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Many previous studies have argued that phonology may leave some phonetic
dimensions unspecified in surface representations. We introduce computational
tools for assessing this possibility though simulation and classification of phonetic
trajectories. The empirical material used to demonstrate the approach comes from
electromagnetic articulography recordings of high-vowel devoicing in Japanese.
Using Discrete Cosine Transform, tongue-dorsum movement trajectories are
decomposed into a small number of frequency components (cosines differing in
frequency and amplitude) that correspond to linguistically meaningful signal
modulations, i.e. articulatory gestures. Stochastic generators of competing phono-
logical hypotheses operate in this frequency space. Distributions over frequency
components are used to simulate (i) the vowel-present trajectories and (ii) the
vowel-absent trajectories. A Bayesian classifier trained on simulations assigns pos-
terior probabilities to unseen data. Results indicate that /u/ is optionally produced
without a vowel-height specification in Tokyo Japanese and that the frequency of
such targetlessness varies systematically across phonological environments.

1 Introduction

1.1 Phonetic interpolation as evidence for phonological
underspecification

Early generative phonology assumed that every segment is specified for
every distinctive feature and receives ‘a phonetic command’ for all the
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482 Fason A. Shaw and Shigeto Kawahara

phonetic dimensions represented by distinctive features (e.g. Chomsky &
Halle 1968: 403—419). However, this assumption has given way to various
proposals regarding underspecification (Archangeli 1988, Keating 1988).
Building on the phonological theory of feature underspecification,
Keating (1988) observed that some segments lack a particular ‘phonetic
target’ in some dimension. One example is English /h/, which on spectro-
grams can look like an interpolation from the preceding segment to the fol-
lowing segment. Another example is nasal airflow data in English (Cohn
1993), in which vowel nasalisation before a tautosyllabic nasal consonant
involves phonetic interpolation from [—nasal] to [+nasal], with the vowel
itself being unspecified for [nasal]. Other research has argued that
various types of vocalic transitions between consonants are not phonolo-
gically specified, but, rather, are best described as periods of open vocal
tract with no vocalic target. Cases such as this include the transitional
vocoids surfacing between consonants in Yine/Piro (Hanson 2010: 28),
the vocoid that surfaces between final consonant clusters in Moroccan
Arabic (Gafos 2002) and the production of phonotactically illicit conso-
nant clusters by non-native speakers (Davidson 2010). See Hall (2006:
390) for a list of 29 languages with phonologically inert ‘excrescent
vowels’ and a discussion of their common properties.

Intonation is another area in which the idea of phonetic underspecification
has played a central role in theory development. Pierrehumbert (1980)
argues that modelling intonational contours of English can be best achieved
by only sparsely specifying high and low targets, rather than specifying all
syllables for tone. Pierrehumbert & Beckman (1988) demonstrate that the
apparent H-tone spreading in Japanese unaccented words proposed by
Haraguchi (1977) is better characterised with phonetic underspecification.
The phonetic data shows a roughly linear decline from a H tone to the
next L tone (see also the discussion in §6.4). Building on these observations,
sparse tonal specification has been extended to the intonational analysis of
many languages (e.g. Pierrehumbert & Beckman 1988, Myers 1998), and
now constitutes a fundamental assumption in the autosegmental metrical
theory of intonation (Arvaniti & Ladd 2015, Jun 2014; cf. Xu et al. 2015).

Generalising across these cases, there is a large body of literature arguing
that phonetic behaviour is determined by sparse (surface) phonological
specification. Determining which phonetic dimensions are under phono-
logical control on the basis of the phonetic signal alone is challenging, as
it involves discovering phonological control in the presence of many
other factors that influence the data. At times, the indeterminacy of pho-
netic data has given rise to highly disparate characterisations of the same
language by different researchers. For example, Tashlhyit Berber has been
described both as a language with many epenthetic vowels (Coleman
2001) and as one which has syllabic consonants and no epenthetic vowels
(Dell & Elmedlaoui 1985, Ridouane 2008). This dichotomy hinges on
whether transitions between consonants are treated as being under the
phonological control of vowels or not, and has been largely resolved
through converging evidence from multiple data sources, including
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appropriate phonetic analyses (Ridouane 2008). Similar ambiguity is
present in other languages. Hall (2006) argues that vocoids between
stops and sonorants in Hocank (Winnebago), which are invisible for the
purpose of primary stress placement, are not true vowels, but merely
open transitions between consonants. Other researchers have argued on
theoretical grounds that the Hocank vocoids are epenthetic vowels
(Davis & Baertsch 2011), which makes stress-placement rules opaque
and has consequently spawned a range of theoretical proposals to
account for stress—epenthesis interactions, including iterative application
of metrical feet (Hale & Eagle 1980), positional faithfulness (Alderete
1995) and ordered application of the same epenthesis process in different
environments (Strycharczuk 2009). In the absence of a robust phonetic
record, other researchers have reinterpreted the facts, arguing that stress
occurs on the epenthetic vowel (Stanton & Zukoff 2018). In other lan-
guages, vowels that are invisible to stress have been shown to differ vari-
ably in phonetic quality and duration from vowels that influence stress
placement, raising questions about the degree of surface opacity (Hall
2013). The broader point is that theoretical debates can emerge from ambi-
guity about surface phonological form, particularly when appropriate anal-
yses of phonetic data are unavailable. This paper develops analytical tools
to strengthen the interpretation of surface phonological (non-)specification
on the basis of phonetic data.

In many of the phonological domains described above, phonetic inter-
polation has been a key argument for the phonological non-specification
of some dimension, whether it be tone, a phonological feature or a
segment. The general logic is as follows. Consider an ABC sequence,
where the phonological specification of B is at issue and B is assumed to
control a phonetic parameter p. Whether observed in the domain of into-
nation (Pierrehumbert & Beckman 1988: 37-38), vowels (Browman &
Goldstein 1992) or consonants (Cohn 1993, Keating 1988), phonetic inter-
polation on dimension p between A and C has been motivated as an argu-
ment for the ‘targetlessness’ of B.

Rigorously assessing phonetic interpolation is not always straightfor-
ward, owing in part to the natural variability associated with phonetic
data. Moreover, listeners show remarkable tolerance for phonetic variation
(Shaw et al. 2018). Importantly, the specific patterning of phonetic vari-
ability can reveal the phonological form that structures the signal (e.g.
Shaw et al. 2011). Explicitly modelling how different phonological
forms structure natural variation in the phonetic signal provides a way to
assess the likelihood that observed phonetic data can be attributed to the
presence of a phonologically specified target or, alternatively, to the
absence of such specification. Returning to the case of ABC, appropriately
leveraging phonetic data to assess phonological specification of B based on
some phonetic parameter p requires distinguishing complete targetlessness
from phonetic reduction due to, for example, susceptibility to coarticu-
lation with surrounding segments (cf. Recasens & Espinosa 2009) or
high predictability in context (e.g. Cohen Priva 2017, Shaw & Kawahara
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2017). Although rigorous assessment of phonetic interpolation is a challen-
ging problem, it is one that can greatly enhance our confidence in the iden-
tity of surface phonological representations.

This paper develops a general methodology for assessing feature specifi-
cation in surface phonological representations on the basis of the phonetic
signal. A key tenet of our approach is to express abstract phonological
hypotheses in the units of the phonetic data. Like snowflakes and finger-
prints, no two phonetic signals are identical, even those that actuate iden-
tical phonological structures. This fact dictates that rigorous assessment of
phonological hypotheses on the basis of phonetic data requires a probabi-
listic model of how phonological form maps to the phonetic signal.
Following recent approaches to syllable micro-prosody (Gafos et al.
2014, Shaw & Gafos 2015), we seek to estimate distributions that relate
low-dimensional phonological hypotheses to high-dimensional phonetic
data. Accordingly, we construct stochastic phonetic models that are para-
meterised by our phonological hypothesis as well as by the level of variabil-
ity naturally present in the phonetic data.
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Figure 1
Schematic depiction of the modelling approach. The left box shows phonological
representations with (top) and without (bottom) a particular feature, F, while the
right box shows corresponding phonetic signals with (top) and without (bottom)
a phonetic target for Fy. The link between phonological form and the phonetic
signal is a stochastic representational space — Gaussian distributions over (DCT)
frequency modulation components — used for simulation and classification.

