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galactose (indicated as ‘+’), or 0.1% mannose (indicated as ‘-’), and grown for another 22 hours. 

Both low and high exposures of the membrane were shown for Gal2-HA. Relative protein levels 

were normalized to PGK1 levels, and then normalized to the first sample of each western blot. 

Gal4-HA levels were further normalized to Gal3-HA for comparison purposes. In all panels, error 

bars indicate SEM (N=2). 
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of Gal80 proteins measured by the western blot. In the ‘+Gal’ environment, the network activity 
in both strains display bimodal activity. Since western blots quantify the Gal80 content from both 
OFF and ON cells, we used the following equations and plotted (panel c) Gal80 protein levels of 
the ON cells. Gal80total = [Gal80OFF * (1 - fON)] + [Gal80ON * fON]. From here, we solved for 
Gal80ON = (Gal80total – [Gal80OFF * (1- fON) ] ) / fON. The Gal80total and Gal80OFF values are 
measured directly by western blots (panel d). In all panels, error bars indicate SEM (N=2). 
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SUPPLEMENTARY TABLES 

 

 

                                        

                                           

 

 

 

 

 

 

    

 

 

 

 

 

 

 

 

Supplementary Table 1. Parameter values used in our previous model of GAL network activity2. 

  

 

 

 

 

 

                                        

                                           

 

 

 

 

 

 

    

 

 
 

Supplementary Table 2. Model parameters and values used in the fitting procedure. 

Parameter Value 

   ሻݎ݄/ݏ݊݅݁ݐ݋ݎ݌ሺ		ଶߠ 1500 

 ሻ   1500ݎ݄/ݏ݊݅݁ݐ݋ݎ݌ሺ	 ଷߠ

 ሻ   100ݎ݄/ݏ݊݅݁ݐ݋ݎ݌ሺ	 ସߠ

 ሻ  1500ݎ݄/ݏ݊݅݁ݐ݋ݎ݌ሺ	଴଼ߠ

 0.2 ߣ

 0.85 ߙ

 6.1 ߚ

 1.6 ߟ

 0.9 ߤ

 1.3 ߥ

 ሻ 600ݏ݊݅݁ݐ݋ݎ݌ଶ ሺܭ

 ሻ 4.1ݏ݊݅݁ݐ݋ݎ݌ଷ ሺܭ

 ሻ 2ݏ݊݅݁ݐ݋ݎ݌ସ ሺܭ

 ሻ 8.0ݏ݊݅݁ݐ݋ݎ݌଴ሺ଼ܭ

ሻݏ݊݅݁ݐ݋ݎ݌௚ ሺܭ 0.052 

Parameter Value  

 0.69 ߙ

 5.1 ߚ

 2.7 ߟ

 0.4 ߤ

 1.1 ߥ

 ሻ 1463ݏ݊݅݁ݐ݋ݎ݌ଶ ሺܭ

 ሻ 1.8ݏ݊݅݁ݐ݋ݎ݌ଷ ሺܭ

 ሻ 3.7ݏ݊݅݁ݐ݋ݎ݌ସ ሺܭ

 ሻ 9.1ݏ݊݅݁ݐ݋ݎ݌଴ሺ଼ܭ

ሻݏ݊݅݁ݐ݋ݎ݌௚ ሺܭ 0.027 
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Supplementary Table 3. Model parameters and values for the protein production rates of GAL  

                                          network promoters from S. cerevisiae and S. paradoxus.  

 

 

 

 

 

 

 

 

Supplementary Table 4. The strains used in the fitting procedure. Fitted (bolded) and fixed   

                                     parameter values are shown for the protein production rates from the  

                                     replaced (from S. paradoxus) and S. cerevisiae GAL network promoters.  

