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1 Introduction

Access to firm and household level data has transformed research in economics across a broad

range of fields. Such data provide a window on the granular interactions of individual agents

that prior work could only speculate on. But exploiting such data poses a particular challenge

for fields such as international trade in which general equilibrium outcomes are at the essence of

most research questions: How do we incorporate the rich behavior we observe at the individual

level into a framework that has something to say about aggregates?

Probability theory has provided a tool for making progress: By treating outcomes at

the individual level as realizations of random variables generated by particular probability

distributions, individual heterogeneity can yield aggregates governed by a parsimonious set of

parameters.

Research on the export participation of firms exemplifies this evolution. Prior to this cen-

tury the theory of international trade relied on a representative firm at the sectoral level. But

firm-level data revealed that only a small minority of firms export at all.1 These observations

led to a reconstruction of the theory of international trade to give producer heterogeneity an

essential role.

Somewhat ironically, this research returned the field to Ricardo’s original emphasis on

technology. For Ricardo, differences in technology were the source of comparative advantage

and the gains from trade. For a long time pursuing Ricardo’s insight quantitatively was

stymied by the difficulty of extending differences in technology to dimensions beyond Ricardo’s

two. But a broad range of recent research has provided quantitative analyses of technological

heterogeneity with multiple locations in general equilibrium.

Similar observations apply to research on productivity growth, for which, of course, tech-

nology is basic. Traditional growth theory again relied on an assumption of a representative

agent. But indicators of innovative activity, such as the employment of research scientists and

patenting, reveal enormous heterogeneity across individual firms. How can the modeling of

economic growth account for this diversity?

Our purpose here is less to review this research itself but to review the building blocks it

stands on. A wide range of work builds on a very similar set of probabilistic assumptions. By

reviewing these building blocks we hope to reveal what we think is an underlying unity that

1Bernard and Jensen (1995), Roberts and Tybout (1997), and Clerides et al. (1998), among others, were
influential in revealing heterogeneity in export activity.

1



may not be immediately evident from a reading of individual papers. Our goal is to provide an

accessible guide to these assumptions and how they’re employed in a wide range of contexts.

Section 2 introduces the probabilistic foundations of all that follows. It characterizes the

arrival of ideas to an economy and how the use of these ideas in production generates particular

distributions of costs.

Section 3 embeds these cost distributions into general equilibrium in a single location.

We first consider economies with various market structures standard in the literature. In

these market economies agents face a common set of prices, purchasing from a continuum

of suppliers and selling to a continuum of buyers. Recent quantitative work on networks

and trade has revealed the granular nature of firm interactions. Most firms buy from only a

handful of suppliers and sell to only a handful of buyers.2 We show how the cost distributions

derived in Section 2 can be used as a foundation for a general equilibrium matching economy

in which buyers and sellers interact with few partners.

Section 4 introduces location into the various economies considered in Section 3. With

iceberg trade costs, the underlying cost structure introduced in Section 2 gives rise to a

formulation of trade that holds across various market structures, applying as well to economies

with bilateral matching frictions.

The analysis in the first four sections makes no specific reference to time. Section 5

considers the arrival of ideas in different locations over time. As ideas arrive they give birth

to new potential producers. Extending the matching framework from the previous section,

we allow age to enhance the ability to make contacts. As it ages, a producer lowers its cost

through encounters with better suppliers and expands its sales as it meets more buyers. The

framework generates a stochastic life cycle of firms in dynamic general equilibrium. On a

balanced growth path the measures of active producers in different locations and their age

structure is constant as better ideas displace worse ones.

Section 5 treats the arrival of ideas as exogenous. Section 6 ties their arrival to endogenous

research activity in each location. New ideas are initially available only locally but diffuse to

other locations over time. On a balanced growth path the stock of ideas in each location grows

endogenously at a common rate determined by research activity and patterns of diffusion.

The research we review ranges from very old to brand new. The building blocks in Section

2 go back to the origins of probability theory, while the relationship to cost distributions

2Chaney (2014) is a seminal contribution. Bernard and Moxnes (2018) review the literature.
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is more recent. How these distributions connect with different market structures in either

closed or open market economies relates to several prominent papers from the first decade

of this century. We see our contribution as showing how these various papers fit into a

broad framework. Our review of matching relates to much more recent work on networks in

international trade, showing how tools used in earlier work remain relevant. Our model of

dynamic matching in general equilibrium is, as far as we know, new, but we include it to show

the close connections to earlier work. Finally, our review of growth in open economies relates

to work from over the last half century, but a contribution here is to show how it connects to

recent work on dynamic matching. While much of the work we review is established, our own

understanding of how it fits together continues to evolve.

A note on mathematics: We haven’t shied away from showing the steps we took to get

an answer. Our goal is to convey our reasoning in the hope of inspiring new research. We’ve

been using these tools over many years, sometimes with confusion and frustration but then

with a sense of awe at what can be achieved. The work that has been done only touches the

surface of a vast set of critical research questions out there that these tools can address.

2 Technology: Basic Building Blocks

We begin reviewing the basic probabilistic assumptions that underlie all of what follows. The

state of technology, and the cost structure it gives rise to, derive from the accumulation of

individual technological advances.3

2.1 An Idea

The basic unit of our analysis is an idea about how to produce a good. We characterize an

idea by a single number Z, its efficiency, indicating the quantity of that good a unit of input

can produce using that idea. For simplicity, and in the Ricardian tradition, we’ll sometimes

call this input labor, while incorporating additional inputs in examples below.

We treat the efficiency of an idea as a random variable with a Pareto distribution, that is:

F (z) = Pr[Z ≤ z] = 1−
(
z

z

)−θ
z ≥ z. (1)

3The literature relating the state of technology to research output goes way back. Muth (1986) provides
an overview of contributions as of that time. Evenson and Kislev (1976) is an early application. The charac-
terization here builds on Bental and Peled (1996) and particularly Kortum (1997).
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The distribution has two parameters. The lower bound z > 0 determines its scale. Our

assumptions below drive z to zero. The parameter θ > 0, which is the star in all that follows,

determines the shape of the distribution. A higher value implies that Z hugs the lower bound

z more tightly while a lower value implies a distribution with a fatter upper tail.4

A unique feature of the Pareto, that its shape is preserved as the truncation point rises,

renders it extremely convenient:

Pr[Z ≥ z|Z ≥ z′] =
Pr[Z ≥ z]

Pr[Z ≥ z′]
=
( z
z′

)−θ
z ≥ z′ ≥ z.

Hence, truncating the Pareto distribution from below just leaves another Pareto distribution

with the same shape parameter θ and higher lower bound.

2.2 The Accumulation of Ideas

Since ideas are durable they accumulate over time. Say that by time t, an integer number N

have arrived each with an efficiency that’s a realization of Z drawn independently from (1).

The probability that any one of these ideas has efficiency greater than some level z ≥ z is

pz = 1− F (z). With N ideas having arrived, the number Nz with efficiency greater than z is

distributed binomially:

Pr[Nz = n] =

 N

n

 pnz (1− pz)N−n, (2)

where n can be any integer between 0 and N . Its expectation is:

E [Nz] = pzN = Tz−θ; T = zθN.

The term T , like θ, will stay with us for the rest of this review. It summarizes the state of

technology taking into account the number of ideas N that have arrived and the efficiency of

those ideas, as reflected in zθ.

A convenient limit holds the expectation E [Nz], and hence T , fixed while letting the

number of ideas get arbitrarily large (N → ∞), forcing the efficiency of the typical idea to

become arbitrarily small (zθ → 0). In this limit the binomial distribution converges to a

4The Pareto’s mean, (θ/(θ − 1))z, is defined only for θ > 1. For θ ∈ (0, 1] the tail is so fat that the mean
is infinite. The median zm = 21/θz is defined for all θ. Both the mean, when it exists, and the median are
proportional to the lower bound z. Given θ, a higher value of z means that ideas tend to be better while z
approaching 0, the case we consider later, means that most ideas are useless.
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Poisson distribution with the same expectation, the Poisson parameter Tz−θ:5

Pr[Nz = n] =

(
Tz−θ

)n
n!

e−Tz
−θ
. (3)

Since we’ve taken the limit as zθ → 0, the distribution applies to all z > 0. Hence the number

of ideas with efficiency Z > z is distributed Poisson with parameter:

µZ(z) = Tz−θ, (4)

approaching infinity as z → 0 (so there’s no shortage of very bad ideas). This formulation is

the building block for all that follows.

Consider the ideas that have accumulated, as determined by T , and rank them according

to their efficiency, so that the k’th most efficient idea has efficiency Z(k). Hence Z(1) > Z(2) >

Z(3) > .... The probability that the k’th most efficient idea has efficiency below z is the

probability that at most k − 1 ideas have efficiency greater than z:

F (k)(z) = Pr[Z(k) ≤ z] = e−Tz
−θ

k−1∑
l=0

(
Tz−θ

)l
l!

. (5)

Of particular interest is the distribution of the efficiency of the best idea, Z(1). It’s given by

the probability that there is no idea more efficient than z, or:

F (1)(z) = Pr[Z(1) ≤ z] = e−Tz
−θ

which is the Fréchet or type II extreme value distribution.

