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We often confront evidence and must construct a sum-
mary representation of the data. For example, some 
sources claim caffeine has adverse health effects, while 
others claim it has health benefits. These multiple 
reports, each with varying degrees of extremity in their 
claims, must be combined and then used to inform 
decisions. Judgments are similarly formed about politi-
cal topics, attitudes toward other people, and many 
other cases that require integration of multiple values 
along an implicit or explicit scale. Here, we demon-
strate that across a wide variety of contexts, people 
show a persistent bias to dichotomize evidence.

To illustrate the phenomenon visually, consider the 
graphical depiction in Figure 1. Given the values in the 
graphs, people estimate that the restaurant whose cus-
tomer distribution is shown on the right has nearly one 
person more per table than the restaurant whose cus-
tomer distribution is shown on the left. In fact, both 
restaurants had the exact same true mean of three peo-
ple per table. We propose that a systematic evidence-
weighting error, the binary bias, helps explain why 
people incorrectly estimate these averages. Through 
the following series of studies, we demonstrate that the 

binary bias not only affects how consumers interpret 
online ratings (Fisher, Newman, & Dhar, 2018) but also 
helps characterize how evidence is construed more 
generally across many different settings and tasks.

We propose that people neglect the relative strength 
of evidence and instead treat evidence as binary. In the 
case of the graphs in Figure 1, people intuitively com-
press continuous data into a “binary” format, estimating 
the mean on the basis of whether there are more data 
on the left-hand or the right-hand side of each graph, 
without taking into account that the bars closer to the 
midpoint (the “2” and “4” bars) are less extreme than 
the bars farther from the midpoint (the “1” and “5” bars).

In the current studies, binary thinking was opera-
tionalized through a statistic dubbed an imbalance 
score. The imbalance score is the difference in total 
data points on one side of the boundary (e.g., the “3” 
bar) versus the other. A bottom-heavy distribution such 
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as the one depicted in the left-hand graph in Figure 1 
has a highly negative imbalance score because the sum 
of the “1” bar and “2” bar is greater than the sum of the 
“4” bar and “5” bar. A top-heavy distribution such as 
the one depicted in the right-hand graph has a highly 
positive imbalance score because the sum of the “4” 
bar and “5” bar is greater than the sum of the “1” bar 
and “2” bar. The imbalance score treats the continuous 
range of values as binary and compares the difference 
between the two categories. Thus, this statistic can be 
used to assess whether binary thinking underlies peo-
ple’s intuitive summaries.

This account shares similarities with another pro-
posed pattern of integration: the tallying heuristic, 
which involves summing the total number of cues that 
favor one option over another across multiple dimen-
sions (Gigerenzer & Goldstein, 1996). Unlike the tally-
ing heuristic, the binary bias posits categorical thinking 
along a single dimension and that people discretize a 
continuous value range.

Information Integration

Intuitive descriptive and inferential statistics systemati-
cally deviate from the normative models of probability 
(Peterson & Beach, 1967; but see Griffiths & Tenenbaum, 
2006), yet estimates of central tendency have been found 
to be quite accurate (Beach & Swenson, 1966; Spencer, 
1961). Our proposal offers an alternative account: 
Namely, when distributions are imbalanced, people’s 

estimates of the mean will be biased. But what are the 
cognitive processes involved in generating these sum-
maries? Researchers have explored the “cognitive alge-
bra” underlying information integration, such as additive 
(Betsch, Plessner, Schwieren, & Gütig, 2001) or weighted-
averaging accounts (Anderson, 1981; Manis, Gleason, & 
Dawes, 1966; Rosenbaum & Levin, 1968; see also 
Betsch, Kaufmann, Lindow, Plessner, & Hoffmann, 
2006). Here, we posit a new model: Unlike these alge-
braic models of integration, our account is based on 
categorical thinking.

The binary bias not only applies to explicitly statisti-
cal presentations, as in Figure 1, but also contributes 
to our understanding of how information is acquired 
across time. Previous work has suggested that summa-
ries over time provide further support for the averaging 
model (Kahneman, Fredrickson, Schreiber, & Redelmeier, 
1993). A variant of the averaging principle, the peak-end 
rule, posits that people evaluate experiences by averag-
ing the height (peak) and finish (end) of an episode. 
Similar patterns occur when people recall serially pre-
sented information: Memories for the first and last items 
are most accurate (Henson, 1998; Peters & Bijmolt, 
1997). These order effects can be explained by salience, 
which also leads high magnitude values to be dispro-
portionately weighted (Tsetsos, Chater, & Usher, 2012). 
In these ways, the process of integrating sequentially 
presented information is subject to distortions. These 
previous findings provide benchmarks to test against 
the binary bias.
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Fig. 1. An illustration of the binary bias. For both distributions, the mean is 3.00, but people estimate the distribution mean on the 
left as 2.64 and on the right as 3.46.
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Binary Thinking

Our proposal is that binary thinking constrains the pro-
cess of information integration. Sorting continuous data 
into separate categories reduces complexity and allows 
for efficient information processing (Smith & Medin, 
1981). The effects of categorical thinking have been 
found across many areas of psychology.