A schematic of the approach is presented in Fig. 1. The key idea is to link
surface phonological form (left) to time-varying phonetic data (right),
through the stochastic processes of simulation and classification (middle).
Our proposal for the stochastic representational space that supports these
processes makes use of parametric (Gaussian) distributions over frequency
components of the phonetic signal. We use DISCRETE COSINE TRANSFORM
(DCT) to decompose high-dimensional phonetic data into a low-dimen-
sional frequency space that can be mapped to phonological form. In this fre-
quency space, we formulate competing phonological hypotheses, including
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the phonetic interpolation (‘targetless’) hypothesis (bottom of Fig. 1). For
the purposes of this paper, we follow others (e.g. Lammert et al. 2014) in
making the simplifying assumption that interpolation will take the form of
a linear transition between flanking segments, though we return to this
assumption in §6.3." We estimate distributions over signal components in
frequency space, and sample from these distributions to convert competing
phonological hypotheses into the real-world spatial-temporal dimensions of
the data. This step, simulation, factors into the analysis the range of natural
variability found in the phonetic data, allowing us to generate realistically
variable phonetic signals from discrete phonological hypotheses. Finally,
we train a Bayesian classifier on the data simulated from competing phono-
logical hypotheses (full lingual target vs. no lingual target), and use it to
compute, on a token-by-token basis, the probability of interpolation (no
lingual target), given the phonetic signal. Taken together, this computational
toolkit yields stochastic representations that support rigorous assessment of
‘targetlessness’ through simulation and classification of phonetic data.

1.2 Japanese high vowel devoicing

To illustrate our computational approach, we examine high vowel devoi-
cing in Tokyo Japanese (T'suchida 1997, Kondo 2005, Fujimoto 2015).
A key debate regarding this phenomenon is whether the surface phono-
logical representation contains a vowel or not. A classic description of
the facts is that high vowels are devoiced between two voiceless conso-
nants, and after a voiceless consonant before a pause. As we will see
below, one proposal is that the vowel is not only devoiced, but entirely
absent from the surface representation, due to deletion. When vowels are
devoiced, it is difficult to ascertain from the acoustics whether they are
also deleted. For this reason, we look to the articulatory signal to adjudicate
between competing proposals, taking the presence or absence of a lingual
articulatory target for the vowel as an indicator of surface phonological
specification. We consider four hypotheses, stated in (1).

(1) Hypotheses about lingual articulation in devoiced vowels

a. H1: full lingual target
The lingual articulation of devoiced vowels is the same as for voiced
counterparts.

b. H2: reduced lingual target
The lingual articulation of devoiced vowels is phonetically reduced
relative to voiced counterparts.

c. H3: no lingual target
Devoiced vowels have no lingual articulatory target.

d. H4: optional lingual target
Devoiced vowels are sometimes targetless.

! Although we follow others in making the pragmatic choice to use ‘linear interpo-
lation’ as an estimate of the actuation of targetless elements, the analysis presented
below is capable of expressing other shapes of interpolation.
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Several previous studies relate to one or more of these hypotheses.
Kawakami (1977: 24-26) argues that vowels delete in some phonological
environments (as in H3) and devoice in others. Sometimes, the only
trace of a vowel found in the (acoustic) phonetic signal is vowel-condi-
tioned allophony on surrounding consonants, which has led some
researchers to conclude that the vowel is entirely deleted (Beckman
1982, Beckman & Shoji 1984). If deletion is phonological, as argued by
Kondo (2000), then the vowel should not exhibit a lingual gesture, predict-
ing H3. Devoicing in consecutive syllables is often prohibited, and Kondo
suggests that this prohibition stems from a constraint against complex
onsets or codas. Even if vowel devoicing is due to phonological deletion,
some studies show that its application is optional or variable (Fujimoto
2015, Nielsen 2015), suggesting H4.

On the other hand, Tsuchida (1997) and Kawahara (2015) argue that
bimoraic foot-based truncation, as discussed by Poser (1990), counts a
voiceless vowel as one mora (e.g. [suto] in [syutoraiki] ‘strike’). If [u]
was completely deleted, losing its mora, the bimoraic truncation
should result in *[stora], but in fact devoiced vowels always count
toward the bimoraic requirement. This sort of proposal implies that
the lingual gesture of devoiced high vowels should be phonologically
present, and predicts either H1 or H2. In particular, H1 is predicted
by a ‘gestural overlap theory’ of high vowel devoicing (Jun &
Beckman 1993, Beckman 1996, Jun et al. 1998). In this theory, high
vowel devoicing occurs when laryngeal abduction gestures of surround-
ing consonants heavily overlap with the vowel. In this sense, high vowel
devoicing processes in Japanese (and Korean) are ‘not ... phonological
rules, but ... the result of extreme overlap and hiding of the vowel’s
glottal gesture by the consonant’s gesture’ (Jun & Beckman 1993: 4).
This passive devoicing hypothesis would predict that lingual gestures
remain intact (H1). Even if devoiced high vowels are not phonologically
deleted or otherwise targetless, it would not be too surprising if the
lingual gestures of high vowels were reduced. Due to devoicing, the
acoustic consequences of a reduced lingual gesture would not be par-
ticularly audible. Hence, from the standpoint of an effort—distinctive-
ness trade-off, we expect reduction of oral gestures in high devoiced
vowels (H2).

We use the general methodology described in §1.1 to distinguish
between the hypotheses in (1) on the basis of phonetic data. In particular,
distinguishing between H2 and H3 is a specific case of the general issue
raised in §1.1. How do we know that a phonetic signal lacks a phonological
target (H3), rather than being reduced (H2)? Although the empirical
material used to demonstrate our approach comes from Japanese high
vowel devoicing, the question that we are addressing is more general:
how do we assess the role of phonetic interpolation in confirming or reject-
ing phonological specification? Some potential broader applications of our
proposed toolkit are discussed in §6.4.
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The remainder of the paper is organised as follows. §2 describes the
experimental methods involved in collecting articulatory data. §3 and §4
motivate the computational approach, specifically the tools used for simu-
lation (§3) and classification (§4). §5 provides an analysis of the data
addressing the hypotheses in (1). §6 provides some discussion of the
results, as well as alternative approaches to assessing surface phonological
specification on the basis of phonetic data.

2 The electromagnetic articulography experiment

The phonetic data used to illustrate our computational approach were
drawn from a larger experiment using electromagnetic articulography
(EMA) to track the movement of fleshpoints on the tongue during the pro-
duction of voiced and voiceless vowels in Tokyo Japanese. The full report
of the experiment can be found in Shaw & Kawahara (2018b). This paper
focuses on illustrating the computational tools.

2.1 Speakers

Six native speakers of Tokyo Japanese (three female and three male) par-
ticipated. They were aged between 19 and 22 at the time of the study.
They were all born in Tokyo and had spent no more than three months
outside the Tokyo region.

2.2 Materials

The stimuli in the experiment consisted of words presented in the carrier
phrase /ookee __ toitte/ ‘Ok, say _ ’. /ookee/ was selected because it ends
in /e/, so that the tongue would be in a non-high position at the start of
the target word. A rise in tongue position from /e/ to /u/ would suggest
the presence of a vowel target for /u/. To illustrate the computational
approach, we focus on the two dyads (i.e. four words) in (2), which
form a subset of the stimulus items in the experiment reported in Shaw
& Kawahara (2018b).

(2) a. devoiced vowels b. voiced vowels
[dusoku] ‘shortage’ [duzoku] ‘enclosed’
[Jutaisei] ‘willingness’ [Judaika] ‘theme song’

In these words, the target vowel /u/ occurs in either a devoicing environ-
ment (a) or a voiced environment (b). In both contexts, /u/ is unaccented.
These words were randomised in a list of 16 other words, ten of which
did not contain high vowels in a devoicing context. All words were ran-
domly displayed within the carrier phrase, in normal Japanese script.
Participants were instructed to speak as if they were making a request of
a friend. Each participant produced a total of 10-15 repetitions of each
target word.
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2.3 Equipment

We used an NDI Wave EMA system sampling at 100 Hz to capture articu-
latory movement in 3D. The spatial accuracy of this system is generally
within 0.5 mm. NDI Wave 5DoF sensors were attached to three locations
on the sagittal midline of the tongue, and on the lips, jaw (below the lower
incisor), nasion and left/right mastoids. The height of the tongue-dorsum
(TD) sensor is the focus of our analysis (lip data is reported in Appendix B).?
The TD sensor was the most posterior of the three sensors on the tongue,
attached as far back as was comfortable for the participant (~5-6 cm
behind the tip). Acoustic data were recorded simultaneously at 22 KHz
with a Schoeps MK 418 supercardioid microphone.