  

Parameter 
S.cer promoter 

(value from ref2) 

S.par promoter   

(value from fit) 

Relative comparison: 

  ࢘ࢇ࢖.ࡿࣂ	/࢘ࢋࢉ.ࡿࣂ

   ሻݎ݄/ݏ݊݅݁ݐ݋ݎ݌ሺ		ଶߠ 1500 1087 1.38 

 ሻ   1500 1131 1.33ݎ݄/ݏ݊݅݁ݐ݋ݎ݌ሺ	 ଷߠ

 ሻ   100 109 0.92ݎ݄/ݏ݊݅݁ݐ݋ݎ݌ሺ	 ସߠ

 ሻ  1500 612 2.45ݎ݄/ݏ݊݅݁ݐ݋ݎ݌ሺ	଴଼ߠ

Parameter 

Strain 
  ଴଼ߠ ସߠ  ଷߠ ଶߠ

Wild type S. cerevisiae 1500 1500 100 1500 

PGAL2   -replaced in S. cer. 1087 1500 100 1500 

PGAL3   -replaced in S. cer. 1500 1131 100 1500 

PGAL4   -replaced in S. cer. 1500 1500 109 1500 

PGAL80 -replaced in S. cer. 1500 1500 100 612 
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Strain Genotype 

MA0048  MATα, ade2::ADE2‐PGAL1‐YFP 

WP0005  MATα, ade2::ADE2‐PGAL1‐YFP, Pgal80::PGAL80 (S.Par) 

WP0006  MATα, ade2::ADE2‐PGAL1‐YFP, Pgal2::PGAL2 (S.Par) 

WP0007  MATα, ade2::ADE2‐PGAL1‐YFP, Pgal3::PGAL3 (S.Par) 

WP0008  MATα, ade2::ADE2‐PGAL1‐YFP, Pgal4::PGAL4 (S.Par) 

WP0020  MATα, ade2::ADE2‐PGAL1‐YFP, Pgal80::PGAL80 (S.Par), Pgal2::PGAL2 (S.Par) 

WP0021  MATα, ade2::ADE2‐PGAL1‐YFP, Pgal3::PGAL3 (S.Par),    Pgal80::PGAL80 (S.Par) 

WP0023  MATα, ade2::ADE2‐PGAL1‐YFP, Pgal3::PGAL3 (S.Par),    Pgal4::PGAL4 (S.Par) 

WP0024  MATα, ade2::ADE2‐PGAL1‐YFP, Pgal2::PGAL2 (S.Par),    Pgal3::PGAL3 (S.Par) 

WP0056  MATα, ade2::ADE2‐PGAL1‐YFP, Pgal80::PGAL80 (S.Par), Pgal4::PGAL4 (S.Par) 

WP0042  MATα, ade2::ADE2‐PGAL1‐YFP, Pgal4::PGAL4 (S.Par),    Pgal2::PGAL2 (S.Par) 

WP0031  MATα, ade2::ADE2‐PGAL1‐YFP, Pgal80::PGAL80 (S.Par), Pgal2::PGAL2 (S.Par),    Pgal4::PGAL4 (S.Par) 

WP0045  MATα, ade2::ADE2‐PGAL1‐YFP, Pgal3::PGAL3 (S.Par),    Pgal80::PGAL80 (S.Par), Pgal2::PGAL2 (S.Par) 

WP0046  MATα, ade2::ADE2‐PGAL1‐YFP, Pgal3::PGAL3 (S.Par),    Pgal80::PGAL80 (S.Par), Pgal4::PGAL4 (S.Par) 

WP0047  MATα, ade2::ADE2‐PGAL1‐YFP, Pgal2::PGAL2 (S.Par),    Pgal3::PGAL3 (S.Par),    Pgal4::PGAL4 (S.Par) 

WP0048 
MATα, ade2::ADE2‐PGAL1‐YFP, Pgal80::PGAL80 (S.Par), Pgal2::PGAL2 (S.Par),    Pgal4::PGAL4 (S.Par), 
Pgal3::PGAL3 (S.Par) 

WP0057  MATα, ade2::ADE2‐PGAL1‐YFP, gal4::GAL4(S.Par) 

WP0063 
MATα, ade2::ADE2‐PGAL1‐YFP, Pgal80::PGAL80 (S.Par), Pgal2::PGAL2 (S.Par), Pgal4::PGAL4 (S.Par), 
Pgal3::PGAL3 (S.Par), gal4::GAL4(S.Par) 