In perception, the visual system selects a particular 
interpretation of ambiguous stimuli and neglects other 
possibilities, even when it leads to suboptimal decision 
making (Fleming, Maloney, & Daw, 2013; Harnad, 1987). 
Similar effects arise across high-level cognition. People 
treat continuous evidence dichotomously rather than 
representing degrees of belief in domains such as cat-
egorization (Murphy & Ross, 1994), causal reasoning 
( Johnson, Merchant, & Keil, 2015; Soo & Rottman, 2018), 
stereotyping (Corneille & Judd, 1999), and economic 
decision making (Isaac & Schindler, 2013). People overly 
focus on a single causal mechanism when estimating the 
probability of an effect (Fernbach, Darlow, & Sloman, 
2011), contrary to many Bayesian models of cognition. 
Similarly, people systematically overweight the strength 
of a particular piece of evidence (e.g., size of the effect) 
and neglect its weight (e.g., sample size; Griffin & 
Tversky, 1992; Kvam & Pleskac, 2016). Categorical think-
ing also leads trained researchers to make false dichoto-
mizations around “p = .05” (McShane & Gal, 2015).

The Current Studies

Our core claim is that categorical thinking distorts infor-
mation integration. We propose that when considering 
evidence, including graphical depictions, people display 
a binary bias: They treat evidence as all or none without 
tracking the differential impact of graded evidence. Given 
that many alternative accounts related to the binary bias 
have been addressed with process evidence (Fisher et al., 
2018), the goal of the present research was to demon-
strate the scope of the bias and to propose it as a general 
framework for understanding evidence aggregation.

Study 1a

Attitudes are commonly understood as evaluative sum-
maries of available evidence (Banaji & Heiphetz, 2010). 
People must make a summary judgment of the conflict-
ing information they encounter. In Study 1, we tested 
whether attitude formation reflects a binary bias.

Method

Participants. Four separate groups of participants 
were recruited for Study 1a. The four groups consisted of 

154 participants (82 male; age: M = 36.54 years, SD = 
12.54), 152 participants (71 male; age: M = 34.67 years, 
SD = 11.69), 152 participants (70 male; age: M = 34.80 
years, SD = 11.36), and 147 participants (65 male; age:  
M = 36.41 years, SD = 12.28). All were from the United 
States, and all completed the study through Amazon 
Mechanical Turk. A power analysis with an effect size 
(f  2) of .09 based on pilot testing estimated that 150 par-
ticipants would be needed in each group to detect an 
effect (power = .95). Participants did not complete mul-
tiple studies; each study contained a unique, naive sam-
ple, and once the requested number of participants 
completed each study, data collection ended. Informed 
consent was obtained from all participants in all studies.

Materials and procedure. Participants in Study 1 
were divided into four groups; each group considered a 
randomly assigned topic from one of four domains: sci-
entific reports, eyewitness testimonies, social judgments, 
or consumer reviews (see Appendix S1 in the Supple-
mental Material available online for the full sets of topics 
for each of the four domains). For example, a participant 
considering scientific reports would see statements about 
whether or not a new medication leads to feelings of 
hunger. Participants viewed a series of claims about the 
relationship between the two variables. There were five 
levels of evidence that participants could see for each 
topic: strong positive evidence (e.g., “One group of sci-
entists found that the new medication makes feeling hun-
gry 4 times more likely”), weak positive evidence (e.g., 
“One group of scientists found that the new medication 
makes feeling hungry 2 times more likely”), neutral evi-
dence (e.g., “One group of scientists found that the new 
medication does not change the likelihood of feeling hun-
gry”), weak negative evidence (e.g., “One group of scien-
tists found that the new medication makes feeling hungry 
2 times less likely”), and strong negative evidence (e.g., 
“One group of scientists found that the new medication 
makes feeling hungry 4 times less likely”). Each partici-
pant viewed a sequence of 17 total instances of the five 
levels of evidence. One claim would appear on the 
screen (e.g., “One group of scientists found that the new 
medication makes feeling hungry 4 times more likely”), 
and participants could not click to continue until 5 s had 
elapsed. Next, another claim about the same topic would 
appear, and this process continued until participants had 
viewed all 17 items. The same level of evidence (i.e., the 
same statement) could appear multiple times within a 
given sequence.

As in the example above, evidence in the medical 
domain was presented in terms of likelihoods, but for 
generalizability, the levels of evidence were formatted 
differently in each of the other domains. For example, 
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in the eyewitness testimony domain, evidence was pre-
sented as confidence percentages (“One witness is 
100% confident that the defendant did not commit 
crime X,” “One witness is 50% confident that the defen-
dant did not commit crime X,” etc.). See Appendix S2 
in the Supplemental Material for full details of the levels 
of evidence used across all four domains.