2.4 Post-processing

We recorded the bite plane of each participant by having them hold a rigid
object between their teeth, with three 5DoF sensors attached to it. Head
movements were corrected computationally after data collection with ref-
erence to three sensors on the head, the left/right mastoid and nasion
sensors, and the three sensors on the bite plane. The head-corrected data
was rotated so that the origin of the spatial coordinates corresponded to
the occlusal plane at the front teeth.

2.5 Trajectories for analysis

We first visualised the data using the Matlab-based software Mview (Tiede
2005), which displays the EMA movement trajectories along with the
waveform and spectrogram from the audio signal. In Mview, we verified
that /u/ was devoiced in devoicing environments by visual inspection of
the spectrogram. At this stage of analysis, we also identified articulatory
landmarks associated with V; and V3 the vowels preceding and following
the target /u/. The point of minimal velocity in the T'D signal correspond-
ing to the location of V; and V3 in the spectrogram, a reliable method of
parsing vowel targets in articulatory data (for discussion, see Blackwood
Ximenes et al. 2017), was used to left-delimit (V) and right-delimit
(V3) the interval containing /u/, i.e. [V{CuCV;3;/. This interval was the
subject of all subsequent analyses. To illustrate the raw data, at times we
also provide plots of longer intervals, so that movements of following con-
sonants can also be visualised.

2.6 Preview of raw data

A full analysis of the data is provided in § 5. Here we preview the raw data,
in order to illustrate the general difficulty involved in assessing phono-
logical specification from continuous phonetic data. Figure 2 provides rep-
resentative data from one speaker, S1, producing eleven repetitions of the

2 The appendices are available as online supplementary materials at https://doi.org/
10.1017/S0952675718000131.
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minimal pair /pusoku/ ~ /duzoku/. The movement trajectories span a
window from the end of /ee/ in Jookee/ to the [k/ in /pusoku/ or
/duzoku/. In line with descriptions of high vowel devoicing in contempor-
ary Tokyo Japanese, this speaker produced voiced [u/ in /puzoku/ and
always devoiced [u/ in /dusoku/ (Shaw & Kawahara 2018b). Of interest
for our case study is whether the lingual gesture of the devoiced vowel
in [$usoku/ has an articulatory target. The top panel of Fig. 2 shows the
height of the T'D sensor (y-axis) over time (x-axis) with /¢usoku/ (devoiced
[u/; solid line) and /puzoku/ (voiced /u/; dashed line). The middle and
bottom panels shows movement of the tongue blade ('T'B) and tongue tip
(T'T). For the portion of the figure corresponding to /u/, the TD is
lower for devoiced /u/ than for voiced /u/. At the very least, this pattern
indicates that the devoiced vowel is phonetically reduced in this subset
of the data. In the remainder of this paper, we describe a computational
approach to evaluating the four hypotheses in (1) on the basis of continu-
ous phonetic data, such as that shown in Fig. 2.

20
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TD (mm)
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Figure 2

Lingual articulatory trajectories for a female speaker of Tokyo Japanese, S1,
producing /¢usoku/ (solid lines) and /¢puzoku/ (dashed lines). The y-axis shows
the height of the sensors. The trajectories span a 340 ms window starting from the
|e/ of the carrier phrase and extending to the T'D rise for the /k/ near the end of
the words. Subsequent analysis focuses just on the interval from /e/ to /o/.
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3 Simulation

This section introduces the computational tools that are used to simulate
competing phonological hypotheses in the dimensions of the data. We esti-
mate distributions over a small number of parameters that characterise the
phonetic data, so that we can simulate realistically variable trajectories
actuating phonological hypotheses, including the no lingual target hypoth-
esis (H3).

As a starting point, we assume that the articulators follow direct paths
between articulatory goals (cf. Keating 1988, Browman & Goldstein
1992). The idealised movement trajectory corresponding to the no
lingual target hypothesis would therefore be a linear trajectory from V;
to V3 (Browman & Goldstein 1992, Choi 1995, Lammert et al. 2014). In
real articulatory data, fleshpoint trajectories are never straight lines.
There are well-studied cases in which tongue trajectories are curved
because of biomechanical factors even when the idealised movement
based on phonological form would dictate a linear trajectory
(Mooshammer et al. 1995, Perrier et al. 2003). To account for the numer-
ous perturbations, biomechanical and otherwise, of linear trajectories
between articulatory goals in speech production, we take a stochastic,
data-driven approach, modelling actual trajectories as noisy actuations of
phonological goals (Shaw et al. 2009, Shaw & Gafos 2010, Shaw &
Davidson 2011).

Consider again Fig. 2. Since we are interested in the presence of a vowel,
we focus on TD movement, which is the primary articulator for (non-
front) vowels (see e.g. Wood 1979). The trajectories begin with the
vowel [e/ of the carrier phrase preceding the target words /¢usoku/ and
[duzoku/. The TD starts out high for the vowel /e/. The vowel [u/, if it
is present, would follow the /e/. Some tokens show a slight rise in TD
height at the start of the trajectory, which is expected if the TD rises in
height from /e/ to /u/; many tokens, however, particularly those of
/dusoku/, show a monotonic decrease in height from /e/ to o/, which is
expected if there is no lingual target for /u/. The modelling addresses
whether the observed trajectory from /e/ to o/ is different from a realistic-
ally variable linear trajectory between /e/ and /o/. If so, this would support
the phonetic reduction hypothesis (H2); if not, the result would support
the no lingual target hypothesis (H3), at least for some tokens (H4).

3.1 Discrete Cosine Transform

Due to the 100 Hz sampling rate used in the EMA recording, there is one
data point for every 10ms, e.g. the 340 ms TD trajectories in Fig. 2
consist of 35 data points per trajectory. The data points in a trajectory are
not statistically independent. Rather, the height of the T'D at any point in
time, 7, is closely related to the height of the TD at earlier (7—1) or later
(74 1) time points. At a deeper level, the statistical dependencies between
data points across the entire trajectory are due (at least in part) to
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phonologically controlled movement. We use Discrete Cosine Transform
(DCT), the first computational tool in our toolkit, to capture dependencies
between data points. Doing so allows data compression and sparse represen-
tation, which both simplifies subsequent computation and facilitates gener-
alisation to new data.

DCT represents the data as sums of cosines of different frequencies and
amplitudes. In expressing spatial data in terms of harmonic components
(i.e. frequency space), DC'T is similar to Fast Fourier Transform, which
is typically used to construct spectrograms from the acoustic signal. The
main advantage of DC'T, in particular for our purpose, is that it represents
the data with a small set of parameters, a general property of DCT (Jain
1989: 151). In addition, as we will see below, each of the DCT coefficients
may have a clear linguistic interpretation. It is also important that DCT
has a known inverse function, which we use to simulate TD trajectories
from DC'T components. Each cosine component of a DC'T has an ampli-
tude coefficient that is fitted to the data. We interpret the amplitude of the
cosines as the degree to which a corresponding gesture modulates the TD
trajectory. DCT has been used in some previous phonetic studies, which
have shown that phonetic signals, particularly changes in vowel formants
over time, can be represented quite well with a small number of cosine
components (Watson & Harrington 1999, Elvin et al. 2016).

A mathematical expression of DCT transform is provided in (4). In the
numerical expression, y(k) is the amplitude of the kth cosine component.
This is the output of the DC'T. The other terms in the equation are as
follows: L is the length of the trajectory (i.e. the number of data points);
x(n) is the trajectory of the data being modelled; w(k) is a constant
determined by the values of k and L: w(k)=(1/VL) when k=1 and
w(k) =V(2 | L) otherwise. The first DCT coefficient, y(1), defines a straight
line at a position above the average value of the data. This is because when
k=1, the term of the cosine function is zero. This means that the first
coefficient is equal to (3), the sum of all data points in the trajectory
divided by the square root of the number of data points.