2.3 Costs

We now connect ideas with the costs they imply for production. With inputs costing v, an idea

of efficiency Z delivers at unit cost C = v/Z. (Since returns to scale are constant, henceforth

we drop “unit” from “unit cost”.) From equation (4), the number of ideas that can deliver at

5It emerges by rewriting (2) as Pr[Nz = n] = λn

n!

(
1− λ

N

)N N !
(N−n)!Nn

(
1− λ

N

)−n
, where λ = pzN . Taking

the limit as N →∞, fixing n and λ, gives (3).
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cost below c is distributed Poisson with parameter:

µ(c) = µZ
(v
c

)
= Φcθ; Φ = Tv−θ (6)

Like θ and T , the term Φ, or a variant, will remain with us throughout. It summarizes how

the state of technology and input costs combine to govern the distribution of the cost of goods.

Consider ideas for a good with efficiencies Z(1) > Z(2) > Z(3) > .... The associated costs

are C(1) < C(2) < C(3) < ..., where C(k) = v/Z(k). We can derive the distribution of the C(k)’s

from equation (5):

G(k)(c) = Pr[C(k) ≤ c] = 1− Pr
[
Z(k) ≤ v

c

]
= 1− F (k)

(v
c

)
. (7)

Which costs are of interest depend on preferences and market structure. If the ideas are

all about producing a homogeneous good, with perfect competition all that matters is the

distribution of the cheapest:

G(1)(c) = Pr[C(1) ≤ c] = 1− e−Φcθ , (8)

the Weibull or reversed type III extreme value distribution. At the other extreme, if each idea

is about a different variety of a good, as with monopolistic competition, we’re interested in

all the costs.

In between are more complex cases of Bertrand competition and oligopoly, which require

saying more about the joint distribution of costs. Before considering these cases explicitly, we

show some basic results on the joint distribution of costs which we use below.

In dealing with the joint distribution of costs, it’s useful to transform them as U = ΦCθ.

The number of ideas with transformed cost U less than u is then Poisson with parameter u.

Ordering U (k)’s in line with their respective C(k)’s, the distribution of U (1) is:

Pr
[
U (1) ≤ u

]
= 1− e−u, (9)

or simply the unit exponential distribution. In words, the probability that U (1) is less than u

is just 1 minus the probability that there’s no transformed cost below u.

To deal with higher costs, consider the probability that U (k+1) is less than u given that

U (k) = uk. It’s just 1 minus the probability that there’s no transformed cost U between uk
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and u, or

Pr
[
U (k+1) ≤ u|U (k) = uk

]
= 1− e−(u−uk) u ≥ uk. (10)

Hence, the distribution of the gap between U (k) and U (k+1) is unit exponential.6 Knowing Φ

and θ, one can retrieve the associated costs from the U (k) as:

C(k) =
(
U (k)/Φ

)1/θ
. (11)

A useful property of the U (k)’s is that they’re distributed Erlang with shape parameter k

and rate parameter 1:

Pr[U (k) ≤ u] =

∫ u

0

xk−1e−x

(k − 1)!
dx, (12)

a special case of the gamma distribution.7 That the Erlang distribution emerges isn’t a

surprise. It’s complementary to the Poisson distribution we’ve been exploiting heavily. The

Poisson tells us about the number of ideas delivering costs along a given interval. The Erlang

tells us about the length of the interval to deliver k ideas.

We showed above how to characterize a higher cost given a lower cost. For many purposes

we’re interested in flipping the question to characterize a lower cost given a higher cost: e.g.,

how big an advance can we expect when the next advance occurs? Starting with (10):

Pr
[
U (k) ≤ u|U (k+1) = uk+1

]
=

(
u

uk+1

)k
u ≤ uk+1, (13)

which for k = 1 is simply the uniform distribution on [0, u2].8 For higher k the distribution

6The set of equations (9) and (10) provide a means of drawing a set of ordered costs. One simply needs to
draw a series of independent realizations of unit exponentials Vk and set:

U (1) = V1; U (2) = U (1) + V2; U (3) = U (2) + V3; . . . .

This procedure provides a simple way of simulating costs in numerical analysis.
7The proof is by induction. Observe first that U (1) has the unit exponential distribution. Then consider the

sum U (k+1) = U (k)+V (k+1), where U (k) is distributed Erlang with parameter k and V (k+1) is unit exponential:

Pr[U (k+1) ≤ u] =

∫ u

0

(
1− e−(u−x)

) xk−1e−x

(k − 1)!
dx =

∫ u

0

xk−1e−x

(k − 1)!
dx−

∫ u

0

xk−1e−u

(k − 1)!
dx

=

∫ u

0

xk−1e−x

(k − 1)!
dx− uke−u

k!
=

∫ u

0

xke−x

k!
dx,

which is the Erlang with parameter k+ 1. (The last step uses integration by parts in reverse. The Erlang can
be obtained more laboriously by inserting the transformation of cost in (11) into equation (7).)

8Differentiating (12) with respect to u we get h(k)(uk) = uk−1
k e−uk/(k−1)!, the density of U (k). Multiplying
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tilts away from 0 relative to the uniform.

The key application of this result is to derive the distribution of the ratio of the second

lowest to the lowest cost:

G(2)/(1)(m) = Pr

[
C(2)

C(1)
≤ m|C(2) = c2

]
= 1−m−θ m ≥ 1, (14)

which is simply the Pareto distribution, independent of C(2).9 This result is very useful in

modeling Bertrand competition among producers each with a competing idea for producing

a homogeneous good with inelastic demand. The seller has cost C(1), price C(2), and markup

C(2)/C(1). The markup distribution is the same whatever the price.10

3 The Closed Economy

Up to this point we’ve considered the ideas for producing a particular good. We now apply

our results to an economy that has a unit continuum of goods, indexed by ω.11 We refer to

ideas that apply to the same ω as delivering different varieties of good ω. In some applications

these different varieties are perfect substitutes; in others they’re not.

Equations (9) and (10) and the parameters θ and Φ now govern the distributions of the

costs of the varieties of each good. With a unit continuum of goods we can invoke the law

(10) by this density and differentiating with respect to uk+1 yields the joint density of U (k) and U (k+1):

h(k,k+1)(uk, uk+1) =
uk−1
k

(k − 1)!
e−uk+1 uk ≤ uk+1.

We get (13) by integrating along the first dimension of the joint density and conditioning on U (k+1) = uk+1:

Pr
[
U (k) ≤ u|U (k+1) = uk+1

]
=

∫ u

0

h(k,k+1)(x, uk+1)

h(k+1)(uk+1)
dx =

uke−uk+1/k!

ukk+1e
−uk+1/k!

=

(
u

uk+1

)k
.

9This result is from:

Pr

[
C(2)

C(1)
≤ m|C(2) = c2

]
= Pr

[
U (2)

U (1)
≤ mθ|U (2) = u2

]
= Pr

[
U (1) ≥ u2m

−θ|U (2) = u2

]
= 1−

(
m−θu2

u2

)
= 1−m−θ,

10By contrast, from expressions (10) and (11), the distribution of the markup conditional on the lowest cost
is Pr[C(2)/C(1) ≤ m|C(1) = c1] = 1 − exp

(
−(m1/θ − 1)Φcθ1

)
. A more efficient seller, with lower c1, tends to

charge a higher markup. Even though its markup tends to be higher, however, its price tends to be lower.
11Dornbusch et al. (1977) provide an early specification of technological heterogeneity across a unit contin-

uum of goods, an approach that’s been used extensively since.
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of large numbers and treat the distributions from Section 2.3 as the realization across the

continuum. For example: µZ(z) in equation (4) becomes the measure of ideas better than

z across goods (as well as the Poisson parameter of the number of ideas better than z for a

given good); µ(c) in equation (6) gives the measure of ideas (as well as the Poisson parameter

of the number of ideas) that deliver cost below c; G(1)(c) in equation (8) becomes the fraction

of goods (as well as the probability of a particular good) having lowest cost below c.12

3.1 Aggregation

In the first part of this section we assume agents interact through markets. Households as

consumers and firms as users of intermediates have equal access to all producers, who charge

all buyers the same price. Aggregation across goods and varieties is the same nested CES

function for any buyer, with elasticity of substitution σ > 0 across goods and σ′ ≥ σ across

varieties of any good:

Q =

[∫ 1

0

Q(ω)(σ−1)/σdω

]σ/(σ−1)

; Q(ω) =

[
∞∑
k=1

Q(k)(ω)(σ′−1)/σ′

]σ′/(σ′−1)

, (15)

where Q(k)(ω) is the quantity of the k’th lowest cost variety of good ω. One important special

case has σ′ →∞, in which case all of the varieties are perfect substitutes. Another is σ′ = σ,

in which case buyers distinguish varieties of a given good as much as varieties of different

goods (so that the assignment of varieties to goods doesn’t matter).

The associated price indices are:

P =

[∫ 1

0

P (ω)1−σdω

]1/(1−σ)

; P (ω) =

[
∞∑
k=1

P (k)(ω)1−σ′
]1/(1−σ′)

,

where P (k)(ω) is the price of the k’th lowest cost variety of ω. Spending on varieties and

goods, given aggregate spending of X = PQ, is simply:

X(k)(ω) =

(
P (k)(ω)

P (ω)

)1−σ′

X(ω); X(ω) =

(
P (ω)

P

)1−σ

X. (16)

12While most of the literature assumes a continuum, Eaton et al. (2013) apply the results in Section 2 to
an economy with an integer number of goods.
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3.2 Prices and Welfare

A feature of all the market structures we consider is that prices are homogeneous of degree 1

in costs. Hence for each good ω there is a homogeneous of degree 1 function p such that:

P (ω) = p(C(1)(ω), C(2)(ω), ...).