The distributions of levels of evidence (total number 
of strong positive, weak positive, neutral, weak nega-
tive, and strong negative) were constructed such that 
the full set of stimuli covered the widest possible range 
of imbalance scores (−5 to 5). As mentioned in the 
introduction, the imbalance score is computed by sub-
tracting the amount of evidence below the midpoint 
from the amount of evidence above the midpoint. For 
the sequences in Study 1, the imbalance scores equaled 
the number of strong and weak negative evidence 
scores subtracted from the number of strong and weak 
positive evidence scores. Distributions of evidence were 
randomly generated and then selected so that there 
were three distributions for each imbalance score from 
−5 to 5, for a total of 33 distributions. See Appendix S3 
in the Supplemental Material for the set of distributions 
used as the sequences of evidence in Study 1. The true 
weighted average of all distributions totaled to no 
effect. Each participant viewed one sequence of 17 
statements.

After viewing all 17 pieces of evidence for their ran-
domly assigned topic, participants were asked to sum-
marize the evidence they had just seen. For example, 
after viewing 17 claims about the relationship between 
a new medication and feeling hungry, they were asked, 
“How much does the new medication change the likeli-
hood of feeling hungry?” Participants responded on 
9-point Likert scales (e.g., from “4 times less likely” to 
“4 times more likely”). The anchors on the Likert scale 
changed on the basis of the wording of the evidence, 
as listed in Appendix S2.

Results

The effect of imbalance did not change across domains, 
so results from all four contexts are reported together. 
A linear regression model predicted participants’ sum-
mary judgments using imbalance score, mode (a mea-
sure of the most salient level of evidence), first level of 
evidence presented (primacy), and last level of evi-
dence presented (recency). While controlling for these 
other variables, imbalance score predicted participant 
summary judgments, β = 0.31, SE = 0.04, b = 4.62, SE = 
0.63, 95% confidence interval (CI) = [3.38, 5.85], p < 
.001. Additionally, we found that the first piece of evi-
dence viewed by participants was also a significant 
predictor, β = 0.08, SE = 0.04, b = 2.70, SE = 1.26, 95% 

CI = [0.23, 5.17], p = .03. The most frequently appearing 
level of evidence, β = 0.06, SE = 0.04, b = 2.40, SE = 
1.62, 95% CI = [−0.77, 5.58], p = .14, and the last piece 
of evidence, β = 0.01, SE = 0.04, b = 0.40, SE = 1.29, 
95% CI = [−2.13, 2.94], p = .75, were not predictive of 
participants’ summary judgments. These results dem-
onstrate across a wide array of domains, using different 
forms of evidence, that the binary bias has a stronger 
influence on the formation of beliefs and attitudes than 
the previously documented factors of order and 
salience.

Study 1b

We next arranged the presentation order to elicit stron-
ger order effects. This provided a more stringent test 
for assessing the distinct influence of imbalance.

Method

Participants. One hundred forty-nine participants (81 
male; age: M = 35.81 years, SD = 10.70) from the United 
States completed the study through Amazon Mechanical 
Turk.

Materials and procedure. Since domain did not inter-
act with the effect of imbalance score in Study 1a, we 
randomly selected one domain (social) to be used in 
Study 1b. The procedure for Study 1b was identical to the 
procedure for Study 1a, except that instead of all 17 state-
ments appearing in a random order, each level of evi-
dence (strong negative, weak negative, no effect, weak 
positive, strong positive) was grouped together, and then 
those five blocks were presented in a random order. 
Grouping the statements by evidence type was designed 
to accentuate primacy and recency effects. After viewing 
all 17 statements, participants estimated the relationship 
between the two variables on a 9-point Likert scare (from 
extremely unlikely to extremely likely).

Results

After analyses emphasized the order of evidence, a 
linear regression model found that imbalance scores 
remained a marginally significant predictor of partici-
pants’ summary judgments, β = 0.16, SE = 0.09, b = 2.16, 
SE = 1.18, 95% CI = [−0.16, 4.49], p = .07. There was no 
effect of the most frequently appearing level of evi-
dence, β = 0.004, SE = 0.09, b = 0.13, SE = 2.99, 95%  
CI = [−5.77, 6.04], p = .96; the first-viewed level of evi-
dence, β = −0.12, SE = 0.09, b = −3.35, SE = 2.46, 95% 
CI = [−8.23, 1.52], p = .18; or the last-viewed level of 
evidence, β = −0.06, SE = 0.08, b = −1.80, SE = 2.42, 
95% CI = [−6.58, 2.99], p = .46. This pattern of results 
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indicated that even when order is made more salient 
by grouping levels of evidence, binary thinking still 
influences summary judgments.

Study 2a

Study 1 showed that the binary bias influenced sum-
maries of beliefs formed over time; however, decisions 
based on experience can be made differently than 
decisions based on descriptions (Hertwig, Barron, 
Weber, & Erev, 2004). To explore this difference and 
test the generalizability of the binary bias, we next 
tested how people interpret data presented in graphi-
cal form. If the binary bias applies to information inte-
gration more generally, then imbalance scores should 
predict participants’ intuitive estimates of a distribu-
tion’s mean.

Method

Participants. Two hundred thirty-eight participants 
(129 male; age: M = 35.38 years, SD = 11.55) from the 
United States completed the study through Amazon 
Mechanical Turk. On the basis of pilot testing, a power 
analysis determined that approximately 20 participants 
rating each item would be required to detect a small-
sized effect (power = .95).

