>>
5

PYTHON

Python

e python”

About Downloads

Documentation

lH!l

0112358 13 21 34 55 89 144 233 377 610
987

DyPI

D - I

Community

Success Stories News Events

Functions Defined

The core of extensible programming is defining functions.
Python allows mandatory and optional arguments, keyword
arguments, and even arbitrary argument lists. More about
defining functions in Python 3

Python is a programming language that lets you work quickly
and integrate systems more effectively. 3 Learn More

Socialize

= We can also write the above code in a file sum.py

= then run it as
[Terminal] python sum.py

EXAMPLE

= Werite the code in a file sum.py

a=2

b =3
c=a+b
print(c)

print("The sum 1s", c)

= numpy is a useful module in Python for numbers
import numpy as np

np.a = 2

np.b = 3

np.c = np.a + np.b

print(np.c)

EXAMPLE 2

= Array is a list of data, represented in[],soa=[1, 2, 3]is an array of size 3
» Tts elements are a[0], a[1], a[2]

= numpy module can be used to create an array -> numpy provides functions
np.arange(3.0) [0, 1.0, 2.0]

= directly define the array

2. np.a = np.array([3, 6, 3])

3. np.b = np.array([5, 5, 4])

= Now these two arrays can be summed up
np.c = np.a + np.b

print(np.c)

>>[8, 11, 7]

SERIAL COMPUTING

= Uses one process to do all the work

= Heavy computations will be slow

Do All the
oo ome(2iar>

= What if we could do the work in parallel?
1. We could save time and money
2. We could work on more complex problems (climate change, energy, big data)

DIVIDE AND CONQUER

Divide the problem into smaller pieces - subtasks

Activity: Breakout rooms 2 students each (grab a pen and a sheet of paper)

Different processors

Isn't Parallel computing fun?

DIVIDE AND CONQUER

= Divide the problem into smaller pieces - subtasks

= Different processors

HEAD NODE & COMPUTE NODES

= User communicates to the "Head Node"
= "Head Node" instructs the “Compute Nodes"
to carry out the job.

Head Node

Compute Compute Compute Compute Compute compute
nodel node?2 node3 node4 nodeb nodeé

FASTEST SUPERCOMPUTERS

» www.top500.0rg lists the fastest machines e
= Summit at Oak Ridge national lab

in Tennessee :
Fugaku 5
(https://www.fujitsu.com/global/about/innovatic

System

Supercomputer Fugaku - Supercomputer Fugaku,
Ab4FX 48C 2.2GHz, Tofu interconnect D, Fujitsu
RIKEN Center for Computational Science

Japan

Summit - IBM Power System AC922, IBM POWER9 22C
3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR
Infiniband, IBM

DOE/SC/0Oak Ridge National Laboratory

United States

Sierra - IBM Power System AC922, IBM POWERY 22C
3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR
Infiniband, IBM / NVIDIA / Mellanox
DOE/NNSA/LLNL

United States

Sunway TaihuLight - Sunway MPP, Sunway SW26010
260C 1.45GHz, Sunway, NRCPC

National Supercomputing Center in Wuxi

China

Perlmutter - HPE Cray EX235n, AMD EPYC 7763 64C
2.45GHz, NVIDIA A100 SXM4 40 GB, Slingshot-10, HPE
DOE/SC/LBNL/NERSC

United States

Selene - NVIDIA DGX A100, AMD EPYC 7742 64C
2.25GHz, NVIDIA A100, Mellanox HDR Infiniband, Nvidia
NVIDIA Corporation

Cores

7,630,848

2,414,592

1,572,480

10,649,600

706,304

555,520

Rmax
(TFlop/s)

442,010.0

148,600.0

94,640.0

93,014.6

64,590.0

63,460.0

Rpeak
(TFlop/s)

537,212.0

200,794.9

125,712.0

125,435.9

89,794.5

79,215.0

Power
(kW)

29,899

10,096

7,438

15,371

2,528

2,646

http://www.top500.org/
https://www.fujitsu.com/global/about/innovation/fugaku/

SHARED MEMORY SYSTEMS

Entire memory shared between all CPUs here
CPUs perform their subtasks individually

Think of 4 members making a dish for a party!
Thanksgiving turkey?