Using (11) and the linear homogeneity property of p, this expression becomes:

P (ω) = p(U (1)(ω)1/θ, U (2)(ω)1/θ, ...)Φ−1/θ.

and the overall price index is:

P = ΓΦ−1/θ, (17)

where Γ doesn’t depend on the state of technology T or the input cost v.13 As we show in

Appendix A, if we restrict σ′ > θ + 1 and σ < θ + 1 we can guarantee a strictly positive Γ

in any market structure in which prices weakly exceed costs. We impose these restrictions in

what follows unless noted otherwise.

We can write the real input cost, using (6), as v/P = Γ−1T 1/θ, which is the real wage if labor

is the only input. We can easily generalize the production structure to one in which inputs are

a Cobb-Douglas combination of labor and intermediates, with labor having a share β ∈ (0, 1].

If (15) applies to intermediates then their price is also P and we can write v = wβP 1−β, where

w is the wage. The real wage becomes:

w

P
= Γ−1/βT 1/(θβ). (18)

As T rises so does the real wage, with elasticity 1/(θβ). A low θ means that ideas are drawn

from a fatter right tail. A low β means that an idea contributes more since it’s used not only

in what consumers ultimately buy but also in intermediates embodied in what they buy.

13Specifically, Γ = E
[
p(U (1)(ω)1/θ, U (2)(ω)1/θ, ...)1−σ]1/(1−σ)

, which depends on the parameters θ, σ, and
σ′. An explicit expression for Γ requires specific assumptions about market structure, which we turn to next.
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3.3 Market Structures

How do our assumptions about costs and aggregation determine market outcomes? We turn

to three specific market structures that have been used in the literature. In the first, perfect

competition, ideas are freely available so varieties are sold by producers at cost. In the others,

Bertrand and monopolistic competition, ideas are proprietary. The producer that owns the

idea for a variety has a monopoly on its use.

3.3.1 Perfect Competition

Under perfect competition, free entry guarantees that prices correspond to costs. Hence

P (k)(ω) = C(k)(ω) for variety k of good ω. The special case σ′ →∞ is the standard one in the

literature. Only the cheapest variety of a good is sold in equilibrium at its cost of production.

The distribution of prices across goods is given by (8) above and the price index is:

P =

[∫ ∞
0

c1−σdG(1)(c)

]1/(1−σ)

= ΓPCΦ−1/θ,

which is equation (17) with:

ΓPC = Γ

(
θ − (σ − 1)

θ

)1/(1−σ)

,

where Γ(z) =
∫∞

0
yz−1e−zdz is the gamma function. Restricting σ < θ+ 1 guarantees that the

argument of the gamma function, and hence ΓPC , is strictly positive.14

3.3.2 Bertrand Competition

Consider now the case in which the ideas for producing different varieties of a good are

proprietary, each owned by a separate firm. We continue to send σ′ →∞, so that consumers

regard all varieties of a good as perfect substitutes. The Bertrand equilibrium leaves the

market to the owner of the lowest-cost technology, but constrained not to sell at a price above

the cost of the second-best technology. From (7), the second lowest-cost has the distribution:

G(2)(c) = Pr[C(2) ≤ c] = 1− e−Φcθ(1 + Φcθ).

14A high σ means that the consumer regards different goods as close substitutes. A low θ means that
there’s a fat tail of goods with arbitrarily low prices. If σ ≥ θ + 1, the buyer would shift spending toward
these low-priced goods to the point of getting something for nothing.
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With σ > 1 the seller, unfettered by competing varieties, would set the price to m̄C(1), where:

m̄ =
σ

σ − 1
. (19)

But competition prevents the seller from pricing above C(2). Hence the Bertrand price is:

P (ω) = min
{
C(2), m̄C(1)

}
= min

{
1,

m̄

C(2)/C(1)

}
× C(2).

From (14), the distribution of C(2)/C(1) is independent of the distribution of C(2), letting us

write the Bertrand price index as:

P =

[(
G(2)/(1)(m̄) +

∫ ∞
m̄

(m̄
m

)1−σ
dG(2)/(1)(m)

)∫ ∞
0

c1−σdG(2)(c)

]1/(1−σ)

= ΓBCΦ−1/θ,

which is equation (17) with:

ΓBC =

[(
1 +

(σ − 1)m̄−θ

θ − (σ − 1)

)
Γ

(
2θ − (σ − 1)

θ

)]1/(1−σ)

.

If σ ≤ 1, this expression still holds by letting m̄→∞.15

The share of profits Π in total expenditure X is:

∆BC =
1

θ + 1
.

We return to this case in Section 6.2 where we study endogenous innovation.

3.3.3 Monopolistic Competition

Consider finally the case in which 1 < σ′ = σ < θ+ 1, so that buyers regard different varieties

of the same good to be as distinct as different goods. The idea for each variety is again

proprietary, with no owner controlling more than a measure zero of ideas. The owner of the

technology will set a markup over cost of m̄ given by (19). Since we’re now violating our

restriction above that σ′ > θ + 1, to insure a strictly positive price index we need to impose

a maximum cost c̄.

15With some effort, the reader can verify that ΓBC > ΓPC : Prices are higher under Bertrand competition
than under perfect competition.
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The measure of varieties with cost below c is given by (6). The price index is:

P =

[
m̄1−σ

∫ c̄

0

c1−σdµ(c)

]1/(1−σ)

= m̄

[
θΦ

θ − (σ − 1)
c̄θ−(σ−1)

]1/(1−σ)

. (20)

Since the price index reflects both the availability of goods as well as their average price, it’s

decreasing in c̄, going to zero as c̄→∞.
Melitz (2003) and Chaney (2008) relate c̄ to a fixed cost of producing a variety. Introducing

such a cost, E, leaves a firm with unit cost c earning a net profit:

Π(c) =

(
1− c

p

)( p
P

)1−σ
X − E =

1

σ

(m̄c
P

)1−σ
X − E, (21)

which, since σ > 1, is decreasing in c.

If only profitable varieties are produced, (20) implies a price index:

P = ΓMCΦ−1/θ,

which is equation (17) with:

ΓMC = m̄

[(
θ

θ − (σ − 1)

)(
X

σE

)[θ−(σ−1)]/(σ−1)
]−1/θ

.

The measure of active varieties is:

µ(c̄) =
θ − (σ − 1)

θ
· X
σE

.

Unlike the other market structures we’ve considered, market size X matters. The reason is

the fixed cost of producing a variety. A larger market has more variety and a lower price index

(even though the average price of a variety is higher).

Profits net of fixed costs Π have a share in expenditure X of ∆MC = 1/(θm̄). Note that a

higher markup m̄ implies a lower profit share ∆MC . The reason is that, with a higher markup,

there’s more entry, eating up profit through entry costs.
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3.3.4 Cournot and Bertrand Competition with Imperfect Substitutes

Moving away from the extremes of σ′ → ∞ and σ′ = σ, we lose any closed-form solutions.

Atkeson and Burstein (2008) provide expressions for the markup in this more general setting

with both Bertrand and Cournot competition. In either case it lies between σ′/(σ′ − 1) and

σ/(σ − 1), moving closer to the second as the firm’s market share within a good rises. Their

results deliver a neat algorithm for numerical solution.

3.3.5 Discussion

We began in Section 2 with a characterization of the ideas available to an economy for pro-

duction. We’ve now examined three specific formulations of how those ideas can be employed

in a market economy. If varieties of a good are perfect substitutes, only the best gets used. If

varieties are imperfect substitutes, all ideas are useful. To bound utility, we need to restrict

σ′ > θ+1, so that bad ideas have little presence, or to impose an entry cost, so that only ideas

crossing an entry cutoff see the light of day. We now turn to a matching economy: whether

an idea gets used now involves an element of luck.

3.4 Matching

So far we’ve treated markets as Walrasian: Firms buy the representative continuum of goods

as intermediates and households buy them as final goods at common prices. The matching

literature has recognized that individual buyers may have idiosyncratic needs that only certain

sellers can satisfy, and that any particular buyer-seller pair may have trouble hooking up. In

fact, data on purchases indicate that most buyers purchase from only a handful of sellers and

most firms sell to only a small number of buyers. A reformulation of the structure considered

so far is able to capture the sparseness of buyer-seller interactions.

We develop a very stylized model to illustrate equilibrium in an economy with idiosyncratic

buyer-seller matching.16 As in the models of imperfect competition above, there’s a one-to-one

mapping between an idea and the firm that produces with it. In order to make something, a

producer needs to perform two tasks. The first uses labor (with Cobb-Douglas share β) and

the second an intermediate. With a wage w and an intermediate costing C, a producer with

16The formulation here simplifies Eaton et al. (2022), which captures features of cross-country buyer-seller
interactions in the European Union. Lenoir et al. (2022) extend the model to capture the product dimension.
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efficiency Z has unit cost:

c =
1

Z
wβC1−β. (22)

The labor market remains Walrasian: Any producer can hire homogeneous labor at the same

wage w. But procuring an intermediate occurs by random matching. A buyer encounters only

a handful of potential suppliers, choosing the cheapest among them.