Materials and procedure. Across science, business, 
and popular media, data visualization is ubiquitous, yet 
relatively little is known about how data are intuitively 
understood (Spiegelhalter, Pearson, & Short, 2011), and 
even people with statistical training make systematic 
errors (Ibrekk & Morgan, 1987). In Study 2a, we used 
vertical bar charts to test the hypothesis that the binary 
bias, as operationalized by the imbalance score, can pre-
dict estimates of the mean. The stimuli in Study 2a con-
sisted of 120 histograms, each depicting five bars labeled 
“1” to “5” (see Fig. 1). The stimuli were divided into three 
sets: 40 of the graphs had a mean of 2.75, 40 had a mean 
of 3.00, and 40 had a mean of 3.25. For each set, the 40 
distributions were randomly and uniformly selected from 
all possible distributions with that set’s mean. Each distri-
bution’s five bins totaled 100 and had at least one data 
point in each bin.

Participants were divided into three groups, and each 
group rated one of the three sets of graphs. Each par-
ticipant evaluated a random subset of 10 of the 40 
graphs in his or her assigned set; thus, each graph was 
rated approximately 20 times. Participants were asked 
to estimate the average of each distribution they were 
presented. Simply asking the “average” is ambiguous, 
because one can estimate the mean y-value or the mean 
x-value of a vertical bar chart. To encourage the 

appropriate interpretation, we asked participants, 
“Based on your immediate judgment, on average, how 
many people sat per table?” Participants responded on 
a sliding scale from 1 to 5, labeled every 0.5 points. 
The slider’s current value was displayed to the hun-
dredths decimal place next to the sliding scale. Further-
more, the x-axis of each graph was labeled “Number 
of People Per Table” and the y-axis was labeled “Per-
centage (%).” The context, as well as the sliding scale’s 
range of values, made it clear to participants that they 
should estimate the mean x-value.

Although in statistics the term “average” captures 
multiple measures of central tendency, we used the 
word “average” in the dependent measure because it is 
colloquially understood as the arithmetic mean (Gold-
stein & Rothschild, 2014). Participants were asked to 
use their “immediate judgment” in order to elicit intui-
tive responses and discourage them from taking the 
time to mathematically compute the average using the 
numbers depicted on the graph.

Results

Although all 40 graphs in each set had an identical 
mean, the total of the lower value bars (“1”s and “2”s) 
and the higher value bars (“4”s and “5”s) differed across 
graphs. If participants treated the evidence in the 
graphs as binary, then they should have based their 
estimations on the degree to which one side of the 
graph contained higher bars, regardless of the relative 
strength of the data (e.g., weighting the “4” bar as much 
as the “5” bar). To assess whether participants’ estimates 
were driven by binary thinking, we again computed an 
imbalance score for each distribution. The effect of 
imbalance did not vary as a function of the distribu-
tions’ true mean, so results from the three sets of stimuli 
are reported together.

As previously mentioned, well-studied factors such 
as salience (Tsetsos et al., 2012) and the median (Peter-
son & Miller, 1964) may also influence how people 
summarize evidence. Thus, in Study 2a, salience (the 
tallest bar) and the median were included as indepen-
dent factors in our analysis and used as benchmarks 
against which the strength of the binary bias could be 
measured. Additionally, we included the “peakedness” 
(kurtosis), spread (SD), and arithmetic mean in the 
model. Note that skewness was omitted from this and 
subsequent models because of its correlation with 
imbalance (r = −.83; variance inflation factor, or VIF > 
4). Previous research has provided evidence against 
skewness as an explanation for the binary bias (Fisher 
et al., 2018).

A linear mixed-effects regression model from the 
lme4 package in the R programming environment 
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(Bates, Maechler, Bolker, & Walker, 2015) predicted 
participants’ mean estimates, with imbalance score and 
mode as fixed effects. The model included random 
intercepts for subjects and random slopes for by-subject 
differences in the effect of imbalance scores on mean 
estimates. In addition to reporting p values, we tested 
whether bootstrapped 95% CIs for coefficients included 
zero (Bates, Mächler, Bolker, & Walker, 2014). We found 
that, controlling for other statistical features of the dis-
tribution, the imbalance score was a strong predictor 
of participants’ estimates, β = 0.20, SE = 0.04, b = 0.01, 
SE = 0.01, bootstrapped 95% CI = [0.004, 0.01], p < .001. 
Independently, the mean, β = 0.19, SE = 0.04, b = 0.57, 
SE = 0.11, bootstrapped 95% CI = [0.31, 0.80], p < .001; 
the mode (tallest bar), β = 0.10, SE = 0.02, b = 0.05,  
SE = 0.01, bootstrapped 95% CI = [0.03, 0.07], p < .001; 
and kurtosis (peakedness), β = 0.08, SE = 0.03, b = 0.07, 
SE = 0.03, bootstrapped 95% CI = [0.03, 0.12], p = .004, 
also predicted participants’ ratings, suggesting multiple 
inputs to the mean estimation process. See Table 1 for 
details of the regression model. These results demon-
strate that, above and beyond other heuristics such as 
a reliance of salience, the binary bias helps explain how 
people aggregate data presented as a histogram.