MA0494 
MATa/α, ade2::ADE2‐PMYO2‐rtTA/ade2::ADE2‐PGAL1‐YFP, leu2/leu2::LEU2, his3::HIS3/his3, 

gal80::KanMX/GAL80 

MA0653  MATα, ade2::ADE2‐PGAL1‐YFP, his4, leu2, ura3, lys1, ho::KanMX4 

MA0658  MATα, his3::HIS3‐PPGK1‐tdTomato 

WP0094 
MATα, ade2::ADE2‐PGAL1‐YFP, Pgal80::PGAL80 (hybrid 1)  
where PGAL80 (hybrid 1) = 1‐139bp from S.par, 140‐282bp from S.cer 

WP0089 
MATα, ade2::ADE2‐PGAL1‐YFP, trp1::TRP1‐PTEF1‐Cas9, Pgal80::PGAL80 (hybrid 2)  
where PGAL80 (hybrid 2) = 1‐140bp from S.cer, 141‐288bp from S.par 

WP0090 
MATα, ade2::ADE2‐PGAL1‐YFP, trp1::TRP1‐PTEF1‐Cas9, Pgal80::PGAL80 (hybrid 3)  
where PGAL80 (hybrid 3) = 1‐140bp from S.cer, 141‐180bp from S.par, 181‐283bp from S.cer  
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WP0099 
MATα, ade2::ADE2‐PGAL1‐YFP, Pgal80::PGAL80 (hybrid 4)  
where PGAL80 (hybrid 4) = 1‐180bp from S.cer, 181‐288bp from S.par  

WP0100 
MATα, ade2::ADE2‐PGAL1‐YFP, Pgal80::PGAL80 (hybrid 5)  
where PGAL80 (hybrid 5) = 1‐180bp from S.cer, 181‐220bp from S.par, 221‐287bp from S.cer 

WP0095 
MATα, ade2::ADE2‐PGAL1‐YFP, Pgal80::PGAL80 (hybrid 6)  
where PGAL80 (hybrid 6) = 1‐216bp from S.cer, 217‐284bp from S.par 

WP0101 
MATα, ade2::ADE2‐PGAL1‐YFP, Pgal80::PGAL80 (4bp change)  
where PGAL80 (4bp change) = 1‐186bp from S.cer, 187‐190bp from S.par, 191‐287bp from S.cer 

WP0103 
MATα, ade2::ADE2‐PGAL1‐YFP, Pgal80::PGAL80 (1bp change)  
where PGAL80 (1bp change) = 1‐212bp from S.cer, 213bp from S.par, 214‐283bp from S.cer 

YYX67  MATα, ade2::ADE2‐PGAL1‐YFP, PGAL2‐GAL2‐HA‐NatNT2 

YYX56  MATα, ade2::ADE2‐PGAL1‐YFP, PGAL3‐GAL3‐HA‐NatNT2 

YYX61  MATα, ade2::ADE2‐PGAL1‐YFP, PGAL4‐GAL4‐HA‐NatNT2 

YYX66  MATα, ade2::ADE2‐PGAL1‐YFP, his4, leu2, ura3, lys1, ho::KanMX4, PGAL2‐GAL2‐HA‐NatNT2 

YYX55  MATα, ade2::ADE2‐PGAL1‐YFP, his4, leu2, ura3, lys1, ho::KanMX4, PGAL3‐GAL3‐HA‐NatNT2 

YYX58  MATα, ade2::ADE2‐PGAL1‐YFP, his4, leu2, ura3, lys1, ho::KanMX4, PGAL4‐GAL4‐HA‐NatNT2 

YYX70  MATα, ade2::ADE2‐PGAL1‐YFP, his4, leu2, ura3, lys1, ho::KanMX4, Pgal80::PGAL80 (S.Cer)   

 

Supplementary Table 5. Yeast strains used in this study. The S. cerevisiae strains are 

shown in black and they have the W303 background. S. paradoxus strains are shown in red 

(MA0653 is a wild type S. paradoxus strain). The wild type S. paradoxus strain (into which 

PGAL1-YFP was integrated) was obtained from N. Talarek.    
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Strain GAL80, Ct ACT1, Ct 
∆Ct 

(GAL80 Ct 
- ACT1 Ct) 

∆∆Ct  
(∆Ct S1  

- ∆Ct S2) 

