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A B S T R A C T

While much research has focused on the ways in which stereotyping and prejudice follow from category-based
perception of others, less work has examined how and when category-based perception emerges in the first
place. Here we adopt a number estimation task to explore perceivers' ability to estimate the number of in-
dividuals belonging to a given social category (race or gender) from briefly presented arrays of faces. We also
investigate facial features that are crucial for this ability. Across 6 pre-registered studies (n=461) we present
novel evidence that 1) people can extract gender and race from brief displays of up to 14 faces (performance for
race is better than gender estimation, approaching that in dot estimation); 2) only the encoding of gender is
affected when hair is removed from faces, while the encoding of both gender and race is disrupted when lu-
minance levels of the faces are equalized; and 3) this ability is disrupted by inversion when hair has been
removed and luminance has been controlled but not when the stimuli are uncontrolled. This research in-
vestigates people's social category enumeration abilities with manipulations and nonsocial stimuli comparisons,
and has implications for person perception and prejudice formation.

Consider walking through Times Square on a crowded afternoon. A
sea of faces confronts you. What information about the people you
encounter can you extract from a quick glance? The current research
focuses on one part of this question, specifically the ability to categorize
and enumerate the racial or gender makeup of an array of faces. In
particular, can observers estimate the number of faces belonging to a
subgroup (i.e., males, females, Black people, or White people) from
arrays containing faces belonging to both race or gender categories? If
so, what aspects of faces (e.g., hair type, skin tone) does this ability
depend on?

Certainly humans are highly expert at face perception. Human ob-
servers form first impressions of faces in a very short period of time
(e.g., as short as 33ms) on various dimensions including competence,
trustworthiness, and attractiveness. Importantly, their judgments are
similar to those that develop after more exposure time, suggesting that
lengthy observation is not necessary for reliable person perception
(Willis & Todorov, 2006). More relevant to the present research, per-
ceivers can quickly categorize a face based on gender and race
(Freeman, Pauker, Apfelbaum, & Ambady, 2010; Martin et al., 2015;
Zarate & Smith, 1990). In those studies, participants are usually shown
one face at a time, and are asked to indicate its gender/race (or respond
if the accompanying description about gender/race is correct or

incorrect). While this research provides useful evidence that people can
rapidly categorize one face based on gender and race, it does not speak
to crowd perception, that is the ability to simultaneously categorize and
enumerate a group of gendered and racial faces.

Perhaps the most relevant literature for crowd perception is re-
search on ensemble perception. Ensemble perception, sometimes re-
ferred to as summary representation, is the idea that rather than
faithfully representing all details of the world, our brain exploits the
statistical regularities to create a summary, or “gist” of the scene, thus
making perception more efficient (Ariely, 2001; Haberman & Whitney,
2011; Whitney & Yamanashi Leib, 2018). People have the visual me-
chanism to extract summary statistical information from visual scenes,
including emotions, diversity, and hierarchy from faces (e.g., Haberman
& Whitney, 2009; Phillips, Slepian, & Hughes, 2018). For gender ca-
tegorization, people can rapidly perceive the sex ratio of a mixed-sex
display, and this ratio further affects judgments of threat (Alt, Goodale,
Lick, & Johnson, 2017) and social attitudes (Goodale, Alt, Lick, &
Johnson, 2018), as well as perceiver's sense of belonging (Goodale
et al., 2018). For race categorization, people can perceive the average
race (e.g., Jung, Bülthoff, & Armann, 2017) and estimate the majority
race (Thornton et al., 2019) from arrays of faces, and perceive differ-
ence in average emotions between two racial subgroups in a mixed-race
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display (Lamer, Sweeny, Dyer, & Weisbuch, 2018), implying that they
encode the racial identity of the constituent faces. Further, seeing
emotionally segregated interracial crowds for merely 1/3 s leads to
fewer biracial judgments and more racial essentialism (Lamer et al.,
2018). Together, these studies demonstrate that people can extract
gender and race ratios in an array of faces, with downstream influences
on attitudes and judgments. However, little work has systematically
explored the sensitivity or limits of this ability or how any such sensi-
tivity relates to the ability to enumerate simpler non-social stimuli such
as dot arrays, which might be thought to represent the underlying
cognitive competence driving performance in such tasks (perhaps the
closest exception is ; Thornton et al., 2019) they compare the ability to
estimate racial compositions of crowds with more versus less controlled
stimuli).

In the present work we systematically explore people's ability to
enumerate the number of gendered/racial faces in a crowd. In so doing
we adapt number estimation tasks used in vision science and numerical
cognition literatures, where studies usually involve simple, low-level,
and nonsocial stimuli like colored dots (Horne & Turnbull, 1977). In a
typical dot estimation task, participants are shown brief displays of a
number of dots, and are asked to indicate the total number of dots. In
more complex cases there might be dots of several different colors, and
participants are asked to indicate the number of dots of a specific color
(i.e., they are asked to estimate a subset). This work demonstrates that
perceivers can enumerate two subsets in parallel (Halberda, Sires, &
Feigenson, 2006) and they appear to do so automatically and unin-
tentionally (Cordes, Goldstein, & Heller, 2014).

In our adapted number estimation task, participants are asked to
extract the numerosity of a subset (Studies 1 and 2 and replications of
Studies 1 and 2), e.g., the number of female faces in a display of male
and female faces. Because the locations of faces, the total number of
faces, which subgroup is being asked about, and the number of faces in
the subgroup all change from trial to trial, participants face the
daunting task of rapidly extracting category information and estimating
the numerosity of the relevant subgroup. This reflects a more difficult
test than past work has included (past studies fix the total number and
locations of faces, and/or ask for a majority estimate instead of nu-
merosity estimate; see Alt et al., 2017; Goodale et al., 2018; Lamer
et al., 2018; Thornton et al., 2019), but also one that more closely maps
onto complex and dynamic real scenes. After establishing participants'
basic ability to extract race and gender numerosities, we go on to ex-
amine the specific features that enable this categorization/enumeration
ability (or put differently, what manipulations would disrupt categor-
ization/enumeration). Inversion, hair-removal and luminance-control
are common practices in this literature to examine processes of face
perception. More specifically, in the literature of face perception, in-
version is generally used as a way to distinguish configural vs. featural
processing of faces (Leder & Bruce, 2000; Maurer, Grand, & Mondloch,
2002; Taubert, Apthorp, Aagten-Murphy, & Alais, 2011; Yin, 1969),
and hair and luminance are viewed as cues for gender and race en-
coding both in literature and in lay beliefs. In fact, many studies begin
with manipulated faces that have gone through hair removal and lu-
minance control to explore face perception abilities in the absence of
these cues (e.g., Haberman & Whitney, 2009, 2011; see Thornton et al.,
2019 for an exception). In order to investigate how much each of these
features (inversion, hair, and luminance) contribute to categorization of
gender and race, we go on to invert faces (Studies 3), remove hair and
ears from upright faces (Study 4), further grey-scale and luminosity-
match faces (Study 5), and finally invert the hair-removed, luminance-
matched faces (Study 6). In what follows, we describe our methodo-
logical and analytical approaches and then describe each study in de-
tail. We report how we determined our sample size, all data exclusions,
all manipulations, and all measures in these studies.