Study 2b

If participants’ estimates were perfectly accurate in 
Study 2a, then they would be identical for every item. 
This could create experimental demand to vary 
responses, leading a weak tendency toward binary 
thinking to be exaggerated. Thus, in Study 2b, partici-
pants viewed distributions with different true means. 
To ensure participants were as accurate as possible, we 
financially incentivized performance.

Method

Participants. Two hundred twenty-six participants (104 
male; age: M = 37.28 years, SD = 11.77) from the United 

States completed the study through Amazon Mechanical 
Turk.

Materials and procedure. In Study 2b, we used the 
same procedure as in Study 2a, with a few alterations. 
First, instead of separate groups of participants rating 
each set of graphs, each participant estimated the mean 
for a random subset of 30 graphs drawn from all three 
sets of stimuli. Thus, the true mean of the graphs changed 
from trial to trial. Second, to motivate participants to be 
as accurate as possible, they were informed that they 
would be eligible for a bonus payment if they outper-
formed other participants. To avoid participants’ calculat-
ing the mean in order to earn the additional payment, we 
displayed the graph for only 5 s before participants esti-
mated the mean on a separate page. Even with the time 
limit and auto-advance feature, participants completed 
most trials (M = 29.06 out of 30 trials).

Results

Replicating the results from Study 2a, the results of 
Study 2b showed that participants’ estimates were again 
predicted by the imbalance score (see Table 2 and Fig. 
2), suggesting that the binary bias is an important com-
ponent of intuitively extracting summary statistics. 
These factors remained strong predictors even after we 
controlled for other statistical features of the graphs. 
As in Study 2a, mean and mode were independent 
predictors of participants’ responses. See Table 2 for 
details of the regression model. Importantly, the effect 
found in Study 2a was replicated even when experi-
mental demand was removed and participants were 
motivated to give accurate responses.

Study 3a

We next explored whether the binary bias requires 
certain graphical features to be present and, further-
more, the extent to which the binary bias is a visual 

Table 1. Mixed-Effects Regression Results for Mean Estimates in Study 2a

Fixed effect b SE β SE β
Bootstrapped  
95% CI for b

Intercept 0.96 0.11 −0.01 0.03 [0.05, 1.76]
Imbalance 0.01 0.001 0.20*** 0.04 [0.004, 0.01]
Mean 0.57 0.11 0.19*** 0.04 [0.31, 0.80]
Mode 0.05 0.01 0.10*** 0.02 [0.03, 0.07]
Kurtosis 0.07 0.03 0.08** 0.03 [0.03, 0.12]
Standard deviation 0.12 0.07 0.05 0.03 [−0.01, 0.26]
Median −0.04 0.03 −0.04 0.03 [−0.10, 0.01]

Note: For these models, the number of observations was 2,368, the number of subjects 
was 238, and the number of items was 120. CI = confidence interval.
**p < .01. ***p < .001.
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versus a cognitive illusion. In Study 3a, participants 
estimated the average of a series of distributions pre-
sented in a variety of formats.

Method

Participants. Three hundred twenty-one participants 
(172 male; age: M = 35.42 years, SD = 11.78) from the 
United States completed the study through Amazon 
Mechanical Turk.

Materials and procedure. In Study 3a, each partici-
pant viewed data in one of four formats (see Fig. 3). First, 
we presented the data in horizontal bar charts. If the effect 
arises from an intuitive sense of physical balance (Siegler, 
1976), as present in the vertical bar charts from Study 2, 
then we would no longer expect to see a bias when par-
ticipants considered the horizontal bar chart. Second, we 
presented the data in pie charts, which are interpreted 

differently than bar charts (Simkin & Hastie, 1987). If the 
effect arises from the spatial relations between the repre-
sentations of each value, then we would no longer expect 
to see a bias for pie charts because the position of each 
slice in a pie chart is arbitrary and nonmonotonic. Third, 
we tested whether the effect would arise even in the 
absence of graphical representation by presenting the 
data as verbal descriptions. No visual or spatial cues could 
trigger the bias in this context. Lastly, since the verbal 
description used percentage signs, which have been 
shown to be especially difficult for people to process 
(Gigerenzer & Hoffrage, 1995), we also presented the 
data as verbal descriptions without percentage signs. If 
the binary bias persisted even for verbal descriptions, it 
would suggest that the effect is not only a visual illusion 
but also a cognitive bias.

To test whether the errors found in Study 2 general-
ized to other formats of presentation, we first randomly 
selected one of the three sets of stimuli from Study 2, 
and the set of 40 distributions with a mean of 3.25 was 
chosen. These 40 distributions were depicted in four 
new formats. Participants were divided into four groups, 
and each group was presented with distributions in one 
of the four formats. Each participant viewed a random 
subset of 10 of the 40 items in his or her assigned for-
mat. In Study 3a, we used the same procedure, including 
the framing and dependent measure, from Study 2a.