In our matching economy households buy goods through retailers. A retailer is just like

a producer in buying one variety from the cheapest supplier it’s encountered. It sells to

households at cost. Households have symmetric Cobb-Douglas scale-independent preferences

over the continuum of retailers.17 For parsimony the measure of retailers equals the measure

of households L.

3.4.1 The Matching Function

Individual buyers and sellers meet through random matches.18 A seller is a potential producer

while a buyer can be an active firm seeking an intermediate or a retailer. The measure B of

buyers is thus the sum of the exogenous measure L of retailers and the endogenous measure

F of firms, derived below.

The matching intensity between a buyer and a seller with cost c is:

λ(c) = λB−ϕS(c)−ν , (23)

where λ is a parameter capturing how easy it is for buyers and sellers to meet. As is common

in the matching literature, the matching intensity between any given buyer and seller may

fall as the pool of participants on either side gets more crowded. We capture the presence of

buyers simply with their measure B and the presence of sellers with S(c) = λµ(c), the measure

17Specifically, with a measure R of retailers indexed by j, the utility function is:

U = R exp

(
1

R

∫ R

0

lnQ(j)dj

)
.

With prices drawn independently from a common distribution G(p), the price index is:

P = exp

(
1

R

∫ R

0

lnP (j)dj

)
= exp

(∫ ∞
0

ln p dG(p)

)
.

18Our analysis builds on the classic matching model of the labor market in Mortensen and Pissarides (1994).
Petrongolo and Pissarides (2001) review approaches to matching.
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with cost below c, weighted by λ. The parameters ϕ and ν are the elasticities of congestion

with respect to buyer and seller presence. No congestion is ϕ = ν = 0: the intensity with

which any given buyer and seller meet is independent of scale, implying that a given buyer or

seller encounters proportionately more potential partners in a larger economy.

3.4.2 The Cost Distribution

The number of potential sellers with cost below c a buyer encounters is distributed Poisson

with parameter:

ρ(c) =

∫ c

0

λ(c′)dµ(c′) =
1

1− ν
B−ϕS(c)1−ν , (24)

the matching intensity integrated over the measure of sellers. The probability of encountering

no seller with cost below c is e−ρ(c). Hence the distribution of cost for the low-cost seller is:

G(1)(c) = 1− e−ρ(c). (25)

Here we assume the buyer purchases the good at that cost, mimicking perfect competition by

giving the buyer all the bargaining power when matched with a seller. Hence, G(1) is the price

distribution faced by the buyer.19

A buyer with efficiency Z and an input cost C itself has a cost given by (22). Given C,

the measure of sellers who have cost below c is, from (4), T
(
wβC1−β)−θ cθ. Integrating over

the distribution of C, the measure of producers who can deliver at cost below c is:

µ(c) = Tcθw−βθ
∫ ∞

0

(c′)−θ(1−β)dG(1)(c′) = Tv−θcθ, (26)

where:

v−θ = w−θβ
∫ ∞

0

(c′)−θ(1−β)dG(1)(c′)

reflects the common cost of labor and the cost of intermediates as averaged over the experience

of individual producers.

Installing S(c) = λµ(c) = λΦcθ into the expression for ρ(c) above, gives:

G(1)(c) = 1− exp

(
− B−ϕ

1− ν

(
Φ̃cθ
)1−ν

)
19Fontaine et al. (2023) consider Bertrand competition, which we introduce Section 6.2 to generate an

incentive to innovate. The price distribution is then G(2)(c) = 1− (1 + ρ(c))e−ρ(c).
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where:

Φ̃ = λΦ = λTv−θ.

As in the market economies considered above, Φ captures how the accumulation of ideas, as

well as input costs, affect prices. But in this matching economy, the ability to access these

ideas, as reflected in λ, matters as well.20

Using the expression for G(1)(c), the input cost term v solves:

v−θ = Γ

(
β − ν
1− ν

)
w−θβ

((
B−ϕ

1− ν

)1/(1−ν)

λTv−θ

)1−β

. (27)

Households also face the distribution G(1)(c), so the price index, from footnote 17, is:

P = exp

(∫ ∞
0

ln c dG(1)(c)

)
= ΓM Φ̃−1/θ; ΓM =

(
eγB−ϕ

1− ν

)−1/[(1−ν)θ]

,

where γ is the Euler-Mascheroni constant.21

3.4.3 The Measure of Firms

How many ideas turn into active producers? Consider a producer with cost c. Its number of

buyers is distributed Poisson with parameter:

η(c) = λ(c)B
(
1−G(1)(c)

)
, (28)

where the first two terms govern the number of matches and the last the probability that a

match results in a sale.

To be an active firm a producer must make a sale. Hence the measure of active firms is:

F =

∫ ∞
0

(
1− e−η(c)

)
dµ(c), (29)

that is, potential producers with at least one customer. With the change of variable x =

20This matching economy resembles Oberfield (2018). Prices depend not only on firms’ efficiencies but on
their ability to buy from one another.

21This last result uses the Laplace transform, F (s) =
∫∞

0
ln te−stdt = − ln s+γ

s , evaluated at s = 1.
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B−ϕ/(1−ν)Φ̃cθ, we can write η(c) = λη∗(x), where:

η∗(x) = B1−ϕ/(1−ν)x−νe−x
1−ν/(1−ν).

Substituting λη∗(x) into (29) gives a simple expression for the ratio of firms to the total

measure of buyers B = F + L:

F

B
=

1

λB1−ϕ/(1−ν)

∫ ∞
0

(
1− e−λη∗(x)

)
dx.

How does this ratio respond to changes in matching efficiency λ and to the scale of the

economy? Differentiating with respect to λ shows that the elasticity of F/B with respect to

λ is:
d lnF/B

d lnλ
=
F (1)

F
− 1 ≤ 0,

where:
F (1)

B
=

1

B1−ϕ/(1−ν)

∫ ∞
0

η∗(x)e−λη
∗(x)dx

is the ratio of firms with exactly one buyer to total buyers. The measure of firms declines

monotonically in λ as buyers converge on lower cost producers. With constant returns to scale

in matching, ϕ+ ν = 1, the ratio of firms to buyers depends only on the parameters λ and ν,

so is independent of scale L. Increasing returns, ϕ+ ν < 1, implies fewer firms per retailer in

a larger economy: A buyer meets more potential sellers, so sales become more concentrated

among more efficient producers.

4 The Open Economy

Building on the analysis in Section 3, we introduce N locations and trade between them.

We characterize a location i by its state of technology Ti, its labor endowment Li, and the

cost of shipping goods to other locations. Adopting Samuelson’s classic iceberg formulation,

delivering one unit of a good to destination n requires shipping dni units from i (with dii = 1).

Say that an input bundle in i costs vi. Focusing on a particular good ω, an idea from i can

deliver the good to n at cost below c if its efficiency Z exceeds vidni/c. From (4), the number
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of ideas from i that do so is distributed Poisson with parameter:

µni(c) = µZi

(
vidni
c

)
= Ti(vidni)

−θcθ. (30)

The number of ideas from anywhere delivering the good at cost below c is distributed Poisson

with parameter:

µn(c) = Φnc
θ; Φn =

N∑
i=1

Ti(vidni)
−θ, (31)

the open-economy analog to equation (6). From the properties of the Poisson, the probability

that the idea comes from source i is just i’s contribution to µn(c), or

µni(c)

µn(c)
=
Ti(vidni)

−θ

Φn

=
Ti(vidni)

−θ∑
i′ Ti′(vi′dni′)

−θ . (32)

Note that c drops out. The implication is that, whatever c an idea delivers, the probability

that it’s from i is Ti(vidni)
−θ/Φn.

Consider a source i with ideas for a good of efficiencies Z
(1)
i > Z

(2)
i > ..... These ideas can

deliver to destination n at costs C
(1)
ni < C

(2)
ni < ..., where C

(k)
ni = vidni/Z

(k)
i . We can combine

all the ideas from any source delivering the good to destination n and reorder them by cost

there as C
(1)
n < C

(2)
n < ..., starting with C

(1)
n = mini{C(1)

ni }. Replacing Φ with Φn, equation

(31) allows us to apply the results from Section 2 to ordered costs in destination n. The

probability that C
(k)
n is delivered by source i is Ti(vidni)

−θ/Φn. Since this probability doesn’t

depend on c, the joint distribution of the ordered costs in n does not depend on which source

countries deliver at those costs.

4.1 Market Economies

Following Section 3.2, if the price index for each good ω in destination n is homogeneous of

degree 1 in costs there, irrespective of the origin of the varieties of that good, then:

Pn(ω) = p(C(1)
n (ω), C(2)

n (ω), ...) = p(U (1)
n (ω)1/θ, U (2)

n (ω)1/θ, ...)Φ−1/θ
n ,

where the U ’s follow the distributions in equations (9) and (10). The cases of perfect com-

petition, monopolistic competition, and Bertrand competition from Section 3.3 each deliver

analytic solutions for aggregate outcomes.
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With these market structures, the law of large numbers implies that the probability that a

variety of any good available in n comes from i, Ti(vidni)
−θ/Φn in equation (32), corresponds

to the share πni of source i in n’s purchases across goods.