(3) 2k n(x)
VL

Each subsequent DCT component defines a cosine of increasing fre-
quency, as increases to k linearly increase the term of the cosine function.

(4) Numerical expression of Discrete Cosine Transform

L
y@):ww)zxuoamﬂﬁfif*1 k=1,2,...L
n—1

— k=1
VL
where  w(R)=
2 2<k<L

Downloaded from https://www.cambridge.org/core. Yale University Library, on 18 Sep 2018 at 12:45:55, subject to the Cambridge Core terms
of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/50952675718000131


https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0952675718000131
https://www.cambridge.org/core
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Figure 3 illustrates the DCT components of a TD trajectory. The top
panel shows the trajectory, the vertical movement of the TD (y-axis)
over time (x-axis). The first DC'T coefficient defines a straight line at 14
mm (above the occlusal plane). In the discussion below, we refer to this
line as the baseline T'D height. Subsequent coefficients describe deviations
from the line as cosine-shaped modulations of increasing frequency. These
subsequent components are centred on zero. The second coefficient cap-
tures the downward trend of the TD trajectory, ranging from +2 mm to
—2 mm. Thus the second coefficient captures the fact that, in this data,
the TD starts high and then lowers over time, and that the range of this
lowering motion covers a 4 mm span. The third coefficient adds another
modulation to the trajectory. Towards the middle of the trajectory there
is a rise, which constitutes a modulation of the baseline trajectory of the
order of £2 mm. The effect of the fourth coefficient is much smaller, spe-
cifying modulations that are less than +0.5 mm.
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Figure 3
An illustration of DCT components for a TD trajectory spanning the /[VCuCV/
portion of /e#pusoku/. The top panel shows the trajectory. The bottom four
panels show individual DCT components contributing to the trajectory.

To evaluate how many cosine components are needed to represent
movement trajectories in the EMA data, we simulated the TD data
shown in Fig. 2 using different numbers of DC'T coefficients, and evalu-
ated changes in the degree of precision. The number of DCT coefficients

Downloaded from https://www.cambridge.org/core. Yale University Library, on 18 Sep 2018 at 12:45:55, subject to the Cambridge Core terms
of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/50952675718000131


https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0952675718000131
https://www.cambridge.org/core

Simulation and classification of phonetic trajectories 493
(a) (c)

18 18
‘ 1 DCT coefficient

‘ 1 DC'T coefficient

15 15

12 12

TD vertical position (mm)

time (sample)

(b) (d)
1 O —O— 1 o—0—0—0—0—20
=]
)]
= 0.8 0.8
<
o
£ 0.6 0.6
)
Q
0.4 0.4
]
2
g 02 0.2
W
I I O I | I I O I |
1 2 3 4 56 7 8 9 10 1 2 3 4 56 7 8 9 10

number of DC'T coefficients

Figure 4

(a) Raw data (solid lines) and simulated trajectories (dashed lines) for eleven
tokens of the VCuCV portion of /e#duzoku/. The trajectories span the
/VCuCV/ interval under analysis. Simulated trajectories were based on one
(top), two (middle) and three (bottom) DC'T coefficients. (b) The Pearson
correlation » between raw data and simulated data as a function of the number
of DC'T coefhicients employed in data representation. (c) Linear trajectory
(solid line) for the same data along with DC'T components fit to the linear
trajectory. (d) The correlation between the linear trajectory and trajectories
simulated based on different numbers of DC'T coethicients. For the linear
trajectory, high precision is obtained with just two DC'T coefficients.
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was varied from one to ten. Figure 4b shows how the correlation between
the raw data and the simulated data increases with the number of DCT
coefficients. With just one DCT coefficient, the Pearson correlation 7 is
nearly zero. With two coefficients, the correlation rises to 0.858, and
with three it increases to 0.989. Subsequent increases in the number of
DCTT coefficients yield only more marginal improvement — the correlation
with four coefficients is 0.992; with six it is 0.998. As illustrated here, one
general advantage of the DC'T analysis is that for each number of coeffi-
cients, we can generate the predicted trajectories, compare them with
actual trajectories, and examine the goodness of fit. Figure 4a illustrates
the goodness of fit token by token. The set of eleven /$uzoku/ tokens
from Fig. 2 is displayed as solid lines. The dashed lines show trajectories
that were simulated from DC'T coefficients. With three coefficients, the
solid and dashed lines overlap almost completely, illustrating nearly loss-
less compression of the trajectories.

By using DCT, we can reduce the dimensionality of the data without
loss of precision. Figure 4 indicates that three coefficients are sufficient
to retain a detailed phonetic representation of the TD signal for the
Japanese case under discussion. These DCT coefficients have plausible
linguistic interpretations, on which we now elaborate.

Figure 5 displays the /puzoku/ ~ /pusoku/ data, along with mean DCT
components fitted to the data. Again, four DCT coefficients are shown.
Figure 5a shows the voiced /u/ in /puzoku/; Fig. 5b the devoiced /u/ in
/dusoku/. The top panels show the raw data (solid lines) together with the
average trajectory (dashed line) and a linear trajectory between /e/ and /o/
vowel (thick line). This average trajectory was computed by averaging
DCT coefficients. The average trajectory is closer to the linear trajectory
for /pusoku/ (Fig. 5b) than for /puzoku/ (Fig. 5a). More importantly, each
of the DCT coefficients has a plausible linguistic interpretation, which
helps to isolate the difference in trajectory between voiced and voiceless
vowels. The first DCT coefficient represents baseline T'D height, as dis-
cussed above. The second DCT coefficient generally captures a fall in TD
height from /e/ to [o/. This component is thus likely to represent the
vowel-to-vowel transition, which is similar for both words. Vowel-to-
vowel intervals have long provided building blocks for speech production
models (Ohman 1966, Mrayati et al. 1988, Carré & Chennoukh 1995,
Smith 1995). The third DCT coefficient represents an increase in T'D
height for the vowel [u/. This rise is present for both /puzoku/ and
[dusoku/, but the magnitude of the rise is greater for the voiced vowel in
[duzoku/ than for the devoiced vowel in /pusoku/. Thus the third DCT
coefficient isolates the difference between these words observed in Fig. 2.
Finally, the fourth DCT coefficient adds a subtle (<0.5 mm) modulation
to the T'D trajectory. The time course of this modulation is roughly consis-
tent with coarticulatory effects of coronal consonants /s/ and /z/ on TD
height, but is so small that it is under the average measurement error of
the NDI system (Berry 2011). We will therefore model the data with three
DCT coefficients.
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Figure 5
Average DCT components for (a) /puzoku/ and (b) /¢usoku/. The raw data
is displayed in the top panels, and average DC'T' components are plotted
in the lower panels. Only the target /VCuCV/ interval is shown.

We emphasise that the decision to use three DC'T coefficients for the
data here was not determined a priori, but arrived at through a combination
of empirical and theoretical considerations. As illustrated above, (i)
using three DCT components provides a very precise representation of
the data, and (ii) each component has a linguistic interpretation. Both of
these criteria are important. Criterion (i) is particularly important for con-
structing a stochastic representational space enabling simulation and
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classification of phonetic data in terms of phonological hypotheses, as it serves
to evaluate whether the statistical dependencies picked up by DCT are indeed
those that are a consequence of phonological control of articulation.

To summarise, the first computational step is to express T'D trajectories
over [VCuCV/ sequences in frequency space, as the sum of three DCT
components. We next use these compressed representations of phonetic
detail to estimate distributions characterising the phonetic expression of
phonological form, including the no lingual target hypothesis (H3) in (1).

3.2 Stochastic sampling

The next computational tool borrows from recent stochastic approaches
to modelling prosodic structure in terms of gestural timing (Shaw et al.
2009, Shaw & Gafos 2010, 2015, Shaw et al. 2011). These studies estimate
distributions over spatio-temporally defined gestural landmarks (Gafos
2002), and sample from the distributions under different conditions.
The parameters of such stochastic generators can be varied to test
specific hypotheses about the phonological structure of the data, including
the presence or absence of gestures (Shaw & Davidson 2011) or the syllabic
affiliation of the segments (Shaw & Gafos 2010, 2015). Building on the
preceding section, we define Gaussian distributions over DC'T coefficients
instead of gestural landmarks.