Results

Estimates of the mean for the same distributions pre-
sented in different formats were strongly correlated, 
indicating that the errors made by participants were 
systematic and not due to random noise (see Table 3). 
Across formats, the binary bias again explained esti-
mates of the mean above and beyond the influence of 
other statistical features. A linear mixed-effects model 
predicted participants’ estimates with imbalance score, 
mode, standard deviation, median, and format as fixed 

Table 2. Mixed-Effects Regression Results for Mean Estimates in Study 2b

Fixed effect b SE b β SE β
Bootstrapped 
95% CI for b

Intercept 1.40 0.21 0.00 0.03 [1.02, 1.83]
Imbalance 0.01 0.001 0.14*** 0.03 [0.004, 0.01]
Mean 0.39 0.06 0.12*** 0.02 [0.27, 0.51]
Mode 0.13 0.01 0.22*** 0.01 [0.11, 0.14]
Kurtosis 0.02 0.02 0.02 0.02 [−0.02, 0.05]
Standard deviation 0.10 0.05 0.04* 0.02 [0.01, 0.20]
Median −0.02 0.02 −0.02 0.02 [−0.06, 0.01]

Note: For these models, the number of observations was 6,567, the number of subjects 
was 226, and the number of items was 120. CI = confidence interval.
*p < .05. ***p < .001.
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Fig. 2. Scatterplot (with best-fitting regression line) showing the 
relationship in Study 2b between imbalance score and participants’ 
estimates of the mean, separately for each of the three true mean 
values. The error band shows the 95% confidence interval.
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effects and included random intercepts for subject and 
by-subject random slopes for imbalance. Kurtosis was 
not included because of its strong correlation with stan-
dard deviation (r = −.82, VIF > 4). Participants’ estimates 
were significantly predicted by the imbalance score,  
β = 0.18, SE = 0.02, b = 0.01, SE = 0.001, bootstrapped 
95% CI = [0.009, 0.01], p < .001. The mode, β = 0.11,  
SE = 0.02, b = 0.07, SE = 0.01, bootstrapped 95% CI = 
[0.05, 0.09], p < .001, and standard deviation, β = 0.09, 
SE = 0.02, b = 0.21, SE = 0.05, bootstrapped 95% CI = 
[0.11, 0.30], p < .001, were also significant predictors. 
Using a likelihood-ratio test, we compared the model’s 
goodness of fit with that of a second identical model, 
which also included the Imbalance Score × Stimuli For-
mat interaction term as a fixed effect. This test revealed 
no significant difference between the models, χ2(4) = 

4.80, p = .31, suggesting that the effect of imbalance 
did not depend on the format.

Study 3b

Unlike the previous formats, in a dot plot, all the raw 
data are visible and not neatly grouped into discrete 
bins. In Study 3b, we tested whether the binary bias 
would persist without clear categories being present.

Method

Participants. Seventy-nine participants (45 male; 
age: M = 35.15 years, SD = 12.12) from the United 
States completed the study through Amazon Mechani-
cal Turk.
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10 had 3 per Table
29 had 2 per Table
21 had 1 per Table

Fig. 3. The two visual formats (top) and two verbal formats (bottom) of presentation in Study 3a.

Table 3. Correlations Between Stimuli Formats in Study 3a

Format
Vertical bar  

chart
Horizontal bar  

chart Pie chart
Verbal  

(with %)

Vertical bar chart —  
Horizontal bar chart .63*** [.40, .63] —  
Pie chart .43* [.14, .65] .73*** [.54, .85] —  
Verbal (with %) .46**[.17, .68] .63** [.40, .79] .66*** [.44, .80] —
Verbal (without %) .38* [.08, .62] .46** [.18, .68] .54*** [.28, .73] .38* [.08, .62]

Note: Values in brackets are 95% confidence intervals.
*p < .05. **p < .01. ***p < .001.
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Materials and procedure. To generate the stimuli for 
Study 3b, we first computed every possible set of 12 that 
included only the values −10, −5, 0, 5, and 10, where the 
mean of the set equaled zero. We then calculated the 
imbalance score for the full set of 87 combinations that 
resulted from this process by subtracting the number of 
negative values within each set from the number of posi-
tive values within each set. The imbalance scores ranged 
from −4 to 4. We then randomly selected 40 of the com-
binations, with at least one set for each imbalance score. 
The 40 combinations were then used as the data to gen-
erate 40 dot plots. The plots depicted an individual’s 
weight change per month over a series of 12 months (see 
Fig. 4).

Each participant viewed a random selection of 10 of 
the 40 graphs during the study. He or she viewed the 
menus one at a time and for each was asked, “Based 
on your immediate response, on average, how much 
weight change has taken place over the last 12 months?” 
Answers were made on a scale from −10 to 10.

Results

The imbalance score for each plot corresponded to the 
number of weight-gain months minus the number of 
weight-loss months. A linear mixed-effects model, 
including fixed effects for imbalance, mode, kurtosis, 
standard deviation, and medium, plus random inter-
cepts for subjects and the by-subject effect of imbal-
ance, found the imbalance score to be the strongest 
predictor of participants’ estimates of the average, β = 
0.19, SE = 0.07, b = 0.44, SE = 0.17, bootstrapped 95% 
CI = [0.07, 0.81], p = .009. Standard deviation was also 
a significant predictor, β = 0.10, SE = 0.05, b = 0.24,  

SE = 0.12, bootstrapped 95% CI = [0.02, 0.47], p = .04. 
This result suggests that making each data point observ-
able does not counteract the bias. We found that people 
impose binary categories onto the data they observe, 
distorting their summary estimates.