CPU

CPU

Memory

CPU

CPU

DISTRIBUTED MEMORY SYSTEMS

= CPUs have different local memory

= CPUs perform their subtasks without any interference

= Communication hetwork required to connect

Infer-process memory

Memory

CPU

Example: musicians (from our workshop) performing together

CPU

Memory

Network

Memory

CPU

Memory

= Most modern computing systems use a hybrid shared-distributed CPU

memory

HOW TO USE PARALLEL MACHINES

= Message Passing Interface (MPI) is a commonly used system CPU
= Data moved from one part to another using Memory |MPT
cooperation between CPUs

MPI MPI
For our workshop:

Network

= Python programing language Mgpﬁ Y M?:rpg Al
= mpi4py python module
How fo run in parallel: MPT
= serial: Memory
python program.py CPU

= On n=6 cores,
mpirun —-n 6 python program.py

EXAMPLE: PRINT "HELLO”

= hello.py
= Code snippet:

from mpi4py import MPI

comm = MPI.COMM_WORLD
size = comm.Get_size()

rank = comm.Get_rank()

mpirun -n 4 python hello.py

Hello world from
Hello world from
Hello world from
Hello world from

comm is the MPT object we will use
how many processes (1 on each core)
rank of processor (ID) O is head processor

print("Hello world from rank", str(rank), "of", str(size))

rank 0
rank 1
rank 2
rank 3

of 4
of 4
of 4
of 4

BROADCAST

= broadcast data to all cores
= Code snippet:

mpirun —n 4 python bcast.py
1t rank == 0:
data = np.arange(4.0) Process @ broadcast data: [0. 1. 2. 3.]
Process 2 received data: [0. 1. 2. 3.]
Process 1 received data: [0. 1. 2. 3.]
Elifse: Process 3 received data: [0. 1. 2. 3.]

data = None

data = comm.bcast(data, root=0)

1t rank ==

print('Process {} broadcast data:' .format(rank), data)
else:

print('Process {} received data:' .format(rank), data)

ZOOM POLL

= Amber alert for thunderstorms is an example of broadcast?
A) True
B) False

Weather
Department

» Tf hurricane Elsa reaches Miami, FL in the morning and New Haven in the afternoon, should
we send same messages by broadcasting to the two states?

We could, but separate alerts might be better -> scatter message to different states

SCATTER

» scatter data to various cores
= Code snippet:

mpirun —n 4 python scatter.py

1t rank ==
data = np.arange(4.0) Process @ has data: 0.0
Process 1 has data: 1.0
lse: Process 2 has data: 2.0
<IER Process 3 has data: 3.0

data = None

data = comm.scatter(data, root=0)

1t rank == 0:

print('Process {} broadcast data:' .format(rank), data)
else:

print('Process {} received data:' .format(rank), data)

GATHER

= Gather data from all cores and do something (SUM it up, etc.)

mpirun —-n 4 python scatter_sum.py

= Code snippef: Process @ has data: [0. 1. 2. 3.]
Process 1 has data: [4. 5. 6. 7.]

do something. Process 2 has data: [8. 9. 10. 11.]

............ Process 3 has data: [12. 13. 14. 15.]

create an array -> data = np.arange(16.0). [0, 1.0, 2.0, ...,15.0]
scatter this data to all cores -> np.array_split(data, size)

ISum 1s 120.0 from all data

partial_sum = comm.gather(partial_sum, root=0)

1f rank ==
print(Sum is {} from all data:' .format(sum(partial_sum)))

KEY POINTS

= python language is useful for serial and parallel computing

= Supercomputers have a hybrid of shared & distributed memory systems
= For parallel computing, we use mpi4py module

= basic communication techniques

A) broadcast - send the entire data to all processors

B) scatter - send different data to different processors
C) gather - gather the data from all processors and do some operation

RESOURCES

» https://hpc.linl.gov/training/tutorials/introduction-parallel-computing-tutorial

» https://towardsdatascience.com/parallel-programming-in-python-with-messaqge-
passing-interface-mpi4py-551e3f198053

» https://www.kth.se/blogs/pdc/2019/08/parallel-programming-in-python-mpi4py-
part-1/

https://hpc.llnl.gov/training/tutorials/introduction-parallel-computing-tutorial
https://towardsdatascience.com/parallel-programming-in-python-with-message-passing-interface-mpi4py-551e3f198053
https://www.kth.se/blogs/pdc/2019/08/parallel-programming-in-python-mpi4py-part-1/