1. Methodological approach

1.1. Stimuli

We used male and female faces of White and Black individuals from
the Chicago Face Database (CFD) (Ma, Correll, & Wittenbrink, 2015)
stimuli are accessible upon request at https://chicagofaces.org/default/
download/). We only included faces with high category consensus so
that the stimuli were unambiguously male/female or Black/White (95%
agreement by CFD raters on male/female and Black/White category
judgments). To include a wide range of category typicality, in each of
the four sub-categories (i.e., White male, White female, Black male, and
Black female), we selected 20 faces, half of them being high on both
gender-typicality (masculinity/femininity) and race-typicality (Euro-
centricity/Afrocentricity), and half being low on both dimensions as
divided by median ratings, constituting 80 faces in the stimuli set
(modified stimuli can be shared upon request; details for the specific
CFD stimuli we used can be found at https://osf.io/5ka94/?view_
only=15c365b391ed4e4d9d38c811ea359392). The original face
images are head-to-shoulder photos, including hair and shoulder part of
a gray-colored T-shirt. Each image was set to a standardized size of
213× 150 pixels for use in the current studies and was presented
against a white background.

1.2. Apparatus

All tasks were programmed using Inquisit Millisecond software
package 4 (Version 4.0.10.0 (2666)) or 5 (Version 5.0.9.0 (4084)),
https://www.millisecond.com/download/. For in-lab testing (Studies 1
and 2), the tasks were presented on a 15.4” MacBook Pro Laptop
computer (359-mm×247-mm). Viewing distance was unconstrained
but was approximately 50 cm. For online testing (replication of Studies
1 and 2, and Studies 3–6), tasks were administered using Inquisit Web
Player (Version 4.0.10 or Version 5.0.11.0 (4157)). Participants used
their own computers and so testing condition was unconstrained.
Approximately, each face stimulus subtended 1.15×1.38 degrees of
visual angle.

1.3. Task design

Across studies, we adopted a number estimation task to investigate
people's ability (i.e., sensitivity) to quickly categorize and enumerate
gendered and racial faces from a group of faces. To do so, we presented
participants multiple trials consisting of 8, 10, 12, or 14 randomly se-
lected faces of contrasting gender (in gender estimation) or race (in race
estimation). In each trial (see Fig. 1 for schematic of trials), participants
first saw a fixation cross in the center of the screen (1.25 s), followed by
a blank screen (1 s). Then a group of faces briefly appeared at rando-
mized locations on the screen (1 s). After the display all faces dis-
appeared and one randomly-selected question appeared, asking parti-
cipants to indicate either how many male, female, or total faces (in
gender estimation) or how many White, Black, or total faces (in race
estimation) they had seen on the previous screen. Participants entered
the number using keyboard and then clicked a button at the bottom of
the screen to proceed to the next trial. In gender estimation trials, all
faces were of the same race, but both genders appeared, with 2–11 faces
being male or female[1]. Similarly, in race estimation trials, all faces
were of the same gender, but both races appeared, with 2–11 faces
being Black or White.

1 Specifically, for a total set of 8 faces, numbers of faces in each of the two
sub-categories could be 2, 4, or 6; for a total set of 10 faces, those numbers
could be 2, 5, or 8; for a total set of 12 faces, those numbers could be 2, 4, 6, 8,
or 10; for a total set of 14 faces, those numbers could be 3, 5, 7, 9, or 11.
Overall, numbers of faces in a subset ranged inclusively from 2 to 11.
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At the beginning of the experiment, participants did a practice block
which consisted of 9 trials of dot estimation (i.e., estimating the number
of red/blue/total dots on the screen; the schematic of trials was similar
to face trials). Then they completed two experimental blocks of 45 face
trials (90 trials in total), of which 60 trials were considered critical
trials (asking for the number of male or female faces in gender esti-
mation, or asking for the number of Black or White faces in race esti-
mation). The remaining 30 trials asked for the total number of faces in
the display (rather than the number of faces of a specific category).
Because these trials did not require extracting category information
they were broadly similar to a simple number estimation task and were
included to ensure that reasonable levels of estimation sensitivity were
possible on our task, i.e., with stimuli as rich as photographs of faces.

In all studies, in the end of the experiment, participants' strategies to
complete the task and their demographic information were collected.
To probe ability to introspect on their performance, in some of the
studies (Studies 1–3), we also asked participants to give self-reports on
their performance before and/or after the face trials (e.g., “how accu-
rate do you think you will be/you were”).

1.4. Analytical approach

For ease of description, we always refer to the number of target
faces being asked for (i.e., the number of Black, White, male or female
faces; mean-centered prior to analysis) as “target number”, and the total
number of faces on the screen (i.e., summing across all social categories;
mean-centered) as “total faces”. “Target type” refers to whether the trial
was gender estimation or race estimation (dummy-coded, with gender
as reference) and “question” refers to whether participants were asked
about male or female faces (in gender estimation) or Black or White
faces (in race estimation). In each study, before data analyses, and in
accordance with our pre-registered analysis plan (see Results section),
we first excluded data from participants whose mean responses
were> 2 SDs away from the mean of all participants, which led to the
elimination of data from between one and four participants per study.
For included participants we also excluded any individual trial in which
the participant's estimate was +/− 3 SDs away from the pooled esti-
mate for that trial type (defined as question× target number), which
constituted about 1% of the data (ranging from 1.03% to 1.26% across
studies). We used linear mixed effects models, which allow the deli-
neation of random versus fixed effects, with a random intercept for
participant to respect the nested structure of the data. Data and analysis

code to replicate all analyses and to create all plots can be found at:
https://osf.io/5ka94/?view_only=
15c365b391ed4e4d9d38c811ea359392.

For primary analyses we followed our pre-registered analysis plan
for each study, which generally involved exploring the effect of one
manipulated factor (e.g., inversion) related to stimulus display prop-
erties (i.e., target number and total faces). We used the “lme4” and
“lmerTest” packages in R for linear mixed effects models (using the
lmer() function). Our main interest was the effect of target number, i.e.,
how sensitive the participants were to the increase of target number.
We explore sensitivity in two ways. First, as a raw measure of sensi-
tivity, we used unstandardized regression coefficients beta (B). Positive
betas whose confidence intervals did not include 0 are taken to indicate
that participants were sensitive to the increase of target number and
adjusted their answers accordingly. Because we used unstandardized
betas, a participant with perfect target sensitivity would have a beta of
1, i.e., perfect encoding of every unit increase in target number. Thus, a
beta of 0.4 meant that for each unit increase in target number the
participant increased her estimate by 0.4 units on average (but note that
unstandardized betas are sensitive to measurement scale and should not
be taken as estimates of effect sizes). We also report the Pseudo-R2

(variance explained), an effect size measure for linear mixed-effects
models (following Nakagawa & Schielzeth, 2013), as the other indicator
of sensitivity. This statistic is not sensitive to measurement scale and so
better reflects the predict power of that term.