Gestural landmarks and DC'T coefficients both offer a sparse representa-
tion of detailed phonetic data. For the current case, an advantage of using
DCT coefficients is that it is not necessary to parse specific gestural land-
marks associated with the target segment.’ Parsing gestural landmarks
often relies on heuristic use of movement-velocity profiles (Shaw et al.
2009, Gafos et al. 2010). In the trajectories shown in Fig. 2, however, it is
not possible to identify clear velocity peaks corresponding to the different
vowel gestures. Rather, the T'D moves smoothly with more or less constant
velocity from one vowel to the next, a pattern also reported in other kine-
matic data sets (e.g. Ohman 1966, Browman & Goldstein 1992). In such
data, selecting a single point in time that corresponds to the vowel is
largely arbitrary. Our solution here is to model the entire trajectory, but
in the compact and linguistically relevant form of DC'T coefficients.

To formulate the no lingual target hypothesis in terms of DC'T coeffi-
cients, we first fitted a straight line from V; to V3 in /V{CuCV3;/ sequences,
as in the top panels of Fig. 5 (solid lines). If there is no independent T'D
height target for /u/ (H3), then the tongue-dorsum position should
follow a smooth path from V; to V3. To formulate a stochastic version
of this targetless trajectory, we coerced the linear interpolation between
vowels into frequency space by fitting three DCT coefficients to the
straight line from V; to V3. Figures 4c and d show that the linear trajectory
can also be captured with high precision with a small number of DCT

3 We do parse specific articulatory landmarks for non-target segments, V; and V3, the
vowels flanking the target segment, which are used to delimit the start and end of the
TD trajectory across [V{CuCVj;/.
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coefficients. We then defined distributions over those DCT coefficients.
The shape of the distributions was guided by analysis of the data. We
chose normal (Gaussian) distributions, since the DCT coefficients fitted
to our data did not significantly depart from normality, according to
Shapiro-Wilk tests. For the targetless hypothesis, the means of the distri-
butions were the DCT coefficients fitted to the linear interpolation
between vowels. The standard deviation of the distributions was set to
the standard deviation of DC'T coefficients fitted to the corresponding
data. This ensured that we injected reasonable quantities of variation
into the targetless trajectory. Formalised as distributions over the first
three DCT coefficients, corresponding to the middle three panels of
Fig. 5, the no lingual target hypothesis thus has the same degrees of
freedom as the full vowel hypothesis, meaning that it varies in the same
dimensions and to the same degree as the raw data.”

This computational method expresses the no lingual target hypothesis in
the phonetic dimensions of the data, specifically the T'D height over time, as
phonological control of the vocal tract passes from one vowel to the next.
Table I provides a specific example. The top two rows show the DCT dis-
tributions of the raw data. The mean value of each coefficient is shown, with
the standard deviation. The bottom row provides the parameters for the no
lingual target hypothesis for the same data. The mean parameters come from
a three-parameter DC'T of the straight-line trajectory, left-delimited by the
mean target of V; and right-delimited by the mean target of V3. Note that
the third coefficient is nearly zero, for the targetless hypothesis, indicating
no rise from the trajectory defined by the second coefficient (see also
Fig. 5). The standard deviation for the no lingual target hypothesis is iden-
tical to the raw data because the level of variability in the no lingual target
hypothesis is set to the level of variability in the data.

distributions over DC'T coefficients

1st coefticient | 2nd coefficient | 3rd coefficient

mean SD mean SD mean SD

dusoku | 56.5 | 6.91 7.09 | 393 | -1.80| 0.93
duzoku | 64.6 | 5.03 | 7.06 | 2.42 | -3.41 | 2.15

dusoku | 53.2 | 6.91 518 | 3.93 | -0.15| 0.93
¢uzoku | 59.9 | 5.03 | 592 | 2.42 | -0.07 | 2.15

raw

simulated

Table I
Means and standard deviations of DC'T coefficients.

* An anonymous reviewer asked what the results would look like if we assumed that
the targetless trajectory was more variable than the vowel. We provide simulation
results addressing this question in Appendix A.
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Having defined distributions over DCT coefficients, we can sample
from the coefficients to simulate trajectories corresponding to the targetless
trajectory. The sampled coefficients can then be used to specify the TD
trajectory by applying the inverse DCT function to the coefficients. The
formula for simulating trajectories by applying INVERSE DC'T is given in
(5). As with the DC'T expression in (4), L indicates the length of the tra-
jectory, x(n) is the trajectory, this time on the left of the equation, y(k)
represents the kth DC'T coefficient and w is a constant. We simulated
trajectories that were equal to the mean duration of the V; to V3 signal
with k=3 DC'T coefficients.

(5) Numerical expression of inverse Discrete Cosine Transform

y(k) ~ N(u(k), o(k))

L

x(n)= > w(k)y(k) cos "=DE=D 1 > L

n—1 2L
1
— k=1
VL
where w(k) =
% 2<k<L

Figure 6 illustrates the simulations. For reference, the top panels re-plot
the data from Fig. 2. However, as in Figs 3-5, only the portion of the tra-
jectory beginning with the /e/ from the carrier phrase and ending with the
/o/ is shown. The TD trajectories for /puzoku/ are shown on the left; the
trajectories for /pusoku/ on the right. The solid circles denote average
vowel targets for Vi (/e/) and V3 (/o/). The straight line connects the
means of the vowels, and defines the linear interpolation trajectory.
Comparison of the left and right panels reveals that TD height in
/dusoku/ tends to be closer to the line than TD height in /¢uzoku/, essen-
tially the same observation we made in Fig. 2 (but this time with reference
to the linear interpolation trajectory). The bottom panels show simulated
TD trajectories, sampled from the distributions of DC'T coefficients given
in Table I. For reference, the line denoting the linear interpolation trajec-
tory is drawn in the lower panels as well. Note that, even though the mean
of the DC'T coefficients is based on the straight line, the stochastic simula-
tions are non-linear, because the distributions over DCT coefficients
define the same range of variability as is present in the TD trajectories,
which are also not perfectly linear.

In the lower panels, observe the ‘accidental’ vowels. Some of the trajec-
tories simulated from the no lingual target hypothesis have an increase in
height in the middle of the trajectory. If observed in isolation, these tokens
could be misinterpreted as arising from active high vowel constrictions.
The presence of ‘accidental’ vowels underscores an important point
about evaluating phonological hypotheses on the basis of phonetic data,
and the role of stochastic modelling. It is crucial to consider the level of
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Figure 6

Top panels show actual T'D data for (a) /puzoku/ and (b) /pusoku/. (¢) and
(d) show simulated trajectories from the targetless hypothesis (H3 in (1)). All
panels show only the target /V,CuCV,/ interval. The individual trajectories

differ in length because they are delimited by the targets of V; and V,.

variability in the data. In the case at hand, we find that amongst tokens
sampled from the linear interpolation trajectory, there are some that
show a rise in tongue-dorsum height at approximately the point in time
that we would expect the vocal tract to be under control of a vowel
gesture; however, such ‘accidental vowels’ simply arise from noise in the
data, which should not be confused with phonologically specified
targets. The presence of accidental vowels in the simulations indicates
that the level of normal variation that characterises fluent production of
a native language is of the order of magnitude of the presence or absence
of a vowel in one or two out of a dozen or so tokens.