We can connect the value of absorption Xn in destination n with the value of production

Yi in source i with the equations:

Yi =
N∑
n=1

πniXn. (33)

With balanced trade and assuming that we’re accounting for the universe of goods in the

economy, we can write:

Yi = Xi = wiLi + Πi =
1

1−∆j
wiLi,

where wi is the wage in location i, Li its labor force, Πi profits both earned and generated there,

and ∆j; j ∈ {PC,BC,MC}, one of the profit shares given in Section 3.3 (with ∆PC = 0).22

Continuing with the Cobb-Douglas specification for how labor and intermediates combine, so

that vi = wβi P
1−β
i , world equilibrium implies the two sets of conditions:

wiLi =
N∑
n=1

Ti(w
β
i P

1−β
i dni)

−θ∑
i′ Ti′(w

β
i′P

1−β
i′ dni′)−θ

wnLn; Pn = Γj

(
N∑
i=1

Ti(w
β
i P

1−β
i dni)

−θ

)−1/θ

,

with Γj from Section 3.3. Notice that ∆j drops out. These equations deliver wages wi and price

indices Pi around the world (subject to a choice of numéraire), given the states of technologies

Ti, iceberg costs dni, and parameters θ and β.23

4.2 Matching Economies

We can extend the matching framework introduced in Section 3.4 to an open economy in

which a buyer’s frequency of encounters with potential sellers may depend on the origin of

the seller. We generalize the closed economy matching function (23), specifying the intensity

22Deficits and nontraded goods complicate the accounting. We refer the interested reader to Dekle et al.
(2007) for a treatment.

23Eaton and Kortum (2002) develop and quantify a version of this specification with perfect competition.
Costinot et al. (2012) and Caliendo and Parro (2015) extend it to multiple sectors, the first to analyze sectoral
comparative advantage and the second to quantify the welfare effects of NAFTA. Bernard et al. (2003) assume
Bertrand competition, relating the analysis to the export participation of U.S. manufacturing plants. Melitz
(2003) introduces monopolistic competition, later quantified by Chaney (2008) and Eaton et al. (2011), the
second using firm-level data.
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of matching between a buyer in n and seller from i with cost c in n as:

λni(c) = λniB
−ϕ
n Sn(c)−ν ; Sn(c) =

∑
i

λniµni(c), (34)

where λni is a parameter reflecting the intensity of bilateral matching. As in the closed

economy, buyer congestion depends on Bn = Fn + Ln, active producers plus retailers in the

destination. Local supplier congestion depends on the presence of potential producers with

cost below c from each source, weighted by their source-specific matching intensity.

Parallel to (24), the number of encounters with sellers from anywhere with cost below c is

distributed Poisson with parameter:

ρn(c) =
1

1− ν
B−ϕn Sn(c)1−ν .

Replacing ρ(c) with ρn(c) in (25) gives the distribution of the lowest cost in n, G
(1)
n (c).

Solving as in (26) and what follows:

G(1)
n (c) = 1− exp

(
− B−ϕn

1− ν

(
Φ̃nc

θ
)1−ν

)
,

where:

Φ̃n =
∑
i

λniTi(vidni)
−θ. (35)

The measure of suppliers from i with cost below c in n, remains (30). Input costs, parallel to

(27), solve:

v−θn = Γ

(
β − ν
1− ν

)
w−θβn

((
B−ϕn
1− ν

)1/(1−ν)∑
i

λniTi(vidni)
−θ

)1−β

. (36)

This expression delivers the v’s given the B’s and w’s, which are endogenous. The share of

sales that go to sellers from i in destination n is i’s contribution to Φ̃n:

πni =
λniTi(vidni)

−θ

Φ̃n

=
λnid

−θ
ni Tiv

−θ
i∑

i′ λni′d
−θ
ni′Ti′v

−θ
i′

. (37)

As before, c drops out. Note how bilateral matching intensities λni joins iceberg costs d−θni in

governing trade shares. The price index is the same as in the closed economy, Section 3.4.2,
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with Φ̃n replacing Φ̃.

To solve for B’s, consider first a producer in i with a cost c in destination n. Generalizing

(28), its number of buyers there is distributed Poisson with parameter:

ηni(c) = λni(c)Bn

(
1−G(1)

n (c)
)
.

If its cost at home is c, its cost in n is cdni Hence its number of buyers anywhere is distributed

Poisson with parameter:

ηi(c) =
∑
n

ηni(cdni).

To be active, a producer needs at least one customer somewhere, so that the measure of active

producers, parallel to (29), is:

Fi =

∫ ∞
0

(
1− e−ηi(c)

)
dµii(c), (38)

where, from (30), µii(c) is the measure of potential producers in i with cost below c. Since

Bi = Fi + Li, the system (38) determines the measure of active producers around the world,

and hence buyers, given the w’s and v’s. Finally, the w’s solve the labor market equilibrium

conditions which, imposing balanced trade, are:

wiLi =
N∑
n=1

λniTi(vidni)
−θ∑

i′ λni′Ti′(vi′dni′)
−θwnLn, (39)

given the v’s. In summary, (36), (38), and (39) jointly determine the v’s, B’s, and w’s.

The framework also delivers the measure of exporters from i to n, Fni, which is simply

the producers in i who have at least one customer in n, or Fni =
∫∞

0

(
1− e−ηni(c)

)
dµni(c).

Proceeding as in Section 3.4, ηni(c) = λniη
∗
n(x), where x and η∗n(x) are the same as for the

closed economy after replacing B with Bn and Φ̃ with Φ̃n. The fraction of buyers in n served

by sellers from i, Fni/Bn, relative to the fraction of spending in n on goods from i, πni, is:

Fni/Bn

πni
=

1

λniB
1−ϕ/(1−ν)
n

∫ ∞
0

(
1− e−λniη∗n(x)

)
dx. (40)

The ratio falls as bilateral matching intensity λni rises, and is invariant to iceberg costs. We

saw in (37) that λni and d−θni both contribute to trade shares. The result above shows that when
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the trade share is larger because of greater matching intensity, the effect is disproportionately

due to more sales per exporter rather than to more exporters.

5 Dynamic Matching

Section 2 introduced our primitives: ideas and their accumulation. So far we’ve taken the

presence of these ideas as given, ignoring the timing of their arrival. To make this timing

explicit, we now assume a constant common growth rate of ideas in each location, Ṫi/Ti = g.

We make g endogenous in Section 6. Hence the measure of ideas with efficiency greater than

z aged a at date t in location i is:

µZi (z; t, a) = ge−gaTi(t)z
−θ,

the dynamic analog of (4). Each idea is associated with a potential producer.

Into this environment we embed the open-economy matching framework developed in

Section 4.2. To focus on dynamics, we eliminate buyer and seller congestion in matching.

Instead, a buyer’s or seller’s ability to match improves with age. The intensity of matching

between a buyer in location n aged ab and a seller from location i aged as is abasλni.
24

Producers differ not only by their efficiency z and origin i, but also by their age a. We

denote the measure of potential producers from i with unit cost below c in n aged a at date

t as µni(c; t, a). The number of encounters with suppliers from any location of any age with

cost below c by a buyer aged ab in location n is thus distributed Poisson with parameter:

abρn(c; t) = ab

N∑
i=1

λni

∫ ∞
0

asµni(c; t, as)das.

An older buyer encounters more suppliers, so its cheapest option tends to be lower. The

distribution of the lowest cost that a buyer aged a in location i at date t encounters is thus:

G
(1)
i (c; t, a) = 1− e−aρi(c;t).

A producer in this cohort with input cost C and efficiency Z has cost itself given by (22), so

24Contacts with better suppliers and more buyers drive firm growth, while firms’ technology is heterogeneous
but unchanging. In contrast, Luttmer (2007) models firms’ heterogeneous evolution of technology. Luttmer
(2010) surveys the literature on firm dynamics.
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that the measure of potential producers in i aged a with cost below c is:

µii(c; t, a) =

∫ ∞
0

µZi

(
wβi (c′)1−β/c; t, a

)
dG

(1)
i (c′; t, a) = Ti(t)vi(t, a)−θcθ, (41)

where vi(t, a) summarizes wage and intermediate costs for a producer aged a in location i,

which falls as the producer ages. It follows that µni(c; t, a) = d−θni Ti(t)vi(t, a)−θcθ.

We can now write ρn(c; t) = Φ̃n(t)cθ where, parallel to (35):

Φ̃n(t) =
N∑
i=1

λnid
−θ
ni Ti(t)vi(t)

−θ; vi(t)
−θ =

∫ ∞
0

avi(t, a)−θda, (42)

where vi(t) aggregates across suppliers of different ages to capture overall input costs in i.

Using G
(1)
n (c; t, a) to solve (41), we get:

vi(t, a)−θ = Γ(β)ge−gaw−θβi

(
aΦ̃i(t)

)1−β
=
g3−βa1−βe−ga

Γ(3− β)
vi(t)

−θ,

where the v(t)’s solve:

vn(t)−θ = Γ(β)Γ(3− β)gβ−2w−θβn

(
N∑
i=1

λnid
−θ
ni Ti(t)vi(t)

−θ

)1−β

(43)

conditional on the w’s, which we treat as constant over time. From (42) and (43) we can infer

that the v−θ’s grow at rate (1− β)g/β and that the Φ̃’s grow at rate g/β. The price index is

ΓM Φ̃n(t)−1/θ, as in the static matching economy of Section 3.4, but falling at rate g/(θβ).