One potentially confounding strategy that participants could adopt
would be to simply increase their estimate based on the total number of
faces they perceived, without actually attending to the number of in-
dividuals from the requested sub-category. Because target number and
total number are correlated, this could create the illusion of good per-
formance. To address this all models controlled for the total number of
faces in the display, but our primary variable of interest remains target
number. In each of the studies, below, we report the regression models,
model output, and coefficient plots for main variables (i.e., target
number, total faces, and any manipulated factor). In lab Studies 1 and 2
and their online replications we observed a few effects of question (i.e.,
whether male, female, Black, or White targets were enumerated), but
because such effects were always unpredicted, small, and inconsistent
(in that they never occurred in both the initial and replication studies),
we reserve discussion of them to supplemental materials.

To make direct comparisons across studies and to investigate
changes in performance after each manipulation, we took two

Fig. 1. Schematic of a typical number estimation (face) trial throughout all studies.
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additional analysis approach. First, we fit a set of additional models that
could be consistently employed across all studies (separately for gender
and race). In these models we only included target number and total
faces, the two factors consistent across all studies. This allows us to
compare regression coefficients for target number and for total faces
across studies, as well as to compare the proportion of residual variance
explained by each term across the different manipulations (as a mea-
sure of effect size), providing a complementary picture of estimation
ability across all studies via a readily interpreted effect size metric.
Second, to compare accuracy across studies, we calculated absolute
accuracy/error scores by computing the root of the mean square of the
difference between the participant's estimate and the target number
(i.e., adding up the square of each estimate-target number pair, divided
by the number of pairs, and computing a square root of this value).
Before this calculation, we excluded any individual square error terms
that was +/− 3 SDs away from the pooled square error terms, as these
were unlikely to reflect true task compliance and reflected our pre-
specified trial-level exclusion criterion.

We also asked participants for their strategies in performing the task
across all studies, as well as self-reports on their own performance in
Studies 1 to 3. Because we did not find their responses particularly il-
luminating, we present and discuss them in supplemental materials.

2. Part 1: Automatic encoding of a group of gendered and racial
faces (Studies 1–2)

2.1. Study 1 and 2 (In-lab)

The aim of Study 1 and 2 was to validate our method to investigate
people's ability in estimating the number of gendered (Study 1) and
racial (Study 2) faces when 8 to 14 faces were briefly presented. We
hypothesized that people can rapidly extract gender and race from brief
displays of multiple mixed-gender and mixed-race faces (pre-registra-
tion link: http://aspredicted.org/blind.php?x=nu24a8).

2.1.1. Method
2.1.1.1. Participants. Participants were recruited from an
undergraduate participant pool and received partial course credit for
an introductory psychology class. We ran a pilot study to validate the
study design, but since we had only limited pilot data to determine
necessary power and we anticipated running another pre-registered
replication study online, Study 1 also gave us an opportunity to
evaluate the necessary sample size for the following studies. We
determined n=30 as our sample size per study following a recent
related study that involves estimation of subsets and total number
(Cordes et al., 2014). The final sample included 29 participants in Study
1 (13 female, Mage= 18.86, SDage= 0.80, 55% White/European-
American, 21% Asian, 10% Latino/Hispanic, 10% Mixed or
Multiracial, 3% Black/African-American) and 28 participants in Study
2 (16 female, Mage= 18.71, SDage= 0.98, 46% White/European-
American, 29% Asian, 11% Mixed or Multiracial, 7% Latino/
Hispanic, 7% Black/African-American). Three additional participants
were also tested but were excluded from data analyses because their
mean responses were 2 SDs away from the mean response of all
participants (one in Study 1 and two in Study 2), following our pre-
registered exclusion criteria. Participants were randomly assigned to
complete Study 1 or Study 2.

2.1.1.2. Design. In Study 1, participants did 2 experimental blocks of
gender estimation, with one all-White block containing only White
faces and one all-Black block containing only Black faces (mixed-gender
displays; order of blocks was randomized). Similarly, in Study 2,
participants did 2 experimental blocks of race estimation, with one
all-male block containing only male faces and one all-female block
containing only female faces (mixed-race displays; order of blocks was
randomized). The rest of the design was detailed in Methodological
Approach.

Fig. 2. Regression coefficients (on the x-axis, unstandardized regression coefficient betas and 95% confidence intervals; a beta of x meant that for each unit increase
in target number the participant increased her estimate by x unit) for target number and total faces in Study 1 (Gender) and Study 2 (Race). The other predicators,
question and the target number by question interaction, were also included in the model but for clarity are omitted here (see supplemental materials for the figure
with all predictors).
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2.1.2. Results and discussion
Following our pre-registered analysis plan, we excluded any esti-

mate that is +/− 3 SDs away from the pooled estimate for that trial
type, which constituted 1.26% and 1.03% of the data respectively. Then
we used linear mixed effects models predicting estimation as a function
of target number, question (i.e., questions on the number of male or
female faces in gender estimation, or the number of White or Black
faces in race estimation; contrast-coded), and their interaction, con-
trolling for total faces, with a random intercept and a random slope
(target number× question) for participant (for a detailed description of
these terms, see Analytical Approach; see Supplemental Materials for R
code).

As shown in Fig. 2, we found a significant positive effect of target
number in both studies (Study 1 gender, B=0.34, SE=0.03, t
(32.08)= 12.76, p < .001, partial R2 = 0.17 (0.14, 0.20); Study 2
race, B=0.61, SE=0.03, t (29.20)= 23.12, p < .001, partial
R2 = 0.47 (0.44, 0.50)), indicating sensitivity to the increase of target
number. Interestingly, in both studies, while there was a small effect of
total faces (Study 1 gender, B=0.18, SE=0.02, t (1648.94)= 8.53,
p < .001, partial R2 = 0.03 (0.02, 0.05); Study 2 race, B=0.05,
SE=0.02, t (1595.85)= 2.58, p < .01, partial R2 = 0.003 (0.00,
0.01)), the inclusion of this term did not eliminate or even much reduce
the effect of target number, suggesting that estimation was largely
driven by sensitivity to the target category rather than inferred from the
total number of faces in the display (see supplemental materials for
additional effects involving question).