We can now statistically adjudicate between three of our four hypotheses
in (1). In asking whether the vowel is targetless, we are essentially asking
whether the TD rise in the middle of the trajectory is greater than can
be expected by chance. We have defined chance for /pusoku/ as the
noisy targetless trajectory in Fig. 6. Using sparse representation of the
data, as in (2), we can statistically compare /¢usoku/ to /Puzoku/ to
examine whether the TD trajectory in the devoiced vowel differs from
that in the voiced vowel. This constitutes a direct statistical test of H1,
the hypothesis that devoiced vowels are the same as the voiced counter-
parts. A significant difference would falsify H1, leaving us with hypotheses
H2 and H3, i.e. that the lingual gesture in devoiced vowels is either
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reduced or deleted. Further, we can compare the TD trajectory in
[dusoku/ to the simulated targetless trajectory, to test whether the data
differs significantly from linear interpolation. This constitutes a statistical
test of H3. A significant difference would leave us with H2 as the only
viable alternative. However, this method does not allow us to test H4,
the optional lingual target hypothesis. The reason is that, in evaluating
statistical significance in this way, we are testing whether the tokens as a
group are different, which involves the implicit assumption of phono-
logical homogeneity across tokens of a word (see Bayles et al. 2016). The
next computational tool we introduce alleviates this problem. However,
if it can be ensured that a phonological process is not optional, then
DCT together with micro-prosodic sampling should suffice to provide a
rigorous assessment of smooth interpolation.

4 Classification

Many phonological processes are optional. Capturing the variability
requires a probabilistic phonological model (Anttila 1997, Boersma &
Hayes 2001, Coetzee & Kawahara 2013). In these models, phonetic reduc-
tion and variable targetlessness are completely different scenarios. The
latter requires stochastic interpretations of constraint rankings (or rules);
the former requires continuous phonological representations of some
sort (e.g. Smolensky et al. 2014). To distinguish between these possibi-
lities, we make use of the distributions built for simulation to classify
phonetic data in terms of phonological structure. For this purpose, we
use a naive Bayesian classifier, which will allow us to analyse the data
token-by-token without committing ourselves to the assumption that the
surface phonological form of a word is uniform and invariant.

The Bayesian classifier assigns the probability of category membership.
Importantly, it does so for each test token separately. For the case at hand,
we use the DCT representation (with three coefficients) as input to the
classifier. The output is the probability of whether the articulatory target
in that token comes from the ‘full lingual target’ category or the ‘no
lingual target’ category. The DCT coefficients that describe the data are
statistically independent, which makes them appropriate dimensions for
the naive Bayesian classifier. The formula is provided in (6).°

(6) Formula for naive Bavyesian classifier

TICo.. ... C _ p(D)xIT;_ p(Co,| T)
PTICo, .., Co,) =P DAITAnC

where Co, i1s the ith DCT coefhicient (and n =3 for the case at hand)
5 The denominator guarantees that the posterior falls between 0 and 1, but since the

denominator does not depend on 7, it does not influence separation between cat-
egories, and is sometimes left out to simplify the equation.
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The output of the formula, i.e. p(T'| Coy, ..., Co,) is the posterior prob-
ability of targetlessness, which designates the probability of a targetless ar-
ticulation, given the DC'T coefficients. The alternative to a targetless
articulation is that there is a full vowel target present. The posterior proba-
bility of a vowel target is calculated from a prior probability of targetless-
ness and the probability of the DC'T values given the category. The prior
probability of targetlessness is the term p(7). The probability of the DCT
values given the category is the term in (7a). This is calculated on the basis
of the training data, and is normalised by a third term, (7b), the probability
of the DC'T coefficients in the whole dataset.

(7) a. T_ij(cog ) b, Qp(Coi)

In this particular case, we are concerned with assessing the four hypotheses
in (1) on the basis of the phonetic signal. To give each hypothesis equal
weight, we assign equal prior probabilities to the categories full lingual
target, H1 in (1), and no lingual target, H3 in (1). Thus p(T) is set to
0.5.° The other hypotheses, vowel reduction (H2) and variable targetless-
ness (H4), can also be evaluated on the basis of posterior probability pat-
terns, as we illustrate below in Fig. 8.

We trained the Bayesian classifier on two sets of three DC'T coefficients.
The full lingual target data came from DC'T coefficients fitted to tokens of
[duzoku/. The no lingual target data came from DC'T coefficients fitted to
the linear interpolation trajectory from /e/ to [o/ (as in Figs 6¢ and d). Since
we have set the prior probability to even odds of targetlessness, it is the
probability of each DC'T coefficient given the presence/absence of a TD
height target (the term in (7a)) that dictates posterior probabilities. To
illustrate this, Fig. 7 compares Probability Density Functions (PDFs)
across the full lingual target vs. no lingual target hypotheses for each
DCT coefficient. The dashed lines show PDFs over the baseline (full
lingual target) hypothesis, based on [duzoku] tokens; the solid lines
show the no lingual target hypothesis, based on noisy simulation of
linear interpolation. As can be seen from Fig. 7, the PDF of the second
DCT coefficient is heavily overlapped. The main differences between
the presence and absence of a vowel are found in the PDF of the first
and third coefficients. This is expected, since the first coefficient is
related to the average T'D height across the trajectory and the third coeffi-
cient dictates the magnitude of the T'D rise between /e/ and /o/ (see Fig. 5).
Thus the parameters of the Bayesian classifier for /dusoku/ give quantita-
tive probabilistic form to the observations we have already made about the
data.

® Just as the DCT analysis is flexible enough to allow us to use any number of DCT
coefficients, p(T) is also flexible; it need not be set to 0.5 (equal probabilities of each
hypothesis), if we have reason to set it otherwise (e.g. if we have a theory that prefers
the presence of a vowel target in general, then p(7) can be set lower than 0.5). This
flexibility is inherent in the Bayesian framework.
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Figure 7
The probability distribution functions for DC'T coefficients,
given the no lingual target hypothesis and the alternative full
lingual target hypothesis, based on the data in Fig. 2.

Four possible patterns, displayed as histograms over posterior probabil-
ities of targetlessness, are illustrated in Fig. 8. These hypothetical results
correspond to the four hypotheses in (1). The histogram in Fig. 8a was
obtained by submitting /¢uzoku/ tokens (from six speakers) to the
Bayesian classifier. As expected, most of these tokens have greater than
0.95 probability of containing a vowel, although there are a few tokens
with lower probabilities. This pattern corresponds to H1, that the lingual
gestures for voiced vowels are the same as for voiceless vowels. The histo-
gram in Fig. 8b was obtained by submitting the same number of simulated
‘vowel absent’ trajectories to the classifier. Again, as expected, most tokens
have a 0.95 or greater probability of targetlessness, although there are a few
tokens with lower probabilities, and one ‘accidental vowel’, which has a
lowish (0.25) probability of targetlessness. This pattern corresponds to
H3, that the lingual gestures of devoiced vowels have no target. The third
pattern, illustrated in Fig. 8c, shows posterior probabilities for reduced
vowels (H2). These were generated by stochastic sampling of DCT coeffi-
cients that were averaged between full lingual target (H1) and no lingual
target (H3) values. Thus, quite literally, the reduced vowel cases are inter-
mediate trajectories between the fully articulated vowel and the targetless
vowel. The fourth pattern, representing H4, is the variable targetlessness
pattern. We created this pattern by sampling at random from distributions
characterising the full lingual target and the no lingual target data.
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The four hypothetical posterior probability patterns in (1): H1 (full lingual
target); H2 (reduced lingual target); H3 (no lingual target); H4 (optional lingual
target). The x axis of each histogram shows posterior probabilities generated
by the Bayesian classifier summarised in Fig. 7. See Appendix A for different
instantiations of H2 which assume different degrees of variability.

5 Results
5.1 Simulation results

Figure 9 shows the T'D height trajectory in /dusoku/ and /$uzoku/ for all
six speakers. Solid lines show change in T'D height over time for /dusoku/;
dashed lines show /puzoku/. The TD height trajectories begin with the /e/
of the carrier phrase and continue for 340 ms. The dip in the trajectories
corresponds to lowering of the T'D for the vowel /o/. This is followed by
a rise of the TD for [k/ at the ends of the trajectories. There is variation
across speakers in the degree to which the two types of line overlap.
They are very closely overlapped for S5 and S6, but less so for other speak-
ers. As described in the methods, only the portion of the trajectory from e/
to /o] was included in subsequent analysis.