Together (39) and (43) determine the v’s, the w’s, and a stationary bilateral trade share:

πni =
λnid

−θ
ni Ti(t)vi(t)

−θ

Φ̃n(t)
, (44)

the equivalent of (37) above. Hence on a balanced growth path this dynamic economy closely

resembles the static one in the previous section.

5.1 Firms and Their Customers

Solving for the measures of active firms is challenging since a producer’s cost in a market

interacts with a buyer’s age. Older buyers typically have more options to choose among than

24



younger buyers so are less likely to buy from a high-cost supplier.

Denote the measure of active producers aged a in destination n at date t as Fn(t, a) and

the measure of retailers aged a as Ln(t, a). The number of customers of any age in destination

n of a seller with cost c there, aged as from source i, is distributed Poisson with parameter:

asηni(c; t) = asλni

∫ ∞
0

ab [Fn(t, ab) + Ln(t, ab)]
(
1−G(1)

n (c; t, ab)
)
dab. (45)

To be active as a buyer a producer aged ab needs at least one buyer itself. Its number of

buyers is distributed Poisson with parameter abηn(c; t) where ηn(c; t) =
∑

m ηmn(cdmn; t). The

measure of active producers aged ab in n is thus:

Fn(t, ab) =

∫ ∞
0

(
1− e−abηn(c;t)

)
dµnn(c; t, ab).

We assume a fixed population of retailers Ln, which turn over with hazard δ. Hence the

measure aged ab is Ln(t, ab) = δe−δabLn.

Applying these results on buyers, the term ηni(c; t) in (45) becomes:

ηni(c; t) = λni

∫ ∞
0

a

[
Tn(t)vn(t; a)−θ

∫ ∞
0

(
1− e−aηn(c′;t)

)
θ(c′)θ−1dc′ + δLne

−δa
]
e−aΦ̃n(t)cθda.

As we show in Appendix B, integrating over buyer age, a, gives:

ηni(c; t) = λniTn(t)vn(t)−θ
∫ ∞

0

[(
g

g + Φ̃n(t)cθ

)3−β

−
(

g

g + ηn(c′; t) + Φ̃n(t)cθ

)3−β
]
θ(c′)θ−1dc′

+
δ(

δ + Φ̃n(t)cθ
)2λniLn.

To simplify these functions, while also removing their dependence on time, we employ the

changes of variables x = Φ̃n(t)cθ and y = Tn(t)vn(t)−θ(c′)θ. We get ηni(c; t) = λniη
∗
n(x) and

ηn(c; t) = η̄n(y), where:

η∗n(x) =

∫ ∞
0

[(
g

g + x

)3−β

−
(

g

g + η̄n(y) + x

)3−β
]
dy +

δ

(δ + x)2Ln. (46)

and η̄n(y) =
∑

m λmnη
∗
m (λmny/πmn). We can solve the N equations numerically for η∗n(x)

given g, δ, β, Ln, λni, and πni. The solution gives us the Poisson parameter for the number of
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Figure 1: Size Distribution of Firms, by Age
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The figure shows qii(k; a) with N = 3, g = 0.08, δ = 0.1, β = 1/3, Ln = 1 for all n,

λni = 0.05 for n 6= i, λii = 0.1, πni = 0.2 for n 6= i, and πii = 0.6.

buyers in n of a producer aged a from i with cost c = (x/Φ̃n(t))1/θ there, aηni(c; t) = aλniη
∗
n(x).

We can use this result to derive the age-specific size distribution of firms, which is time-

invariant. Dividing by the measure of all firms aged a from i selling in n irrespective of cost,

the fraction having exactly k customers is:

qni(k; a) =
1

k!

∫
(aλniη

∗
n(x))k e−aλniη

∗
n(x)dx∫

(1− e−aλniη∗n(x)) dx
.

Since qni(k; a) depends on age only via aλni, a higher matching intensity with buyers in n

means sellers from i effectively age faster in that market. Figure 1 shows this distribution in

the home market (for an example with three symmetric locations) as it evolves from a spike

at 1 for the youngest firms toward the shape of a Pareto as they age.

5.2 The Age of Producers

A number of results about the age distribution of potential producers emerge.

1. Our specification of evolving technology directly implies that the age of potential pro-
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ducers with efficiency above z in country i has exponential density:

f1(a) =
µZi (z; t, a)∫
µZi (z; t, a′)da′

=
ge−gaTi(t)z

−θ

Ti(t)z−θ
= ge−ga.

The values of z and i don’t matter. The mean and variance are thus 1/g and 1/g2. The

density falls with age.

2. But newly-born producers have little access to inputs so tend to be high cost. Counting

only potential producers from i with cost below c in n, the age density becomes:

f2(a) =
µni(c; t, a)∫
µni(c; t, a′)da′

=
Ti(t)d

−θ
ni vi(t, a)−θ

Ti(t)d
−θ
ni

∫
vi(t, a′))−θda′

=
g2−βa1−βe−ga

Γ(2− β)
,

which is gamma with parameters 2− β and 1/g. The values of c, n, and i don’t matter.

The mean and variance are (2 − β)/g and (2 − β)/g2. While a potential producer’s

efficiency z is set at birth, its cost falls as it ages and finds better suppliers. The density

peaks at a = (1− β)/g, proportional to the share of intermediates in production.

3. Since to be a firm a potential producer must have at least one buyer, the age density of

firms from i actively selling in n is:

fni(a) =
f2(a)

∫ (
1− e−aλniη∗n(x)

)
dx∫ ∫

f2(a′) (1− e−a′λniη∗n(x)) dxda′
.

As we show in Appendix C, this density peaks where qni(1; a) = ga− (1− β), which is

above (1− β)/g since qni(1; a) > 0.

4. Weighting by number of buyers, the age density of firms from i selling in n is:

f3(a) =

∫
aηni(c; t)dµni(c; t, a)∫ ∫

a′ηni(c′; t)dµni(c′; t, a′)da′
=
avi(t, a)−θ

vi(t)−θ
=
g3−βa2−βe−ga

Γ(3− β)
,

which is gamma with parameters 3− β and 1/g. Again, the values of c, n, and i don’t

matter. The mean and variance are (3 − β)/g and (3 − β)/g2. The density peaks at

a = (2 − β)/g. Even when a cohort begins to decline as a proportion of all sellers, its

market share is still rising. We use this density in calculating the value of invention in

Section 6.2.3.25

25The measure of buyers in n procuring a good from a seller aged as in i is f3(as)πni(Fn + Ln). Dividing
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6 Growth

The previous section posited that ideas everywhere grow at a common rate g. In this section

we first tie g to innovation in each location and to the diffusion of ideas across locations. We

then relate innovation in each location to the incentive to do research there, as in the literature

on endogenous growth.26

6.1 Technology Dynamics

We now need to distinguish the state of technology available in each location n at date t,

Tn(t), and the technology generated there, which we denote T ∗n(t). As in Krugman (1979),

new technology is generated in location i in proportion to the state of technology available

there, with an innovation rate ιi:
27

Ṫ ∗i (t) = ιiTi(t). (47)

Denote by Tni(t) the technology available in n that originated from i. As in Nelson and Phelps

(1966) and Krugman (1979), it evolves in proportion to the gap between T ∗i (t) and Tni(t) at

rate εni (the inverse of the diffusion lag):

Ṫni(t) = εni (T
∗
i (t)− Tni(t)) . (48)

With balanced growth, all states of technology grow at rate g. We can solve for:

Tni(t)

T ∗i (t)
=

εni
g + εni

;
T ∗i (t)

Ti(t)
=
ιi
g
,

by the dynamic analogue of (40), buyers per seller is:

f3(as)πni(Fn + Ln)

(f3(as)/as)(πni/λni)
∫ (

1− e−asλniη∗n(x)
)
dx

=
asλni(Fn + Ln)∫ (
1− e−asλniη∗n(x)

)
dx
.

Note that buyers per seller aged as from source i in n doesn’t depend on dni and rises with the product asλni.
26Shell (1966) is an early contribution with Romer (1990), Grossman and Helpman (1991), and Aghion and

Howitt (1992) at the forefront of a later wave of research. Rivera-Batiz and Romer (1991) and Grossman and
Helpman (1993) introduced open economy endogenous growth models. The analysis here relates closely to
Eaton and Kortum (1999), Eaton and Kortum (2001), Buera and Oberfield (2020), and Cai et al. (2022a).
While we model growth in a matching economy, growth is the consequence of explicit research activity, not
luck in bumping into better-informed agents, as in the idea flow literature reviewed by Buera and Lucas (2018).

27Jones (1995) and Kortum (1997) provide an alternative specification in which current knowledge con-
tributes to growth with diminishing returns, with growth driven by an exogenously expanding labor force.

28



with technology available in each location evolving according to:

Ṫn(t) =
∑
i

Ṫni(t) =
∑
i

(
εni

g + εni

)
ιiTi(t).

In matrix form:

gT = ∆(g)T, (49)

where T is an N × 1 vector with representative element Ti and ∆(g) is an N × N matrix

with representative element:

∆ni(g) =

(
εni

g + εni

)
ιi.

The growth rate g is the Perron-Frobenius root of (49), with relative levels of technology T

corresponding to the Perron-Frobenius eigenvector (defined up to a scalar multiple). This

formulation delivers parallel growth despite arbitrary rates of innovation in each location.