Consistent with our predictions, we found that people can extract
gender and race from brief displays of a group of gendered and racial
faces, and that their estimation was due to target sensitivity (not merely
adjusting for total faces). Further, participants were considerably more
sensitive in the race task than in the gender task, as clearly visible in
Fig. 2. We also provide Figs. 3 and 4 to show the effect of target sen-
sitivity more clearly (for regression plots for the following studies, see
supplemental materials). We note that visual inspection of these re-
gression plots suggests a “compression effect” in which participants
tended to over-estimate small subset sizes and under-estimate large
subset sizes. While speculative, this might have occurred because some
participants attempted to estimate the number of a subset by dividing

their estimate of the total number by 2 (e.g., if there were 12 faces in
total, estimating 6 of each subset). This strategy could create this
compression effect, though it is important to note that it cannot explain
our larger pattern of results because such a strategy would entail that
only total faces, and not target number, predicts responses.

A simulation-based power analysis using Study 1 data (using the
“simr” package in R) showed that we had sufficient power (> 90%) to
detect a target number effect (i.e., regression coefficient beta) as small
as 0.1, an effect below which we would consider estimation ability to be
inconsequential, and an effect< 1/3rd what we observed in Study 1.
Therefore, our studies were well-powered with n=29 sample size.
However, because we anticipated the possibility of increased noise and
data loss in the online replication, due, for example, to inattentive
participants, we doubled the sample size to n=60.

2.2. Replication of Study 1 and 2 (MTurk)

We sought to replicate the results of Study 1 and 2 using an online
sample on Amazon Mechanical Turk (MTurk), with the goal of running
future studies online should we be able to replicate critical effects. The
final sample included 64 participants in Study 1 replication (31 female,
Mage= 39.94, SDage= 12.30, 86% White/European-American, 6%
Black/African-American, 3% Asian, 3% Latino/Hispanic, 2% Other)
and 62 participants in Study 2 replication (35 female, Mage= 36.97,
SDage= 9.48, 79% White/European-American, 10% Black/African-
American, 6% Asian, 3% Latino/Hispanic, 2% Mixed or Multiracial),
after excluding 7 participants (3 in Study 1 replication and 4 in Study 2
replication) because their mean responses were>2 SDs away from the
mean of all participants. Participants were randomly assigned to com-
plete one of the two studies. We analyzed data following our pre-re-
gistered analysis plan (pre-registration link: http://aspredicted.org/
blind.php?x=yi56xx) and as shown in Fig. 5, we replicated the main
findings in Study 1 and 2 (for the effect of target number, in Study 1
replication B=0.34, SE=0.03, t (67.12)= 13.38, p < .001, partial
R2=0.14 (0.12, 0.16); in Study 2 replication B=0.64, SE=0.03, t
(63.84)= 19.14, p < .001, partial R2=0.34 (0.32, 0.37)) (see sup-
plemental materials for additional effects involving question).

Fig. 3. Regression plot for male, female, and total faces in Study 1 (Gender). Points represent individual estimates (jittered); lines reflect linear regression predicting
estimate from target number.
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3. Part 2: Manipulations to disrupt categorization and
enumeration (Studies 3–6; Online)

Having successfully replicated the main results of Study 1 and 2
using online samples, we continued the investigation with online par-
ticipants for Studies 3 through 6 (Studies 3–5: tested on MTurk; Study 6:
tested an undergraduate participant pool online). Our goal was to

gradually modify the faces and thereby explore what aspects of the
faces were driving performance in the first studies. In Study 3, we used
both upright and inverted faces to explore the effect of inversion on
social category enumeration. In Study 4, we manually removed hair
(and ears) from faces to explore the role of these features in enu-
meration. In Study 5, we equalized the mean luminance of the hair-
removed faces using the SHINE toolbox (Willenbockel et al., 2010) in

Fig. 4. Regression plot for White, Black, and total faces in Study 2 (Race). Points represent individual estimates (jittered); lines reflect linear regression predicting
estimate from target number.

Fig. 5. Regression coefficients (on the x-axis, unstandardized regression coefficient betas and 95% confidence intervals; a beta of x meant that for each unit increase
in target number the participant increased her estimate by x unit) for target number and total faces in Replication Study 1 (Gender) and Replication Study 2 (Race).
The other predicators, question and the target number by question interaction, were also included in the model but for clarity are omitted here (see supplemental
materials for the figure with all predictors).
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Matlab, allowing us to explore the role of luminosity in driving per-
formance. Finally, in Study 6, we inverted the hair-removed luminance-
controlled faces to explore the combined effects of all these manip-
ulations on enumeration. We predicted that all or most of these ma-
nipulations would negatively affect performance, though it was an open
question what manipulations would have the largest effects or if any of
these manipulations would completely disrupt encoding, as well as if
degradations in performance would occur similarly for race and gender.
In an effort to simplify the design from prior studies, we only included
White faces in gender trials and male faces in race trials.

3.1. Study 3: inverting faces

3.1.1. Method
3.1.1.1. Participants and design. In Study 3 (pre-registration link:
http://aspredicted.org/blind.php?x=mw9ek9), the final sample
included 58 participants (25 female, Mage= 35.86, SDage= 11.24,
78% White/European-American, 7% Asian, 7% Black/African-
American, 7% Latino/Hispanic, 2% Mixed or Multiracial). They were
randomly assigned to gender estimation version (n=27) or race
estimation version (n=31). Participants completed both an upright
face block and an inverted face block in a randomized order. An
additional 4 participants (3 in gender version, 1 in race version) were
tested but excluded because their mean responses were>2 SDs away
from the mean of all participants in that version.

3.1.2. Results and discussion
Following our pre-registered analysis plan, we first excluded any

trial-level outliers, which constituted 1.11% of the data in each version.
Then we used two linear mixed effects models (one for gender version
and one for race version) predicting estimation as a function of target
number, inversion (whether the faces were inverted or upright; dummy-
coded, with upright faces as reference), and their interaction, control-
ling for total faces, with a random intercept and a random slope (target
number× inversion) for participant. As shown in Fig. 6, we found a
significant effect of target number in both versions (Study 3 gender,
B=0.31, SE=0.04, t (28.81)= 7.96, p < .001, partial R2=0.07
(0.05, 0.10); Study 3 race, B=0.60, SE=0.05, t (32.09)= 11.39,
p < .001, partial R2=0.21 (0.17, 0.24)), indicating target sensitivity.
Unexpectedly, there was no effect of inversion (ps > 0.71) or target
number× inversion interactions (ps > 0.21); inversion did not seem
to harm performance. Additionally, in both versions there was a sig-
nificant effect of total faces (Study 3 gender, B=0.29, SE=0.02, t
(1540.65)= 12.04, p < .001, partial R2=0.07 (0.05, 0.10); Study 3
race, B=0.11, SE=0.02, t (1765.91)= 4.62, p < .001, partial
R2=0.01 (0.00, 0.02)), with the effect of total faces in the gender
version approaching the size of the effect of target number.