Strength ratio   
between  

S.par and S.cer 
PGAL80 promoter

 
Strain 1 (S1) 

  
S.cer host with 

PGAL80 from S.par 

 
 
 

20.89 17.85 
      20.61       18.31 

 21.38  17.59 
 21.02  18.18 

Average 20.97 ± 0.32 17.98 ± 0.28 2.99 ± 0.46 0.25 ± 0.72 0.68 (68%) 
 

Strain 2 (S2)  
 

        S.cer WT 21.29 18.41 
 20.89  17.98 
 20.91  17.90 
 20.10  17.94 

Average 20.80 ± 0.50 18.06 ± 0.24 2.74 ± 0.56     
 

Supplementary Table 6. qPCR measurements for quantifying the cross-species PGAL80 

promoter strength difference. Two haploid S. cerevisiae strains (the wild type and the PGAL80–

promoter swapped strain) were grown overnight for 22 hours in minimal media containing 0.1% 

mannose prior to induction for another 22 hours in minimal media containing 0.1% mannose 

and 0.35% galactose. The culture volumes during the overnight and induction periods were 

10ml and 15ml, respectively, and the OD600 values at the end of both periods were ~0.1. At the 

end of the induction period, cells were harvested for total RNA and cDNA was prepared by 

using Applied Biosystems’ High Capacity RNA-to-cDNA kit (Part No: 4387406). The promoter 

strength ratio between the S. paradoxus and S. cerevisiae PGAL80 promoters was calculated 

based on the GAL80 transcript ratio between the above strains as well as the fraction of ON 

cells observed at the end of the induction period. The lower and upper bound of the error bar for 

the 0.68 mean value was 0.41 and 1.12, respectively. The qPCR primers used were the 

following. qG80-F: ACGGTACCAAGGGAGATTTG. qG80-R: ATACCCCGGGTCTAAAGGAG. 

ACT1-F: ATCGATTTGGCCGGTAGAG. ACT1-R: AAGTCCAAGGCGACGTAACA. The length 

amplified in the S. cerevisiae GAL80 gene was 140bp. The length amplified in the S. cerevisiae 

ACT1 gene was 137bp.   
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Following a mean-field approximation approach, the fraction of cells in the ON-state is given by:  

                                                                                                                                                     

݂ሺݔଶ, ,ଷݔ ,ସݔ ଴ሻ଼ݔ ≅
,ଶݔைிி→ைேሺݎ ,ଷݔ ,ସݔ ଴ሻ଼ݔ

,ଶݔைிி→ைேሺݎ ,ଷݔ ,ସݔ ଴ሻ଼ݔ ൅ ைே→ைிிݎ
ൌ

1

1 ൅
ைே→ைிிݎ

,ଶݔைிி→ைேሺݎ ,ଷݔ ,ସݔ ଴ሻ଼ݔ
																							 

																																																																																	ൌ 	
1

1 ൅ ,ଶݔሺߩ ,ଷݔ ,ସݔ ଴ሻିଵ଼ݔ
																											ሺ2ሻ	 

 

where ݎைிி→ைே  and ݎைே→ைிி  are the rates of phenotypic switching between the OFF and ON 

state, and  
௥ೀಷಷ→ೀಿሺ௫మ,௫య,௫ర,௫ఴబሻ

௥ೀಿ→ೀಷಷ
ൌ

௛	ఘሺ௫మ,௫య,௫ర,௫ఴబሻ

௛
ൌ ,ଶݔሺߩ	 ,ଷݔ ,ସݔ  .଴ሻ଼ݔ

 

The function ߩ is parameterized by taking into account the protein-protein and protein-promoter 

interactions among the various GAL network components. The detailed interactions are 

represented schematically in Fig. 1 of the main text, and following is the description of how we 

parameterized these interactions. 

  

GAL4p is the main transcriptional activator of the network. It is constitutively expressed and the 

rate of the constitutive production is mathematically represented by ߠସ  in equation (1). The 

interaction of Gal4p with a GAL network promoter is described by the following form: 

 

ߩ ൌ ൬
ସݔ
∗

ସܭ
൰
ఎ

																																																																																			ሺ3ሻ 

 

where ܭସ  represents the typical concentration scale of the interaction, ߟ ൐ 0  denotes the 

effective nonlinearity of the Gal4p-promoter interaction, and ݔସ
∗ is the active concentration of 

Gal4p which is not bound by Gal80p and can therefore freely activate transcription.  