The share of technology in n that originated in i is:

ωni =
Tni(t)

Tn(t)
=

εni
g + εni

· ιi
g
· Ti
Tn
, (50)

where g and the ratio Ti/Tn emerge from the solution to (49). The ωni reflect how much

locations benefit from each other’s technologies. In what follows they also determine profit

flows between locations.

6.2 Endogenous Innovation

We now relate the ι’s to innovative effort. For workers to have an incentive to innovate, their

inventions must generate income for them. To allow inventors to appropriate value from their

ideas, we switch from a world of perfect competition to one of Bertrand competition. By

charging the cost of the next best alternative, the owner of an idea can appropriate the cost

saving from its increment in efficiency.

We introduce endogenous innovation into the dynamic matching economy from Section

5. Switching to Bertrand competition requires only a minimal modification. A buyer now

pays the second lowest cost for an input among the suppliers it’s encountered, so that the

distribution G
(1)
n (c; t, a), wherever it appears, gets replaced by the distribution of the second
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lowest cost:

G(2)
n (c; t, a) = 1− (1 + aΦ̃n(t)cθ)e−aΦ̃n(t)cθ , (51)

(that is, one minus the probability of only zero or only one cost below c). The only change

to the results in the previous section is that the smaller term βΓ(β) replaces Γ(β) in the

expressions for vi(t; a)−θ and, in equation (43), vn(t)−θ.

6.2.1 Profits

The value of an innovation derives from the profits it earns around the world. As a benchmark

we consider a world with perfect intellectual property protection, so that an innovator earns

all the profits her idea earns globally.

Our framework forces us to distinguish three notions of profit for a location i: Profits

earned from sales there, denoted Πi, profits earned from production there, denoted Π∗i , and

profits earned from innovation there, denoted Πi.

For the first, from Section 3.3.2, total profits earned selling in i are just a fraction ∆BC of

total spending on goods there, Xi, which consists of spending on intermediates by producers

XI
i and final spending by consumers XF

i .

With location i allocating a fraction ri of its workers to research, spending on production

workers is wi(1− ri)Li. Our Cobb-Douglas assumption implies that intermediate spending is

then XI
i = [(1−β)/β]wi(1−ri)Li. Final spending is income earned in location i less spending

on research, so that XF
i = wi(1− ri)Li + Πi. Hence profits earned selling in i are:

Πi = ∆BCXi = ∆BC

(
1

β
wi(1− ri)Li + Πi

)
.

Since exporters earn profits on sales abroad, Π∗i =
∑

n πniΠn, with πni as given in (44). Since

innovators earn profits on the use of their inventions abroad, Πi =
∑

n ωniΠ
∗
n, with ωni as

given in (50). With our choice of numéraire profits are stationary.

We continue to assume overall trade balance in goods and technology services. But since

earnings on technology don’t necessarily balance, trade in goods isn’t balanced either. We

need to replace the labor-market clearing condition (39) with the condition:

1

β
wi(1− ri)Li + Π∗i =

∑
n

πni

(
1

β
wn(1− rn)Ln + Πn

)
, (52)

30



equating what’s spent on goods from i to what the rest of the world purchases.

6.2.2 The Price Index

An inventor earns profit from her invention over time. To assess the value of a current invention

requires translating the future income it generates into today’s prices, requiring a price index.

To construct the price index, first consider purchases from retailers aged a, who offer the

distribution of prices (51). With scale-free symmetric Cobb-Douglas preferences, the price

index for these retailers, intermediaries with no markups, is:

Pn(t, a) = exp

(∫ ∞
0

ln c dG(2)
n (c; t, a)

)
= e(1−γ)/θ(aΦ̃n(t))−1/θ,

where, again, γ is the Euler-Mascheroni constant.28 Aggregating across cohorts of retailers,

weighting by cohort size, the overall price index is:

Pn(t) = exp

(∫ ∞
0

lnPn(t, a)δe−δada

)
= ΓGΦ̃n(t)−1/θ,

where ΓG = (eδ)1/θ. More retailer turnover (a higher δ) implies higher prices. From our result

in Section 5, that the Φ̃’s grows at rate g/β, prices fall everywhere at rate g/(θβ).

6.2.3 The Value of Innovation

We calculate the value of innovation in i in two parts. First consider the discounted profits

earned by a unit of technology from i in a particular location n at the moment tA it arrives

at n, at which point it’s available for production. Upon arrival, the technology is aged 0 from

n’s perspective.

Technology aged a earns a flow profit in n of f3(a)Π∗n shared among a cohort of size

gTn(tA). Integrating the expected lifetime returns, taking into account discounting at rate ρ

and inflation at rate −g/(θβ), yields an expected value of an idea arriving in n at date tA:

Vn(tA) =
Π∗n

gTn(tA)

∫ ∞
0

e−(ρ−g/(θβ))af3(a)da =
Π∗n

gTn(tA)

(
g

ρ+ g − g/(θβ)

)3−β

.

But an inventor needs to wait for the technology to arrive at location n before receiving

this value. The expected discounted value of a unit of new technology at the moment tI of

28This last result uses the Laplace transform, F (s) =
∫∞

0
t ln te−stdt = − ln s+γ−1

s2 , evaluated at s = 1.
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invention in location i, accounting for its random diffusion to different destinations, is:

V i(tI) =

∫ ∞
0

e−(ρ−g/(θβ))s
∑
n

εnie
−εnisVn(tI + s)ds

=

(
g

ρ+ g − g/θβ

)3−β∑
n

1

ρ+ εni + g − g/θβ
· εniΠ

∗
n

gTn(tI)
. (53)

Since the T ’s grow at rate g, the value of new technology falls over time as it faces a more

crowded field.

6.2.4 Equilibrium Research

Endogenizing innovation, we set the innovation parameter in (47) equal to a research produc-

tion function of the form:

ιi = αir
ε
iLi.

Here αi is a parameter reflecting research productivity in location i, ri is the share of the labor

force doing research, and ε ≤ 1 captures diminishing returns to research effort.29

Occupational choice within each location equates the value of the marginal product of

research to the wage of production workers, where the return to research depends on the value

of new technology from there. Specifically:

εαir
ε−1
i Ti(t)V i(t) = wi. (54)

6.2.5 Balanced Growth

A balanced growth path consists of vectors across locations of relative wages w, input costs

v, values of technology V , research intensity r, and relative technology levels T , together

with a common growth rate g, satisfying (43), (49), (52), (53), and (54). The parameter

values required for solution are the labor endowments L and research productivities α in each

location, the iceberg trade costs d, the matching intensities λ, and diffusion rates ε between

each pair of locations, and the general parameters θ, governing the distribution of ideas (the

parameter that launched the analysis), β, the labor share, ρ, the discount factor, and ε,

governing diminishing returns to research.

29Phelps (1966) derives such a specification assuming a Pareto distribution of research talent.
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7 Conclusion

To concentrate on core ideas we’ve ignored some significant extensions. We’ve treated dis-

tributions of ideas as independent in different locations, which oversimplifies the modelling

of trade and diffusion and correlation in comparative advantage.30 We’ve left out capital

accumulation and the endogenous formation of transportation links.31 We’ve adopted the Ri-

cardian treatment of a location as an endowment of labor, ignoring migration and commuting.

What’s now a very rich literature has incorporated labor mobility into the framework here

to address myriad issues in spatial outcomes.32 Incorporating these extensions is technically

demanding, but the basic tools we’ve reviewed here remain relevant.

30Ramondo and Rodŕıguez-Clare (2013), Arkolakis et al. (2018), Cai et al. (2022b), and Lind and Ra-
mondo (2022) model how diffusion gives rise to correlation across locations in efficiencies, relating diffusion to
multinational production.

31Contributions here are Eaton et al. (2016), Fajgelbaum and Schaal (2020), and Allen and Arkolakis (2022).
32Allen and Arkolakis (2014), Caliendo et al. (2019), and Kleinman et al. (2023) introduce migration between

regions, the third with capital accumulation as well. Ahlfeldt et al. (2015) model commuting within a city.
Redding and Rossi-Hansberg (2017) review the earlier literature.
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A Prices and Welfare

This appendix concerns the general form of the price index, equation (17) from Section 3.2. We show that if

prices weakly exceed costs and σ < θ + 1 < σ′ then:

Γ = E

[
p
(
U (1)(ω)1/θ, U (2)(ω)1/θ, ...

)1−σ
]1/(1−σ)

> 0,

so that the general form of the price index is well defined. Prices weakly exceeding costs implies:

Γ ≥ E

( ∞∑
k=1

(
U (k)(ω)

)(1−σ′)/θ
)(1−σ)/(1−σ′)

1/(1−σ)

=

∫ ∞
0

E

( ∞∑
k=1

(
U (k)

)(1−σ′)/θ
)(1−σ)/(1−σ′) ∣∣∣U (1) = u

 e−udu
1/(1−σ)

, (55)

where the second line employs the law of iterated expectations and our result on the distribution of U (1).

In the case of σ′ →∞ the problem simplifies to:

E

( ∞∑
k=1

(
U (k)

)(1−σ′)/θ
)(1−σ)/(1−σ′) ∣∣∣U (1) = u

 = u(1−σ)/θ.

Hence:

Γ ≥
[∫ ∞

0

u(1−σ)/θe−udu

]1/(1−σ)

= Γ

(
θ + 1− σ

θ

)1/(1−σ)

> 0.