Study 4

In the previous studies, the imbalance score and the 
mode both varied. In Study 4, we found additional 
evidence for the binary bias by holding the mode con-
stant and varying only the imbalance score.

Method

Participants. Eighty-one participants (43 male; age:  
M = 33.90 years, SD = 11.30) from the United States com-
pleted the study through Amazon Mechanical Turk.

Materials and procedure. In Study 4, we used the set 
of histograms with a mean of 3.00 from Study 2 but 
increased the height of the “3” bar so that it was higher 
(by at least 20%) than the next tallest bar. The procedure 
was otherwise identical to that of Study 2a. If people tend 
to be insensitive to the relative strength of evidence, then 
even when the mode is held fixed, the imbalance score 
should continue to predict participants’ estimates.

Results

A linear mixed-effects regression with imbalance, kur-
tosis, and standard deviation as fixed effects, plus ran-
dom intercepts for subjects and slopes for the by-subject 
influence of imbalance, predicted participants’ mean 
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Fig. 4. Sample dot-plot stimulus shown to participants in Study 3b.
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estimates. Mode and median were not included in the 
model because all distributions had a value of 3 for 
both measures of central tendency. Consistent with the 
binary bias, results showed that the imbalance score 
was the only significant predictor of mean estimates,  
β = 0.33, SE = 0.05, b = 0.01, SE = 0.002, bootstrapped 
95% CI = [.01, .01], p < .001. Study 4 differentiates the 
binary bias from the alternative account of salience 
(Tsetsos et al., 2012). Even when the mode of distribu-
tion corresponds with the correct answer, the binary 
bias leads to persistent inaccuracy.

Study 5

We next continued to explore the breadth of the binary 
bias by testing whether it alters judgments in a separate, 
ecologically valid context: estimating the average price 
of items on a menu. Unlike in the previous demonstra-
tions, there was no conceptual midpoint, simply a list 
of prices ranging from $10 to $20. We predicted that 
the binary bias would extend to listed raw data because 
people would impose an intuitive midpoint on the 
range of values to simplify data aggregation.

Method

Participants. Eighty participants (54 male; age: M = 
33.03 years, SD = 9.89) from the United States completed 
the study through Amazon Mechanical Turk.

Materials and procedure. To generate prices for the 
menus in Study 5, we first computed every possible com-
bination of 10 integer prices between $10 and $20 with a 
mean of $15. This full set of combinations had a range of 
imbalance scores from −6 to 6. We then randomly selected 
two combinations for each of the 13 possible imbalance 
scores to form a stimuli set of 26 menus (see Fig. 5).

Each participant viewed a random selection of 15 of 
the 26 menus during the study. They viewed the menus 

one at a time and for each were instructed, “Based on 
your immediate judgment, please estimate the average 
price of all items on this menu.” After answering from 
$10 to $20, they were then asked, “How would you 
describe the price range of this restaurant?” (from 0, 
very cheap, to 100, very expensive). 

Results

The imbalance score for each menu was calculated by 
subtracting the number of items that cost more than 
$15 from the number of items that cost less than $15. 
Linear mixed-effects regression models with fixed 
effects for imbalance, kurtosis, standard deviation, and 
mode, plus random intercepts for subjects and slopes 
for the by-subject influence of imbalance, predicted 
participants’ price estimates and expensiveness judg-
ments. Median was not included as a fixed effect 
because of its strong correlation with mode (r = .90, 
VIF > 4). The imbalance scores of the menus signifi-
cantly predicted participants’ price estimates, β = 0.12, 
SE = 0.04, b = 0.03, SE = 0.01, bootstrapped 95% CI = 
[0.005, 0.06], p = .03, but not expensiveness judg-
ments, β = 0.03, SE = 0.02, b = 0.14, SE = 0.12, boot-
strapped 95% CI = [−0.05, 0.37], p = .25. Though the 
direction of the effect of imbalance on expensiveness 
judgments was in the predicted direction, it may not 
have reached significance because the expensiveness 
measure was always the second question for each 
item and was not attended to as carefully as the price 
estimates. Additionally, participants may have had 
difficulty mapping prices onto the expensiveness 
scale.

The result for mean estimates further suggests that 
the binary bias is a domain-general strategy for sum-
marizing data. Here, we found that for listed data, par-
ticipants intuitively divided the items in two and 
combined them while failing to accurately account for 
the extremity of each individual price.

Menu Item Price
Grilled Cheese $ 12
Chicken Sandwich $ 12
Hamburger $ 14
Cheeseburger $ 14
Meatball Subs $ 14
Philly Cheese Steak $ 14
Mushroom Flatbread $ 14
Mac and Cheese $ 17
Steak and Eggs $ 19

Cheese Quesadillas $ 20

Menu Item Price
Grilled Cheese $ 10
Chicken Sandwich $ 10
Hamburger $ 16
Cheeseburger $ 16
Meatball Subs $ 16
Philly Cheese Steak $ 16
Mushroom Flatbread $ 16
Mac and Cheese $ 16
Steak and Eggs $ 17

Cheese Quesadillas $ 17

Fig. 5. Sample stimuli items from Study 5. The left-hand menu has an imbalance score of 4, and 
the right-hand menu has an imbalance score of −6. The true mean of both menus equals $15.
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Study 6

We next examined the relevance of the binary bias to 
another type of judgment: public-policy decision making.