Contrary to our prediction, results showed that people can extract
gender and race from inverted faces as well as they do with upright
ones. This finding seems at odds with the past research documenting
the face inversion effects in configural or holistic face processing (i.e.,
perceiving relations among facial features; Freire, Lee, & Symons, 2000;
Taubert et al., 2011). However, past studies also show that in featural
processing of faces (i.e., processing of featural cues such as luminance,
hair, and eyes), there is no face inversion effect (Freire et al., 2000). A
possible explanation for our finding is that with unmanipulated faces
(i.e., with hair/ears and real colors), there are enough featural cues to
encode gender and race information even when faces are inverted (for a
discussion of how using artificial, well-controlled faces might affect
inversion results, see Valentine, 1988). We return to this in the General
Discussion.

However, we noticed that total faces might play a larger role in
predictive power than in previous studies because regression coeffi-
cients for total faces increased, especially in gender estimation. We also
return to this issue in the General Discussion.

In the following studies, we turned to directly manipulating the

features of faces. In Study 4, we removed hair (and ears) from faces,
leaving only the main part of the face intact. We predicted that people's
performance in extracting gender would suffer and would suffer more
than extracting race, because hair is likely a stronger cue for gender
than for race. We had no prediction regarding whether people's per-
formance in extracting race would suffer or not.

3.2. Study 4: removing hair

3.2.1. Method
3.2.1.1. Participants and design. In Study 4 (pre-registration link:
http://aspredicted.org/blind.php?x=eu7zw2), the final sample
included 58 participants (22 female, Mage= 34.14, SDage= 8.61, 74%
White/European-American, 10% Black/African-American, 9% Asian,
5% Mixed or Multiracial, 2% Latino/Hispanic) after excluding 2
participants because their mean responses were>2 SDs away from
the mean of all participants. Each participant completed both gender
estimation block (all White faces) and race estimation block (all male
faces) in a randomized order, where all faces were hair-removed.

3.2.2. Results and discussion
Following our pre-registered analysis plan, we first excluded any

trial-level outliers, which constituted 1.23% of the data. In order to
examine the effect of hair removal in comparison to the original data,
we combined the data (hair was removed) with the Study 1 online re-
plication data (using the all-White block; hair was not removed) and the
Study 2 online replication data (using the all-male block; hair was not
removed). We started with our pre-registered linear mixed effects
model, predicting estimation as a function of target number, target
type, hair-removal (whether hair was removed; dummy-coded, with
non-removed faces as reference), and their interactions, controlling for
total faces, with a random intercept and a random slope (target
number) for participant. We found a marginally significant 3-way in-
teraction (p= .066), so we decomposed into 2 models, one each for
gender and for race (see Fig. 7 for results). In gender estimation, there
were significant effects of target number (B=0.28, SE=0.03, t
(136.26)= 10.97, p < .001, partial R2=0.04 (0.03, 0.06)) and total
faces (B=0.32, SE=0.02, t (3473.89)= 16.93, p < .001, partial
R2=0.06 (0.05, 0.08)), with more predictive power from total faces
than from target number, though target number remained similar in
magnitude to prior studies. We also found a significant effect of hair-
removal (B=0.91, SE=0.19, t (119.45)= 4.69, p < .001, partial
R2=0.03 (0.02, 0.04)), but the interaction between hair-removal and
target number was not significant (p > .82). Thus, participants made
larger estimates for hair-removed faces compared to unmanipulated
ones but the acuity of their estimations was not affected. In race esti-
mation, there were significant effects of target number (B=0.70,
SE=0.04, t (121.49)= 19.26, p < .001, partial R2=0.26 (0.24,
0.29)) and total faces (B=0.08, SE=0.02, t (3378.54)= 5.00,
p < .001, partial R2=0.01 (0.00, 0.01)). There was also a marginally
significant effect of the interaction between hair-removal and target
number (B=0.09, SE=0.05, t (116.24)= 1.76, p= .08, partial
R2=0.002 (0.00, 0.01)), suggesting that removing hair slightly im-
proved performance, albeit only marginally.

Next, in Study 5 we would further equalize the mean luminance of
the faces to explore whether we could disrupt the encoding of race (and
maybe further disrupt the encoding of gender).

3.3. Study 5: equalizing luminance

3.3.1. Method
3.3.1.1. Participants and design. In Study 5 (pre-registration link:
http://aspredicted.org/blind.php?x=6iz28u), the final sample
included 58 participants (27 female, Mage= 37.41, SDage= 10.48,
76% White/European-American, 9% Asian, 9% Black/African-
American, 3% Latino/Hispanic, 2% Mixed or Multiracial, 2% Prefer
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not to say) after excluding 2 participants because their mean responses
were> 2 SDs away from the mean of all participants. They completed
both gender estimation block (all White faces) and race estimation
block (all male faces) where all faces were hair-removed and

luminance-controlled.

3.3.2. Results and discussion
Following our pre-registered analysis plan, we first excluded trial-

Fig. 6. Regression coefficients (and 95% confidence intervals, unstandardized) for target number, total faces, inversion, and target number× inversion interactions
in Study 3-Gender and Study 3-Race (upright faces as reference). Results showed that inversion did not harm performance.

Fig. 7. Regression coefficients (and 95% confidence intervals, unstandardized) for target number, total faces, hair removal, and target number×hair removal
interactions in Study 4-Gender (combining with Study 1 replication data) and Study 4-Race (combining with Study 2 replication data) (with non-removed faces as
reference). Results showed that hair removal affected gender estimation (by leading to larger estimates) but not race estimation.
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level outliers, which constituted 1.05% of the data. Then we combined
these data (hair-removed plus luminance-controlled faces) with Study 4
data (hair-removed faces). We started with a linear mixed effects model
similar to that in Study 4, predicting estimation as a function of target
number, target type, luminance-control (whether luminance was
equalized; dummy-coded, with non-luminance-controlled stimuli as
reference), and their interactions, controlling for total faces, with a
random intercept and a random slope (target number) for participant.
We found a significant 3-way interaction (p < .001), so we decom-
posed into 2 models, one each for gender and for race (see Fig. 8 for
results). In gender estimation, there were significant effects of target
number (B=0.24, SE=0.02, t (129.89)= 9.96, p < .001, partial
R2=0.03 (0.02, 0.04)) and total faces (B=0.41, SE=0.02, t
(3307.78)= 19.91, p < .001, partial R2=0.08 (0.07, 0.10)), in-
dicating target sensitivity and a large effect of total faces. We also found
a significant effect of luminance-control (B=−0.74, SE=0.27, t
(113.40)=−2.70, p < .01, partial R2=0.02 (0.01, 0.03)) and an
interaction between target number and luminance-control (B=−0.11,
SE=0.03, t (113.98)=−3.23, p < .01, partial R2=0.003 (0.00,
0.01)), suggesting that participants were less sensitive to target increase
after this manipulation. In race estimation, there were significant ef-
fects of target number (B=0.77, SE=0.04, t (116.79)= 21.23,
p < .001, partial R2=0.27 (0.24, 0.29)) and total faces (B=0.15,
SE=0.02, t (3247.63)= 7.95, p < .001, partial R2=0.02 (0.01,
0.02)), indicating considerable ability to extract numerosity from the
arrays. Also, the effect of luminance-control (B=−0.71, SE=0.20, t
(113.54)=−3.51, p < .001, partial R2=0.02 (0.01, 0.03)) and the
interaction between target number and luminance-control (B=−0.39,
SE=0.05, t (110.82)=−7.67, p < .001, partial R2=0.05 (0.04,
0.06)) were significant, suggesting that participants were less sensitive
to target increase when luminance was equalized.