Following the method introduced in §3, we fitted DC'T coefficients to
each T'D height trajectory, and defined a targetless trajectory. We then
compared DCT components, using MANOVA. For each speaker, we
evaluated the effect of voicing on the TD trajectory as well as differences
between the actual trajectories and the targetless trajectory. The results
are summarised in Table I1. Since the targetless trajectory is stochastically
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Figure 9
Change in TD height (y-axis) over time for /pusoku/ (solid lines) and
/duzoku/ (dashed lines). The figure shows a fixed window beginning
with the /e/ of the carrier phrase and extending for 340 ms, which is
longer than the analysis window (for most tokens a rise in 'T'D height
for /k/ can be observed following the T'D minima for /o/).

sampled, statistical comparisons vary depending on the particular sample.
To ensure stable and replicable MANOVA results, we report the average
across ten independent simulations of the targetless trajectory. Since we
conducted these analyses for each speaker and each pair of items separately,
we adjusted the alpha level to correct for multiple comparisons. The
Bonferroni corrected alpha is 0.00138 (0.05/36), where 36 is the total
number of comparisons: 6 speakersx 2 item pairs x 3 comparisons per
item pair.

In Table I1, significant differences are indicated by asterisks. Of the six
participants, four produced reliable differences between the vowels in
/¢usoku/ and /Puzoku/. For all six participants, the voiced vowel in
/duzoku/ differed significantly from the targetless trajectory. Of the four
speakers who produced /pusoku/ and /puzoku/ differently, only one, S4,
produced the devoiced vowel in /pusoku/ consistent with the targetless tra-
jectory; for the other three, it was significantly different.
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speaker | comparison df | F b A
¢usoku ~ ¢uzoku | 21 | 22.9 | 0.0001* | 0.2798
S1 duzoku ~ null 21 | 30.2 | 0.0000%* | 0.1912
dusoku ~ null 21 | 18.2 | 0.0012%* | 0.3641
¢usoku ~ ¢uzoku | 25 | 20.8 | 0.0004* | 0.3891
S2 duzoku ~ null 25 | 45.6 | 0.0000* | 0.1289
dusoku ~ null 25| 25.1]0.0002* | 0.3270
¢usoku ~ ¢uzoku | 23 | 26.8 | 0.0000* | 0.2624
S3 duzoku ~ null 23 | 47.5]0.0000% | 0.0948
dusoku ~ null 23 | 27.8 1 0.0002%* | 0.2602
¢usoku ~ ¢uzoku | 23 | 23.3 | 0.0001* | 0.3114
S4 $uzoku ~ null 23 | 28.4 | 0.0000%* | 0.2459
dusoku ~ null 23 5.810.3138 |0.7559
¢usoku ~ ¢uzoku | 27 0.210.9953 |0.9917
S5 duzoku ~ null 27 | 51.1 | 0.0000%* | 0.1204
dusoku ~ null 27 | 54.5]0.0000% | 0.1047
¢usoku ~ ¢uzoku | 29 | 0.2 ]0.9971 |0.9940
S6 duzoku ~ null 29 | 32.9 | 0.0000%* | 0.2854
dusoku ~ null 29 | 25.2 1 0.0002* | 0.3832
Table I1

MANOVA results for /pusoku/ and /$puzoku/ for each speaker.

Fig. 10 shows the trajectory of TD height for another pair of words,
/futaisei/ and [[udaika/. The solid lines show the word containing the
devoiced vowel, [[utaisei/; the dashed lines show the comparison word,
/fudaika/, which contains a voiced /u/. For all six speakers, the TD trajec-
tory is somewhat lower for the devoiced vowel than for the voiced vowel.
Moreover, for several speakers the solid lines have an almost linear trajec-
tory between the flanking vowels /e/ and /a/. To assess the statistical sig-
nificance of these trends we fitted DCT components to each trajectory,
simulated a targetless trajectory and compared these via MANOVA.
The results are given in Table I11.

As shown in Table III, all six speakers produced /[utaisei/ and
[fudaika/ with significantly different T'D trajectories. Moreover, of the
six speakers, only one, S5, produced /fJutaisei/ differently from the tar-
getless trajectory. For completeness, we also note that one speaker, S2,
who did not produce a difference between [[utaisei/ and the targetless
trajectory, also did not produce a difference between /fudaika/ and the
targetless trajectory that was significant after Bonferroni correction

(p = 0.009, where a = 0.001).
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Figure 10

Change in TD height (y-axis) over time for [futaisei/ (solid
lines) and /fudaika/ (dashed lines). The figure shows a fixed

window beginning with the /e/ of the carrier phrase.

To summarise, most speakers showed significant differences in tongue-
height trajectories between voiced and voiceless vowels. This result allows
us to rule out the possibility that devoiced vowels are produced with the
same lingual articulatory gestures as voiced vowels, as predicted by H1
in (1). With respect to targetlessness, the statistical evaluation indicates
that /u/ may sometimes be targetless.” One speaker, S4, produced
/pusoku/ and five speakers produced /[utaisei/ without a clear height
target. Thus a conclusion based on this analysis is that devoiced vowels
are often reduced, and sometimes even produced without a target. We
would have to divide speakers into three groups based on [dpusoku/,
those who produce /u/ without a height target (S4), those who reduce
Ju/ (S1-S3) and those who produce full vowels (S5-5S6), but into just
two groups based on [[utaisei/, those who reduce (S5) and those who
produce a targetless /u/ (S1-S4, S6). We caution, however, that analysis
by MANOVA treats as a homogenous group all tokens of /pusoku/ and

7 This reasoning may run the risk of concluding that the lack of difference based on
null results in statistical hypothesis testing. The Bayesian classification analysis
reported below overcomes this problem.
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speaker | comparison df | F P A

Jutaisei ~ fudaika | 21 | 22.0 | 0.0002* | 0.2949
S1 Judaika ~ null 21| 47.9 1 0.0000* | 0.0703
Jutaisei ~ null 21 3.510.5050 |0.8250

Jutaisei ~ fudaika | 25 | 20.3 | 0.0004* | 0.3980
S2 Judaika ~ null 251 16.9|0.0097 |0.4739
Jutaisei ~ null 25| 8.2]0.1826 |0.6994

Jutaisei ~ fudaika | 23 | 17.9 | 0.0013* | 0.4078
S3 Judaika ~ null 23 | 42.1|0.0000% | 0.1232
Jutaisei ~ null 23 1 16.9]0.0054 | 0.4357

Jutaisei ~ fudaika | 23 | 52.3 | 0.0000%* | 0.0732
S4 Judaika ~ null 23 | 27.2/| 0.0000% | 0.2598
Jutaisei ~ null 23 | 11.1]0.0378 |0.5770

Jutaisei ~ fudaika | 27 | 22.8 | 0.0001%* | 0.3861
S5 Judaika ~ null 27 | 21.0 | 0.0012%* | 0.4218
Jutaisei ~ null 27 | 41.5]0.0000* | 0.1796

Jutaisei ~ fudaika | 29 | 49.3 | 0.0000* | 0.1504
S6 Judaika ~ null 29 | 17.8 | 0.0013%* | 0.5041
Jutaisei ~ null 29 1 12.0]0.0176 | 0.6312

Table I11
MANOVA results for [futaisei/ and [[udaika/ for each speaker.

[[utaisei/ for a given speaker. If there is within-speaker optionality, then
this assumption is not justified. We next turn to phonological classification
of the data on a token-by-token basis. This approach will evaluate the
optional lingual target hypothesis (H4), and offer additional insights into
the other hypotheses.

5.2 Classification results

We submitted each token of /¢usoku/ and /[utaisei/ in Figs 9 and 10 to a
Bayesian classifier, as described in §4. Recall that, as illustrated in
Fig. 8, all four hypotheses in (1) can be expressed as patterns of posterior
probabilities, the output of the Bayesian classifier. For easy comparison
with Fig. 8, we summarise the posterior probabilities as histograms.
Figure 11 provides a histogram for /pusoku/. (a) aggregates across speak-
ers, and (b) provides a breakdown by speaker. The pattern clearly shows that
there are two modes in the probabilities. One of them is around 0.05 prob-
ability of targetlessness; the other is around 0.95 probability of targetless-
ness. In fact, there are very few tokens at all that have intermediate
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probabilities, i.e. tokens which we could call phonetically reduced. Across
the six speakers, rather, it seems that /u/ in /¢usoku/ is optionally targetless.
The breakdown of individual speakers in (b) helps us to make sense of the
MANOVA results. Recall that speakers S1-S3 showed significant differ-
ences between [¢usoku/ and /duzoku/, as well as between [Ppusoku/ and
the targetless trajectory. Figure 11b makes clear why this is: these speakers
optionally produce the vowel without a height target. The same is true for
S4, who was put into a different group based on the MANOVA results.
The main difference amongst speakers S1-S4, therefore, is not between
phonetic reduction and phonological targetlessness, but rather in the fre-
quency with which the vowel is targetless. The other speakers, S5 and S6,
produced no tokens that were classified as targetless. S5 had just one
reduced token, with a targetless probability of 0.6; S6’s most reduced
token had a targetless probability of just 0.3.