 

Since the amount of free Gal4p (denoted by ݔସ
∗ ) should be a decreasing function of the 

concentration of Gal80p and an increasing function of total Gal4p (denoted by ݔସ), we used the 

following equation to model the Gal4p-Gal80p interaction:   

             

ସݔ
∗ ൌ

ସݔ

1 ൅ ൬
଴଼ݔ
∗

଴଼ܭ
൰
ఉ 																																																																												ሺ4ሻ	

 

where ଼ݔ଴
∗ 	is the concentration of Gal80p proteins that are not bound by active Gal3p, ଼ܭ଴ is the 

scaling parameter, and ߚ is the degree of nonlinearity of the Gal4p-Gal80p interaction.  

 

Since the amount of ଼ݔ଴
∗ 	should be a decreasing function of active Gal3p proteins (ݔଷ

∗), we used 

the following equation to model the Gal80p-Gal3p interaction: 
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଴଼ݔ
∗ ൌ

଴଼ݔ

1 ൅ ൬
ଷݔ
∗

ଷܭ
൰
ఈ 																																																																												ሺ5ሻ 

 

where ଷݔ	
∗	 is the concentration of active Gal3p proteins and the parameter ߙ  quantifies the 

nonlinearity of Gal80p-Gal3p interaction.  

 

The activation of Gal3p proteins by internal galactose (݃∗) is described by the following equation: 

                                                                                                                            

ଷݔ
∗ ൌ

ଷݔ

1 ൅ ൬
݃∗
௚ܭ
൰
ି௩ 																																																																											ሺ6ሻ 

 

Here, the nonlinearity parameter ݒ is a positive number and the amount of active Gal3p is an 

increasing function of the concentration of internal galactose.  

 

To describe the internal galactose concentration (݃∗) as a function of the external galactose 

concentration (݃), we used the following equation:  

                 

݃∗ ൌ
݃

1 ൅ ቀݔଶܭଶ
ቁ
ିఓ 																																																																											ሺ7ሻ	

 

The nonlinearity parameter ߤ is a positive number and the concentration of internal galactose 

increases as a function of increasing Gal2p (galactose transporter) and external galactose 

concentration. 

 

Equations (3-7) describe a cascade of molecular interactions starting at the external galactose 

and ending at the binding of Gal4p to its target promoter. They determine how the rate of 

OFF→ON phenotypic switching is regulated by the concentrations of the GAL network proteins 

ሺݔ௜ሻ, concentration of external galactose ሺ݃ሻ, and the other system parameters. We combined 

these equations together and obtained a single equation describing ߩ as a function of system 

parameters, and protein and sugar concentrations. Inserting this equation for ߩ into equation (2) 

above let us obtain the functional form for ݂ሺݔଶ, ,ଷݔ ,ସݔ  ଴ሻ. Finally, using this functional form in଼ݔ

equations shown in (1), we numerically solved the set of four differential equations for the 

values of ݔଶ, ,ଷݔ ,ଶݔ଴, and then calculated ݂ሺ଼ݔ and	ସ,ݔ ,ଷݔ ,ସݔ   .଴ሻ଼ݔ
 

Setting model parameters and the fitting procedure  

We set the value of the protein dilution rate ߛ  to 0.42	݄ିଵ  ( ߛ ൌ ݁݉݅ݐ	݈ܾ݃݊݅ݑ݋݀/	2݈݊ ). This 

parameter value was obtained by using the experimentally-measured doubling time of yeast in 

the environments used in this study, which is about 100 minutes (Supplementary Fig. 1).  
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To understand dosage compensation in networks, our previous work2 used the above modeling 

approach to predict the activity of the S. cerevisiae GAL network (quantified by the same 

reporter construct, PGAL1-YFP). Using the parameter values listed in Supplementary Table 1, the 

model was able to predict the activity of the GAL network in a variety of genetic backgrounds, 

including the wild type background and the dosage-varied backgrounds (constructed by varying 

the gene copy numbers of GAL2, GAL3, GAL4, and GAL80). 