As predicted, we found that people's performance in extracting race
and gender suffered when luminance was equalized, as indicated by a
significant decrease in target sensitivity for both race and gender,
though effects were greater for race than gender. Moreover, we ob-
served larger regression coefficients for total faces and smaller regres-
sion coefficients for target number compared to all previous studies,
suggesting that participants' estimates were influenced more by total
faces than target number as the task became harder, a topic we return
to in the General Discussion. Next, in Study 6 we further invert these
hair-removed and luminance-controlled faces to explore the joint ef-
fects of these manipulations.

3.4. Study 6: inversion again

3.4.1. Method
3.4.1.1. Participants and design. In Study 6 (pre-registration link:
http://aspredicted.org/blind.php?x=de4bw2), the final sample
included 104 participants (62 female, Mage= 19.33, SDage= 1.23,
39% White/European-American, 22% Asian, 14% Latino/Hispanic,
10% Mixed or Multiracial, 9% Black/African-American, 4% Prefer not
to say, 2% Other). They were randomly assigned to gender estimation
version (n=52), where all faces were White, or race estimation version
(n=52), where all faces were male. We doubled the sample size
(compared to the first inversion study, Study 3) because we aimed to
increase the power to detect inversion effects. Participants completed
both upright face block and inverted face block in a randomized order,
where all faces were hair-removed and luminance-controlled. An
additional 6 participants (3 in gender version, 3 in race version) were
tested but excluded because their mean responses were>2 SDs away
from the mean of all participants in that version.

Fig. 8. Regression coefficients (and 95% confidence intervals, unstandardized) for target number, total faces, grey-scaling/luminance-control, and target
number× grey-scaling/luminance-control interactions in Study 5-Gender and Study 5-Race (combining with Study 4 data where faces were hair-removed but not
luminance-controlled; non-luminance-controlled stimuli as reference). Results showed that equalizing luminance harmed both gender and race estimation (by
decreasing target sensitivity).
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3.4.2. Results and discussion
Following our pre-registered analysis plan, we first excluded any trial-

level outliers, which constituted 1.13% (gender) and 1.11% (race) of the
data respectively. Then we used two linear mixed effects models, one for
each version (employing the same models as in Study 3; see Fig. 9 for
results). We found significant effects of target number (gender, B=0.16,
SE=0.03, t (55.25)=5.33, p < .001, partial R2=0.02 (0.01, 0.03);
race, B=0.34, SE=0.03, t (55.99)=12.12, p < .001, partial R2=0.08
(0.07, 0.10)) and total faces (gender, B=0.27, SE=0.02, t
(2945.82)=13.55, p < .001, partial R2=0.05 (0.04, 0.06); race,
B=0.17, SE=0.02, t (2978.01)=9.75, p < .001, partial R2=0.03
(0.02, 0.04)) in both versions. Importantly, there were significant effects of
the interaction between inversion and target number (gender, B=−0.09,

SE=0.03, t (52.72)=−2.54, p=.01, partial R2=0.003 (0.00, 0.01);
race, B=−0.11, SE=0.03, t (50.92)=−3.76, p < .001, partial
R2=0.01 (0.00, 0.01)) in both gender and race estimation; participants
were less sensitive to target increase when the manipulated faces were
inverted. Additionally, in race estimation, there was also a significant ef-
fect of inversion, B=−0.25, SE=0.11, t (49.04)=−2.33, p=.02,
partial R2=0.003 (0.00, 0.01).

While we did not include it in our pre-registered analysis plan, our
data also provide the opportunity to compare inversion effects between
gender and race estimation. To do so, following the models in Study 4
and 5, we also fit a linear mixed effects model predicting estimation as a
function of target number, target type, inversion (dummy-coded, with
upright faces as reference), and their interactions, controlling for total
faces, with a random intercept and a random slope (target number ×
inversion) for participant. We did not find any significant interactive
effects involving target type and inversion (ps > 0.39); inversion in-
fluenced gender and race estimation to a similar extent.

Taken together, we found that participants performed worse in ex-
tracting gender and race with inverted faces but only when those faces
were hair-removed and luminance-controlled. We note that this differs
from Study 3 in which inverted but otherwise uncontrolled faces were
used as stimuli and inversion did not affect performance. We return to
this difference in the General Discussion.

4. Comparison among all studies

We fit a set of additional models separately for gender and race that
could be consistently employed across all studies (see Analytical
Approach). Fig. 10 shows regression coefficients for target number
across manipulations, with performance in the dot estimation task
(practice block data for all participants across all studies) as another
comparison. Table 1 shows the error score and proportion of residual
variance explained by each term across different manipulations[2].

Fig. 9. Regression coefficients (and 95% confidence intervals, unstandardized) for target number, total faces, inversion, and target number× inversion interactions
in Study 6-Gender and Study 6-Race (upright faces as reference). Results showed that inversion harmed both gender and race estimation (mainly by decreasing target
sensitivity).

Fig. 10. Comparison of target sensitivity. This figure displays regression coef-
ficients for target number across studies/manipulations. Error bars are 95% CIs.
Sensitivity to target number decreased as we manipulated the faces and the task
became harder. Nonetheless, in all cases target sensitivity was stronger for race
(which was similar to that of dot estimation) than for gender estimation.

2 Specifically, we started with a null model predicting gender/race estimation
responses with only a random intercept for participant. We then sequentially
added first total faces or first target number in order to estimate the residual
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5. General discussion

Adapting the number estimation task to the study of social cate-
gorization, we investigated the categorization and enumeration of
gender and race from brief presentations of dynamic displays of mul-
tiple faces. Our findings show that people have the ability to not merely
attend to, but also rapidly extract the social identities contained in
crowds. This ability might well be useful when navigating complex
visual scenes, such as walking through a crowded square, but it may
also lead to less positive outcomes such as the perception of threat when
the crowd composition trends towards negatively stereotyped cate-
gories (e.g., Alt et al., 2017). This ability also plausibly relates to the
more general ability to extract meaningful summary statistics from
complex scenes (e.g., Haberman & Whitney, 2011); in this case, the
summary statistics are the approximate numeric magnitude of various
social category constituencies.