Method

Participants. Eighty participants (38 male; age: M = 
37.50 years, SD = 12.28) from the United States com-
pleted the study through Amazon Mechanical Turk.

Materials and procedure. In Study 6, we used pairs 
of vertical bar charts to depict the carbon dioxide output 
of two factories. All of the bar charts had an identical 
mean, but the side of the midpoint with taller bars varied 
(top heavy vs. bottom heavy). The stimuli for Study 6 
were adapted from the set of stimuli with a mean of 3.00 
from Study 2. The five distributions with the lowest rat-
ings in Study 2 were randomly matched with the five 
distributions with the highest ratings. Instead of the res-
taurant cover story, each distribution was framed as the 
amount of carbon dioxide being released by a factory. 
Participants were told, “A government agency wants to 
cut down on pollution. It must send inspectors to a fac-
tory based on the factory’s carbon dioxide output over 
the last 100 months. Which of the two factories should be 
inspected?” Participants then viewed a pair of distribu-
tions. For each distribution, the x-axis was numbered 
from 1 to 5 and labeled “Millions of Tons of Carbon Diox-
ide Released,” and the y-axis was numbered 1 to 100 in 
increments of 20 and labeled “Total Months.” Each par-
ticipant viewed all five pairs of distributions.

Results

A Cochran’s Q test showed that across the five pairs of 
graphs, participants chose the high-imbalance graphs 
more often than chance (M = 3.09, SD = 1.56, 95%  
CI = [2.75, 3.43]), Q(4) = 18.66, p < .001. While Study 5 
showed that the binary bias influenced estimates of the 
average, it did not find evidence for an effect on higher-
level judgments about expensiveness. The current 
results show a context in which the binary bias clearly 
affects high-level processes. This preference for the 
high-imbalance graph demonstrates another way in 
which the binary bias goes beyond statistical estimates 
and affects decision making.

General Discussion

Our studies demonstrate a pervasive bias to treat evi-
dence as binary. Summaries of data are systematically 
distorted because of a failure to properly weigh the 
strength of a given piece of evidence and instead evaluate 

it in an all-or-none manner. The errors presented in these 
studies are not due to complete misinterpretations of 
graphs, as sometimes occurs when laypeople misread a 
graph’s entire message (Vekiri, 2002). Instead, they reflect 
more subtle errors that might influence even the most 
sophisticated researcher. These errors are not due to any 
particular visual feature of data visualization but occur 
even when people are considering information that is not 
explicitly statistical or visual in any way, suggesting that 
the error is a domain-general cognitive illusion.

Categorical thinking is not the only factor influencing 
information integration. In fact, the current studies show 
that salient data points (operationalized as the mode), 
kurtosis, and standard deviation independently affect 
people’s summary judgments. Study 1a suggested that 
the binary bias was a particularly strong factor, as mea-
sured against other previously documented order effects 
such as primacy and recency. However, other cognitive 
processes need to be considered when developing a 
full theory of how people summarize conflicting data.

Our studies raise the question of how binary pro-
cessing takes place. Perhaps the data are encoded cat-
egorically and no continuous information is retained. 
Alternatively, the binary bias may result from making a 
judgment from a relatively veridical representation. Or 
continuous information might help identify a midpoint 
and then no longer be stored. These process-level 
details suggest directions for future research.

There is a strong computational rationale for the 
binary bias. By treating all entities in a category (e.g., 
a particular speech sound) in the same manner, the 
hearer codes larger scale patterns between categories, 
a digitization of information that provides powerful 
processing economies (Harnad, 1987). Treating gradi-
ents of information as binary may provide compelling 
cognitive efficiencies even when it leads to distortions. 
The root of the binary bias may lie in behavioral con-
trol. Many critical behavioral outputs such as fight ver-
sus flight and sustenance versus poison are go/no-go 
(binary) decisions. These survival-relevant processes 
may shape the sorts of lower-level judgments made in 
the current studies.

Certain factors may mitigate the bias. Highly numer-
ate individuals have less-distorted probability functions 
(Patalano, Saltiel, Machlin, & Barth, 2015) and may be 
less susceptible to the binary bias. Data presentation 
could also influence how evidence is interpreted. For 
example, dividing the bins of data differently could 
change a distribution’s imbalance and, thus, its inter-
pretation. Furthermore, contexts with more categories 
(e.g., average temperature across four seasons) might 
affect how people bin information.

Cognitive shortcuts allow us to process an otherwise 
overwhelming amount of information. Here, we 
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demonstrated that binary bias affects how data are 
understood and alters decision making. This bias affects 
not only explicit judgments but also how implicit atti-
tudes are updated on the basis of new evidence. Thus, 
the binary bias appears to be a pervasive aspect of 
cognition with extensive real-world implications.
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