The restriction that σ < θ+ 1 keeps the gamma function finite by limiting substitution into goods whose cost

of production approaches zero.33

For σ′ finite we need to consider higher cost varieties together with the lowest-cost variety. In this case σ′

must remain high enough so that the presence of a countably infinite number of varieties does not drive the

price index to zero.

First consider the case of σ > 1. Let a = (σ′ − 1)/(σ − 1) so that a > 1. With

X =

( ∞∑
k=1

(
U (k)(ω)

)(1−σ′)/θ
)(1−σ)/(1−σ′)

, (56)

33If we were to let σ approach θ + 1 from below:

lim
σ→θ+1

Γ

(
θ + 1− σ

θ

)
→∞ =⇒ lim

σ→θ+1
Γ

(
θ + 1− σ

θ

)1/(1−σ)

→ 0,

driving Γ, and hence the price index, to zero.
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Jensen’s inequality implies E[X] ≤ E[Xa]1/a, that is:

E

( ∞∑
k=1

(
U (k)

)(1−σ′)/θ
)(1−σ)/(1−σ′) ∣∣∣U (1) = u

 ≤ E

[ ∞∑
k=1

(
U (k)

)(1−σ′)/θ ∣∣∣U (1) = u

](1−σ)/(1−σ′)

=

( ∞∑
k=1

E

[(
U (k)

)(1−σ′)/θ ∣∣∣U (1) = u

])(1−σ)/(1−σ′)

.(57)

Using results from Section 2.3, that the U (k) are distributed Erlang (with parameters k and 1) and that

the gaps U (k+1) − U (k) are distributed exponential (with parameter 1), we have:

∞∑
k=1

E

[(
U (k)

)(1−σ′)/θ ∣∣∣U (1) = u

]
= u(1−σ′)/θ +

∞∑
l=1

∫ ∞
0

(u+ x)(1−σ′)/θ x
l−1e−x

(l − 1)!
dx

= u(1−σ′)/θ +

∫ ∞
0

(u+ x)(1−σ′)/θ

( ∞∑
m=0

xme−x

m!

)
dx

= u(1−σ′)/θ +

∫ ∞
0

(u+ x)(1−σ′)/θdx

= u(1−σ′)/θ
(

1 +
θ

σ′ − (θ + 1)
u

)
, (58)

where the last integral was finite because σ′ > θ + 1.

Continuing with σ > 1, we can combine (55), (57), and (58) to get:

Γ1−σ ≤
∫ ∞

0

E

( ∞∑
k=1

(
U (k)

)(1−σ′)/θ
)(1−σ)/(1−σ′) ∣∣∣U (1) = u

 e−udu
≤

∫ ∞
0

( ∞∑
k=1

E

[(
U (k)

)(1−σ′)/θ ∣∣∣U (1) = u

])(1−σ)/(1−σ′)

e−udu

=

∫ ∞
0

u(1−σ)/θ

(
1 +

θ

σ′ − (θ + 1)
u

)(1−σ)/(1−σ′)

e−udu

≤
∫ ∞

0

u(1−σ)/θ

(
1 +

θ

σ′ − (θ + 1)
u

)
e−udu

= Γ

(
θ + 1− σ

θ

)
σ′ − σ

σ′ − (θ + 1)
.

It follows that Γ is strictly positive:

Γ ≥
[
Γ

(
θ + 1− σ

θ

)(
σ′ − σ

σ′ − (θ + 1)

)]1/(1−σ)

> 0. (59)

For the case of σ < 1, define σ1 satisfying 1 + θ > σ1 > 1, so that b = (1− σ1)/(1− σ) < 0. With X given

in (56), Jensen’s inequality implies E[X]b ≤ E[Xb] so that raising both sides to the power of 1/(1− σ1) gives
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E[X]1/(1−σ) ≥ E[Xb]1/(1−σ1). In combination with the first line of (55) we have:

Γ ≥ E

( ∞∑
k=1

(
U (k)(ω)

)(1−σ′)/θ
)(1−σ)/(1−σ′)

1/(1−σ)

≥ E

( ∞∑
k=1

(
U (k)(ω)

)(1−σ′)/θ
)(1−σ1)/(1−σ′)

1/(1−σ1)

.

We showed above that the right-hand side is strictly positive, since σ1 > 1. It follows that Γ > 0 for the case

of σ < 1 as well.

We now consider the case in which limσ → 1, so that (55) becomes:

Γ ≥ exp

(
1

1− σ′
E

[
ln

( ∞∑
k=1

(
U (k)(ω)

)(1−σ′)/θ
)])

= exp

(
1

1− σ′

∫ ∞
0

E

[
ln

( ∞∑
k=1

(
U (k)

)(1−σ′)/θ
)∣∣∣U (1) = u

]
e−udu

)

≥ exp

(
1

1− σ′

∫ ∞
0

lnE

[ ∞∑
k=1

(
U (k)

)(1−σ′)/θ ∣∣∣U (1) = u

]
e−udu

)
,

where the last line follows from Jensen’s inequality, noting that 1− σ′ < 0. Further simplification, using (58)

and ln(1 + x) ≤ x for x ≥ 0, delivers the result:

Γ ≥ exp

(
1

1− σ′

∫ ∞
0

lnE

[ ∞∑
k=1

(
U (k)

)(1−σ′)/θ ∣∣∣U (1) = u

]
e−udu

)

= exp

(
1

1− σ′

∫ ∞
0

ln

( ∞∑
k=1

E

[(
U (k)

)(1−σ′)/θ ∣∣∣U (1) = u

])
e−udu

)

= exp

(
1

1− σ′

∫ ∞
0

ln

(
u(1−σ′)/θ

(
1 +

θ

σ′ − (θ + 1)
u

))
e−udu

)
≥ exp

(
1

1− σ′

∫ ∞
0

(
1− σ′

θ
lnu+

θ

σ′ − (θ + 1)
u

)
e−udu

)
= exp

(
−1

θ
γ − 1

σ′ − 1

θ

σ′ − (θ + 1)
Γ(2)

)
> 0,

where γ is the Euler-Mascheroni constant (which also appeared at the end of Section 3.4.2).
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B Firms and Their Customers

This appendix concerns steps to simplify (from Section 5.1 of the paper):

ηni(c; t) = λni

∫ ∞
0

a

[
Tn(t)vn(t; a)−θ

∫ ∞
0

(
1− e−aηn(c′;t)

)
θ(c′)θ−1dc′ + δLne

−δa
]
e−aΦ̃n(t)cθda.

Substituting in the expression for vn(t; a)−θ in terms of vn(t)−θ and reversing the order of integration:

ηni(c; t) = λniTn(t)vn(t)−θ
∫ ∞

0

g3−β

Γ(3− β)

[∫ ∞
0

a2−βe−ga
(

1− e−aηn(c′;t)
)
e−aΦ̃n(t)cθda

]
θ(c′)θ−1dc′

+ λni

∫ ∞
0

aδLne
−δae−aΦ̃n(t)cθda.

Grouping together related terms:

ηni(c; t) = λniTn(t)vn(t)−θ
∫ ∞

0

g3−β

Γ(3− β)

[∫ ∞
0

a2−β
(
e−(g+Φ̃n(t)cθ)a − e−(g+ηn(c′;t)+Φ̃n(t)cθ)a

)
da

]
θ(c′)θ−1dc′

+ λniδLn

∫ ∞
0

ae−(δ+Φ̃n(t)cθ)ada.

Integrating over buyer age, a, delivers the next expression for ηni(c; t) in the paper:

ηni(c; t) = λniTn(t)vn(t)−θ
∫ ∞

0

[(
g

g + Φ̃n(t)cθ

)3−β

−
(

g

g + ηn(c′; t) + Φ̃n(t)cθ

)3−β
]
θ(c′)θ−1dc′

+
δ(

δ + Φ̃n(t)cθ
)2λniLn.
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C The Age of Producers

This appendix concerns properties of the age density, fni(a), of firms from i that are actively selling (with

k ≥ 1 buyers) in location n. This density, the third one introduced in Section 5.2, is:

fni(a) =
f2(a)

∫∞
0

(
1− e−aλniη∗n(x)

)
dx∫∞

0

∫∞
0
f2(a′)

(
1− e−a′λniη∗n(x)

)
dxda′

.

To find the modal age âni of a firm from i that is actively selling in n, we set the derivative of this density

equal to zero to obtain:

−f ′2(âni)

∫ ∞
0

(
1− e−âniλniη

∗
n(x)

)
dx = f2(âni)

∫ ∞
0

λniη
∗
n(x)e−âniλniη

∗
n(x)dx.

Rearranging this expression:

− ânif
′
2(âni)

f2(âni)
=

∫∞
0
âniλniη

∗
n(x)e−âniλniη

∗
n(x)dx∫∞

0

(
1− e−âniλniη∗n(x)

)
dx

= qni(1; âni),

where qni(1; a), from Section 5.1, is the fraction of firms with exactly one customer in n among firms age a

from i that are actively selling in location n.

Since qni(1; a) > 0, the modal age âni is beyond the peak of f2(a), that is âni > (1 − β)/g. To say more

we calculate the elasticity of the second age density:

af ′2(a)

f2(a)
= −ga+ 1− β.

The modal age for the third density therefore satisfies:

âni =
qni(1; âni) + 1− β

g
.
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