Across 6 studies we found that people can extract gender and race
from brief displays, though performance is better for race estimation
than gender estimation. Importantly, performance on race estimation
approached that of dot estimation, suggesting that our ability to re-
present and categorize race is on a par with that of simpler stimuli. We
also explored the limits of this ability across various manipulations of
the faces. Only the encoding of gender was affected when hair (and
ears) was removed from faces but the encoding of both gender and race
was disrupted when the mean luminance levels of the faces were
equalized. Surprisingly, the ability to enumerate gendered and racial
faces was not affected by inversion when the stimuli were uncontrolled
faces; inversion only harmed performance when we used controlled
faces (i.e., after hair-removal and luminance-control).

Our findings are consistent with past research on face perception
that shows people's ability to perceive gender and race from faces (e.g.,
Alt et al., 2017; Freeman et al., 2010; Lamer et al., 2018; Thornton
et al., 2019; Zarate & Smith, 1990). In our research, we further explored
the sensitivity of this effect and showed the change in face perception
abilities across manipulations and comparisons with simpler stimuli.
We provided strong evidence that shows people's reasonably good
enumeration abilities with manipulations and nonsocial stimuli com-
parisons: people could still categorize and enumerate gendered and
racial faces even after inversion and manipulations to remove hair and
control luminance, and they could enumerate racial faces at a similar
level as enumerating colored dots.

One seemingly surprising finding was the lack of inversion effects in
Study 3. Using full-color head-to-shoulder faces, we did not find any
difference between enumerating upright faces and inverted ones.
According to the literature on face inversion effects, for configural or
holistic face processing, that is, when processing depends on perceiving
the relations among facial features, inversion harms performance
(Freire et al., 2000; Taubert et al., 2011). By contrast, for featural
processing of faces (i.e., processing of featural information like lumi-
nance, hair, eye color, eye brows, chin, and face shape), there are often
no face inversion effects (Freire et al., 2000). Taken together, this might
suggest that gender and race categorization in our Study 3 depended on
featural processing. Interestingly, there is ongoing debate on whether
gender/race categorization relies on configural/holistic processing
(Baudouin & Humphreys, 2006; Caharel et al., 2011; Stevenage &
Osborne, 2006), on featural processing (Brown & Perrett, 1993), or
either/both depending on tasks and stimuli (Dupuis-Roy, Fortin, Fiset,
& Gosselin, 2009). Returning to our Study 3, one possibility is that the
use of full-color photographs in this study might facilitate featural
processing of faces, thereby eliminating potential effects of inversion.
We note that most past work on inversion effects used controlled sti-
muli that lack some features, such as grey-scaled or computer-generated
black-and-white faces, or drawings of faces that were also black-and-
white (Valentine, 1988). Similarly, with hair-removed grey-scaled faces
in our Study 6, we also found inversion effects. By reducing the salience
of featural cues, such stimuli might increase reliance on configural cues
and so increase the observed effects of inversion. Unraveling this ten-
sion would be a fruitful avenue for future work.

One important design in our studies was manipulating facial fea-
tures to disrupt the encoding of gender and race. Our first step was to
remove hair and ears from faces, a classic procedure used in the lit-
erature (in fact, many studies begin by controlling faces in this way).
We expected that performance would decrease and would decrease
more in gender estimation since hair is considered a salient feature
aiding gender categorization. Surprisingly, estimates were not degraded
when hair was removed, though perceivers did give somewhat larger
estimates overall, perhaps suggesting they thought their performance
was worse and so corrected by giving slightly higher estimates. For race
estimation, we did not find any changes in performance.

The manipulation that was most important in disrupting race cate-
gorization was controlling for mean luminance. Indeed, after making
faces black-and-white and also equalizing the mean luminance of White
and Black faces, in Study 5, we saw a substantial decrease in perfor-
mance in race estimation compared to prior studies. Also, we found that
performance in gender estimation was affected, though perhaps not as
dramatically. We note that by controlling for mean-luminance, we also

Table 1
Comparison of absolute accuracy (indicated by the error scores) and explained variance across studies. As we manipulated the faces and the task became harder, error
scores increased and overall explained variance decreased, with less variance explained by target number and more variance explained by total faces. In all cases,
target number explained more variance (and total faces explained less variance) in race estimation compared to gender estimation (in fact, before grey-scaling the
faces/luminance-control, race estimation was comparable to dot estimation), again suggesting that participants were better at race estimation than gender esti-
mation.

Manipulation n Target type Error Only target Only total Overall explained variance

None 29 Gender 2.55 24.11% 12.35% 26.77%
None 28 Race 1.85 53.55% 9.35% 53.70%
(None) Replication 64 Gender 2.59 21.22% 10.82% 23.58%
(None) Replication 62 Race 2.31 42.43% 10.44% 42.95%
Inversion 27 Gender 2.76 18.69% 20.27% 27.24%
Inversion 31 Race 2.26 41.71% 10.71% 42.17%
No hair 58 Gender 3.31 12.59% 18.43% 22.41%
No hair 58 Race 1.99 56.68% 11.12% 56.78%
Greyscale 58 Gender 3.28 8.41% 15.27% 17.53%
Greyscale 58 Race 2.86 18.82% 11.37% 21.87%
Inversion 2 52 Gender 3.19 3.54% 9.96% 10.43%
Inversion 2 52 Race 2.74 13.71% 9.25% 16.81%
Dot 461 Dot 2.52 38.31% 25.56% 40.68%

(footnote continued)
incremental variance explained by the addition of that factor. We also report
overall explained variance when we included both factors.
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grey-scaled the faces so that all faces became black-and-white. As real-
color faces are converted to black-and-white, some facial features and
gendered characteristics involving pigmentation might be lost, which
might harm gender estimation. In fact, color cues are important in face
recognition and higher-level vision in general (Tanaka, Weiskopf, &
Williams, 2001; Yip & Sinha, 2002). More relevant to current research,
color/pigmentation of faces plays a large role in gender classification
(Hill, Bruce, & Akamatsu, 1995; Nestor & Tarr, 2008; Tarr, Kersten,
Cheng, & Rossion, 2001). Future research aiming to tease these two
effects apart could manipulate colors of faces in several steps, for ex-
ample first grey-scaling faces and then controlling the mean luminance,
measuring estimation abilities after each step.