 

For our current work, for all four S. cerevisiae regulatory promoters, we used the protein 

production rates (ߠ௜) displayed in Supplementary Table 1. We also set the value of ߣ to the 

value estimated in our previous work. Regarding the rest of the model parameters (from ߙ to ܭ௚), 

we used the above parameter values as initial conditions in the fitting procedure described 

below.   

 

Using our model described above, we first performed a least-squares fit between the model- 

and experimentally-obtained inducibility profiles of GAL network activity in 5 S. cerevisiae 

strains shown in Fig. 2a of the main text: wild type strain, PGAL2-replaced strain, PGAL3-replaced 

strain, PGAL4-replaced strain, and PGAL80-replaced strain. For this, we used the MATLAB function 

“fminsearch” to minimize the cost function obtained by summing (over 7 different galactose 

induction levels) the squared differences between the model-obtained fraction of ON cells and 

the experimentally-obtained ones (from 5 inducibility profiles). The model-obtained fraction of 

ON cells was produced after numerically solving the coupled differential equations described in 

equation (1) above at t=22 hours to match the experimental induction duration. Supplementary 

Table 2 lists the parameter values best-fitting our model to the experimental inducibility profiles 

of the 5 different S. cerevisiae strains. 

 

4 out of 5 S. cerevisiae strains (and their inducibility profiles) used in the fitting procedure had 

one GAL regulatory promoter replaced by its S. paradoxus counterpart. The protein production 

rate (ߠ) for the replacing S. paradoxus regulatory promoter was obtained as a result of the fitting 

procedure. In other words, we used a fit parameter for the ߠ of the S. paradoxus promoter 

(Supplementary Tables 3, 4). For all S. cerevisiae GAL promoters, we fixed the value of ߠ 

based on the estimation we made in our previous work2. 

 

The fitted curves are shown in Fig. 2a of the main text (columns 1 and 2, showing 5 strains). In 

addition to these strains, Fig. 2a also depicts (columns 3 to 5) the remaining 11 strains and their 

experimentally-obtained inducibility profiles across 7 different galactose concentrations. To 

validate the parameter values used in our model and to test the predictive power of the model, 

we ran our model to predict the remaining 11 experimental inducibility profiles. We compared 

the model predictions to our experimental data and saw the agreement between the two (Fig. 2a, 

columns 3-5). In these predictions, we did not use any free/fit parameters. Supplementary Fig. 
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14 provides a quantitative perspective on the predictive power of the model by quantifying the 

residuals. 

     

Measurement of Phenotypic Switching Rates 

We used the following equations to determine the cellular switching (transition) rates between 

the OFF and ON state of the bimodal GAL network. This model consists of two differential 

equations which describe the dynamics of the numbers of cells in the ON ( ைܰே) and OFF ( ைܰிி) 

state: 

 

ە
ۖ
۔

ۖ
ۓ ݀ ைܰே

ݐ݀
ൌ ߛ ைܰே െ ைிிݎ ைܰே ൅	ݎைே ைܰிி																									

		

			
݀ ைܰிி

ݐ݀
ൌ ߛ ைܰிி ൅ ைிிݎ ைܰே െ	ݎைே ைܰிி																											

																								ሺ8ሻ 

 

The parameter ߛ  characterizes the growth rate of the cells, and ݎைே	 ( ைிிݎ ) denotes the 

OFF→ON (ON→OFF) switching rates. Summing the equations in equation (8) and rearranging, 

the growth rate ߛ is obtained as: 

 

ߛ	 ൌ
൬
݀ ைܰே
ݐ݀ ൅

݀ ைܰிி
ݐ݀ ൰

ைܰே ൅ ைܰிி
																																																																													ሺ9ሻ 

 

For a bimodal distribution, the fraction of ON cells ( ை݂ே) can be written as the ratio of the number 

of ON cells to the total number of cells: 

 

												 ை݂ே ൌ
ைܰே

ைܰே ൅ ைܰிி
																																																																																			ሺ10ሻ 

 