One interesting aspect of our results concerns the relative magni-
tude of the effects of target number and total faces. In early studies the
target number effect was always larger than the total faces effect,
suggesting that participants were (at least primarily) directly estimating
the relevant subsets (i.e., increasing their estimates according to the
increase of target faces not the increase of total faces). However, in later
studies, as the effect of target number declined, the effect of total faces
tended to increase. By the final studies on gender the predictive power
associated with total faces was larger than that of target number (see
Table 1). What does this mean? We think that when stimuli were de-
graded, participants who did not think they were able to estimate
subsets might instead employ an alternative strategy. More specifically,
they might increase their estimates of the queried subset in relation to
their estimate of total faces, for example by multiplying their total faces
estimates, which were always highly accurate, by a rough ratio corre-
sponding to their intuition of the subset sizes. This would reflect a
strategy shift. In other words, as the task became harder, perceivers
may have found their ability to extract the relevant subset compro-
mised, and may have come to rely more on the correlated cue of total
set size, assuming that larger arrays contained larger subsets. This “total
faces” strategy, estimating total faces and the gender/race ratio, par-
allels that sometimes seen in the ensemble perception literature, where
research shows that people can “compute” the mean and standard de-
viation of a group of stimuli by perceiving the crowd as an “ensemble”
(e.g., Haberman & Whitney, 2009). Since such an “ensemble” is a rather
coarse summary statistic of the visual scene, performance is somewhat
worse than when participants directly estimate subsets. To further ex-
plore the possibility of strategy shifts, future studies could directly
manipulate strategy by providing instructions, i.e., asking participants
to focus on subsets or total faces, and compare performances.

The current research leaves many interesting open questions for
future studies. First and foremost, one important issue regards levels of
“automaticity” of social categorization. In our studies we did not tell
participants which question would be asked prior to stimulus display,
but they always knew it was about gender or race. In other words, we
explicitly led participants to pay attention to social categories and then
measured their ability to encode them. Therefore, with the current
paradigm we cannot show whether people could or would enumerate
gendered and racial faces if they did not know that the study was about
gender or race. The present paradigm is not ideally suited to this
question, however, because participants would only be truly naïve prior
to and during the first trial. Future studies could explore other para-
digms that measure more “automatic” or “spontaneous” categorization,
for example by making social categories seem irrelevant to the current
task (Yang et al., n.d.). Some possible ways to do this include using a
one-trial version of this task with more participants or hiding the
gender/race questions among a variety of other questions (e.g., in in-
termixed trials, inserting filler questions like “How many faces were
happy/sad?”, “What is the average age of the faces?”, or “Did you see a
face at this location of the screen?”).

Future studies could also use a more continuous display of total
faces (e.g., from 8 to 20 total faces continuously; in our study each trial
had 8, 10, 12, or 14 faces) and include more mixed displays (displays
with both mixed-gender and mixed-race faces; in our study each trial

involved a mixed-gender single-race display or mixed-race single-
gender display). Moreover, providing cues about which subset to focus
on (i.e., which gender or race will be asked) before the stimuli onset
could tell us whether selective attention can be tuned to a subcategory
in advance. These cues might be especially useful when more than two
subsets of faces are involved (e.g., if all four subgroups, i.e., White male,
White female, Black male, Black female were in the display). By com-
paring performances with and without cues, one can test how many
subsets of faces are effectively encoded (i.e., using the point where
performance did not differ between cued- and uncued-conditions). In
addition, this task can also be used to measure categorization ability of
other races (e.g., Asian) and other social categories (e.g., age).

It would be also interesting to explore whether the gender/race of
the participants affected their performance on gender and race cate-
gorization in our studies. For example, would participants of a certain
gender/race perform better? Would they perform better when the
question is about their own gender/race or the other gender/race? In
our studies, although we had a more racially diverse undergraduate
sample (in Studies 1, 2, and 6) than online MTurk sample, the majority
of the participants were White/European-American (n=306, 66%),
with each study including only a small number of individuals from
other racial or ethnic groups. Given this, we were not able to perform
analyses focusing on these questions. We were able to exploratorily
examine gender-based subsetting, but did not find strong evidence for
differences in this regard. Future studies could look at how categor-
ization abilities might be affected by observer's gender and race,
especially in relation to the other-race effect (ORE; performance is
better for own-race than other-race faces on memory and perception,
see Malpass & Kravitz, 1969; and see Thornton et al., 2019 for results
that show that other-race faces are weighted more heavily than own-
race faces).

Another fruitful avenue for future research is to explore the me-
chanisms of social categorization and its relationship with prejudice.
Across six studies we showed that people are reasonably good at esti-
mating the number of gendered and racial faces from briefly presented
arrays of faces and that this ability is retained as stimuli are degraded in
various ways. But what does this ability mean? Clearly, it helps us
encode complex social information. But at the same time, it might also
serve as a precursor to prejudice and stereotypes against certain groups
(Dunham & Degner, 2013). This is because logically speaking, prejudice
and stereotypes are only possible after the target groups are identified
and categorized (e.g., due to links between categorization ability and
prejudice; see Lee, Quinn, & Pascalis, 2017). Hence, it is possible that
individuals who extract race or gender information more reliably might
also be more likely to deploy automatic forms of prejudice. That is, are
individual differences in sensitivity to gendered or racialized faces, or
experiences with those social categories, related to the extent of pre-
judice, particularly automatically activated forms of prejudice? Future
studies could build on our findings to look into these questions more
closely.

In closing, across six studies we provided evidence that people can
categorize and enumerate a crowd of gendered and racial faces and
they can do so even in the face of significant perceptual degradations to
the target faces. These abilities suggest that social categories and the
cues that denote them reflect a powerful form of perceptual expertise
that operates rapidly and even in the face of noisy input and distractor
categories. In addition to being interesting as a perceptual process,
these abilities have implications for person perception and prejudice
formation because category-based perception is a necessary precursor
to many forms of social bias.

Open practices

The studies in this article earned Open Materials, Open Data, and
Preregistered badges for transparent practices. Materials are available
at https://chicagofaces.org/default/download/ and names for the
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specific stimuli we used at https://osf.io/5ka94/?view_only=15c365b
391ed4e4d9d38c811ea359392. Data and analyses code are available at
https://osf.io/5ka94/?view_only=15c365b391ed4e4d9d38c811ea
359392. Preregistrations for each study are available at http://
aspredicted.org/blind.php?x=nu24a8 (Study 1 and 2), http://
aspredicted.org/blind.php?x=yi56xx (Study 1 and 2 replication),
http://aspredicted.org/blind.php?x=mw9ek9 (Study 3), http://
aspredicted.org/blind.php?x=eu7zw2 (Study 4), http://aspredicted.
org/blind.php?x=6iz28u (Study 5), and http://aspredicted.org/blind.
php?x=de4bw2 (Study 6).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.jesp.2019.103893.
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