Differentiating both sides of this equation with respect to time, we obtain: 

 

																	
݀ ை݂ே

ݐ݀
ൌ

1

ைܰே ൅ ைܰிி
൮
݀ ைܰே

ݐ݀
െ
൬
݀ ைܰே
ݐ݀ ൅

݀ ைܰிி
ݐ݀ ൰

ைܰே ൅ ைܰிி
ைܰே൲																																																	 

ൌ	
1

ைܰே ൅ ைܰிி
൬
݀ ைܰே

ݐ݀
െ ߛ ைܰே൰																																																																																														 

ൌ		
1
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The analytical solution of equation 11 is given by the following expression: 
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ை݂ேሺݐሻ ൌ
ைேݎ

ைேݎ ൅	ݎைிி
൅	൬ ை݂ேሺݐ ൌ 0ሻ െ

ைேݎ
ைேݎ ൅	ݎைிி

൰ ݁ିሺ௥ೀಿା	௥ೀಷಷሻ௧																															ሺ12ሻ 

 

To measure the values of ݎைே  and ݎைிி, we experimentally measured ை݂ேሺݐ ൌ 0ሻ	and ை݂ேሺݐ ൌ

ሻݎ22݄ . For this, we grew each strain overnight (22 hours) separately in minimal media 

containing [0.1% mannose] or [0.1% mannose and 0.35% galactose]. At the end of the 

overnight growth, due to the absence or presence of galactose, the FACS-measured expression 

profiles gave us different ை݂ேሺݐ ൌ 0ሻ fractions, where ݐ ൌ 0 indicates the beginning of the 22݄ݎ 
induction period following the overnight growth period. After the overnight growth, for each strain 

grown in two different overnight conditions, we separately grew them in minimal media for an 

additional 22݄ݎ and measured ை݂ேሺݐ ൌ  ሻ fractions by using FACS. This “induction” mediaݎ22݄

contained 0.1% mannose and 7 different concentrations of galactose (from 0% to 0.35%). We 

used the same type of induction media for cells coming from two different overnight conditions. 

This way, we had 2 initial measurements (after-overnight ை݂ே values: ሾ ை݂ேሺݐ ൌ 0ሻሿଵ and ሾ ை݂ேሺݐ ൌ

0ሻሿଶ below) and 2 final measurements (after-induction ை݂ே	values: ሾ ை݂ேሺ22݄ݎሻሿଵand ሾ ை݂ேሺ22݄ݎሻሿଶ 

below). Each of these four ை݂ே  values was the average of two independent measurements 

performed on different days. We used these experimental values in equation (12) and ended up 

having the following equations: 

 

ሾ ை݂ேሺ22݄ݎሻሿଵ ൌ
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ைேݎ ൅	ݎைிி
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ைேݎ
ைேݎ ൅	ݎைிி

൰ ݁ିሺ௥ೀಿା	௥ೀಷಷሻሺଶଶ௛௥ሻ																						ሺ13ሻ 

 

ሾ ை݂ேሺ22݄ݎሻሿଶ ൌ
ைேݎ

ைேݎ ൅	ݎைிி
൅	൬ሾ ை݂ேሺݐ ൌ 0ሻሿଶ െ

ைேݎ
ைேݎ ൅	ݎைிி

൰ ݁ିሺ௥ೀಿା	௥ೀಷಷሻሺଶଶ௛௥ሻ																						ሺ14ሻ 

 

Since the same galactose induction condition was used for cells grown in two different overnight 

conditions, equations (13-14) share the same ݎைே  and ݎைிி  for each galactose induction 

condition (which is 7 in total, from 0% to 0.35%). Using MATLAB, we numerically solved these 

two nonlinear equations and obtained experimentally-measured values for the switching rates 

 ைிி. Figure 4 and Supplementary Figure 4 show the results from these analyses. Toݎ ைே andݎ

check the effectiveness of this approach in measuring switching rates, we used a third set of 

overnight growth conditions (Supplementary Fig. 11). We obtained similar switching rates 

irrespective of the differences in the after-overnight ை݂ே values.  

 

Quantification of average contribution of promoter replacements to network inducibility 

and galactose sensitivity 

In Fig. 3a and Fig. 3b, we quantified and plotted the average contribution of promoter 

replacements to network inducibility and galactose sensitivity, respectively. In these 

quantifications, we used the following method.   

 

Separately for each promoter, all genetic backgrounds in which that promoter was replaced 
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were identified, corresponding to 8 out of 16 strain backgrounds. For example, to quantify the 

average contribution of PGAL80 replacement on network inducibility, we identified the 8 genetic 

backgrounds in which PGAL80 was replaced, which were:  

  

                                                                                    
 

Here, the genetic background of each haploid S. cerevisae strain is specified by a square 

composed of 4 small squares. The small squares represent the four regulatory promoters 

replaced (if colored) by their S. paradoxus counterparts (blue for PGAL3, red for PGAL80, green for 

PGAL2, yellow for PGAL4). In other words: 

 

              =>  S. cerevisiae wild type 

 

     =>  S. cerevisiae with all four regulatory promoters replaced from S. paradoxus. 

  

At all 7 galactose concentrations used, inducibility values of the strains that carry the S. 

cerevisae version of PGAL80 promotor were subtracted from the inducibility values of the strains 

carrying the S. paradoxus version of PGAL80 in an otherwise identical genetic background and 

these differences were averaged:  

 

( - ) + ( - ) + ( - ) + ( - ) + ( - ) + ( - ) + ( - ) + ( - ) 
8 

 

The result of this averaging process (and its SEM as error) was plotted in Fig. 3a of the main 

text. We used this metric separately for each regulatory promoter and obtained the results 

depicted in the same figure. 

  

The results depicted in Fig. 3b was also obtained by using this metric. More specifically, the 

metric used galactose sensitivity values (Fig. 2c) as its entries and quantified the average 

contribution of different promoter replacements to galactose sensitivity.  
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Western Blot Experiments 

 

(i) Construction of yeast strains for western blots: S. cerevisiae and S paradoxus strains 

carrying Gal2-HA, Gal3-HA, or Gal4-HA were constructed by tagging each gene with 6xHA at 

C-terminus using one-step PCR transformation as described in literature9. PGAL80 promoter-

swapped S. paradoxus strain was constructed by firstly integrating a URA-hphNT1 cassette into 

wild type S. paradoxus strain (MA653) to replace the whole PGAL80 promoter, then swapping out 

this cassette by a PCR product containing the S. cerevisiae PGAL80 promoter with 200bp flanking 

sequences on both sides. Colonies were selected on 5-FOA plates and hygromycin plates; 

colonies that were positive for 5-FOA and negative for hygromycin were selected and verified by 

DNA sequencing. 

 

(ii) Western Blots: Cells were grown in 10ml minimal media (without adenine) with 0.1% 

mannose for 22hrs, until OD600 reaches 0.08. Cells were then split into two batches (75ml 

growth volume for each): one batch was cultured in minimal media (without adenine) containing 

0.1% mannose and 0.35% galactose; the other batch was cultured in 0.1% mannose minimal 

media, for a further 22hrs for both batches until OD600 reaches 0.08-1. Samples were then 

harvested for western blotting. Protein samples were extracted using the TCA method. Gal3-HA, 

Gal4-HA, and Gal80 protein samples were boiled in 2x Laemmli buffer before loading; Gal2-HA 

protein samples were prepared without boiling due to its high hydrophobicity. Protein lysate 

were separated on 8.5% Tris Tricine gel. The membrane was imaged using the Fujifilm LAS-

4000 imaging system, and protein bands were quantified using Fiji software. 

 

(iii) Antibody: The Gal80 antibody was a kind gift from Dr. Julie Simpson at HHMI's Janelia 

Research Campus. The epitope is CEQELIDERGNRLGQRV, and it is identical in both S. 

paradoxus and S. serevisae. Anti-PGK1 antibody was from Abcam (ab113687), and HA 

antibody was from Santa Cruz (Y-11). Secondary antibodies were anti-mouse-HRP (ab6728, 

Abcam) and anti-rabbit-HRP (sc-2004, santa cruz). For the Gal80 and HA antibodies, the 

dilutions were 1:5,000 and 1:10,000, respectively.  
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