(a) (b)

[l speakers (- —
— 0
30
53 0= ]
20
5410| 1]
o s
(T 55 L0 |
00 02 04 06 08 1 o 10
S6 Oﬂ - |
0 02 04 06 08 1

Figure 11

Posterior probabilities of targetlessness for 77 tokens of /pusoku/
from six speakers (the T'D trajectories shown in Fig. 9). (a)
aggregates across speakers; (b) probabilities by speaker.

Figure 12 provides similar histograms for [futaisei/. Again, the pattern
in the posterior probabilities is bimodal, with one peak at a high probabil-
ity of targetlessness and the other at a very low probability of targetless-
ness. Just as in /$pusoku/, the vowel [u/ in [futaisei/ is produced with an
optional target. It is noticeable that there are no tokens that are intermedi-
ate between the full vowel and the linear interpolation trajectory. The
subject-level data (Fig. 12b) shows that just one speaker, S2, is prone to
gradient reduction. Apart from S2, the other speakers produce only a
small number of tokens (three) in the ambiguous 0.3 to 0.7 probability
range. Consistent with the MANOVA results, the individual speaker
results indicate that five speakers (including S2) tend to produce the /u/
in /futaisei/ without a vowel-height target, while one speaker, S5, reliably
produces the word with a vowel-height target.
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Figure 12
Posterior probabilities of targetlessness for 77 tokens of [[utaisei/
from six speakers (the T'D trajectories shown in Fig. 10). (a)
aggregates across speakers; (b) probabilities by speaker.

The Bayesian classification provides converging evidence for some of the
conclusions based on MANOV As, but also additional insights. Both anal-
yses indicate that targetlessness is more common in [[futaisei/ than in
[dusoku/. Table I'V shows that this holds true for every speaker: although
targetlessness varies across speakers, all of them show a higher probability
of targetlessness in [[utaisei/ than in /dusoku/. This holds even for S5, who
has a low probability of targetlessness in both words. The MANOVA anal-
ysis also indicates that targetlessness is more common in /futaisei/ than in
/dusoku/; Bayesian classification reveals that this holds across all speakers
individually as well. Thus, while the overall probability of targetlessness
seems to be a matter of personal preference, relative probabilities of target-
lessness are shared across speakers.

speaker | Jutaisei | usoku

S1 0.9195 | 0.5756
S2 0.6646 | 0.5312
S3 0.7213 | 0.7185
S4 0.9869 | 0.8680
S5 0.0273 | 0.0152
S6 0.6595 | 0.1281

Table IV
Average probability of targetlessness by speaker and by word.

Another new insight gained from Bayesian classification is the status of
H2 in (1). When comparing DC'T components via MANOVA, we found
that four out of six speakers showed significant differences between voiced
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(/duzoku/) and voiceless (/dusoku/) contexts. Of these four speakers, three
also showed a significant difference between [dusoku/ and the targetless
trajectory. Since the productions of /dusoku/ differ as a group both from
[duzoku/ and from linear interpolation, we might be tempted to conclude
that the vowels are reduced but not targetless. The Bayesian classification
reveals that this conclusion is unwarranted. Rather, a group of /pusoku/
tokens from a single speaker may be different from both the full vowel tra-
jectory in /¢uzoku/ and the targetless trajectory because it contains a mix of
full vowel and targetless tokens. The Bayesian classification reveals that
this is indeed the case for /¢usoku/. Production of a lingual target in
devoiced vowels in Tokyo Japanese is optional, but phonetic reduction
is rare. Tokens are either produced with a full vowel, similar to the
voiced context, or with no lingual vowel target at all, as in the linear inter-
polation assumed for tokens that lack a vowel in the surface representation.

6 Discussion
6.1 Summary

We have illustrated a computational approach to assessing surface phono-
logical form based on phonetic data. The general strategy was to develop a
stochastic representational space that links discrete phonological form to
continuous phonetic data through simulation and classification. Our
specific proposal was to express phonological hypotheses in terms of distri-
butions over harmonic (frequency) components, extracted using DCT.
We showed that DC'T' compresses the phonetic data into a small number
of phonologically relevant parameters, which preserve phonetic detail.
As a proxy for phonetic interpolation, we defined a linear trajectory
between flanking vowels in this DCT frequency space. Stochastic sam-
pling from distributions over DC'T coefficients enabled simulation of com-
peting phonological hypotheses (full lingual target vs. no lingual target)
with the level of phonetic variability observed in the data. Finally, we
used the distributions to assign probabilities of targetlessness to unseen
data, according to Bayes’ rule. We illustrated the method with T'D move-
ments produced by Tokyo Japanese speakers as a case study. Based on
existing literature, we motivated four possible hypotheses about lingual
articulatory targets, and demonstrated step by step how our computational
approach can adjudicate between them.

6.2 What we have learned about high vowel devoicing

Results for Tokyo Japanese indicate that the lingual articulatory gesture of
devoiced vowels is rarely reduced, despite the fact that, given the devoicing,
it can have only negligible auditory consequences. There are, however, two
distinct phonetic outcomes for devoiced vowels. They can be produced with
or without a vowel-height target. This result supports H4 in (1), the hypoth-
esis that devoiced vowels have an optional lingual target.
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Another interesting aspect of the results is that the probability of vowel
targetlessness varied systematically across the pair of words examined. For
all speakers, the probability of producing a vowel without a height target
was higher for [[utaisei/ than for /pusoku/. This difference could be due
to resulting consonant-cluster phonotactics. Deletion of /u/ in /futaisei/
would give rise to a fricative—stop cluster, [[t], which may be a better
surface form than the fricative—fricative cluster [§s] resulting from /u/-
deletion in /dusoku/. If we assume that a syllable boundary remains
between these surface consonants (for evidence that it does, see Shaw &
Kawahara 2018a), a preference for fricative—stop clusters over fricative—
fricative clusters follows from syllable-contact laws (e.g. Vennemann
1988). Since there is a greater decrease in sonority between the offset of
one syllable and the onset of the next, [[.t] is less marked than [$.s]
(Gouskova 2004). It is not clear exactly what other facts of Japanese, if
any, motivate this fine-grained grammatical preference, although similar
types of patterns have been observed in the production and perception
of unfamiliar consonant clusters (e.g. Berent et al. 2007, Berent et al.
2009, Davidson & Shaw 2012).

Consistency across speakers in the relative targetlessness of /[utaisei/ and
/dusoku/ resembles other well-studied cases of phonological variation,
such as t/d-deletion, in which grammatical influences remain constant
even as overall deletion rates vary across speakers (Guy 1997, Coetzee &
Kawahara 2013). Some additional discussion of possible factors influencing
deletion can be found in Shaw & Kawahara (2018b), where the analysis
developed here is extended to more words, and presented alongside conver-
ging phonetic evidence for variable deletion of lingual articulatory targets.

6.3 Comparison with other approaches

Our approach differs from other quantitative attempts to assess phono-
logical hypotheses, including targetlessness, on the basis of phonetic
data. To highlight its unique points, we briefly summarise previous
approaches, which can be divided into four categories: (i) the heuristic
use of phonetics, (ii) statistical comparison of two samples of phonetic
data, (ii1) the prediction of one part of the phonetic signal from another
and (iv) hypothesis testing by simulation.

The first approach, the heuristic use of phonetics, involves drawing some
conclusion about phonological form on the basis of visual inspection of the
phonetic signal. Phonetic heuristics have played an important role in foun-
dational work in laboratory phonology, including in the context of arguing
for phonetic underspecification (Keating 1988, Cohn 1993). They can be
useful in augmenting auditory impressions of phonological form, particu-
larly from researchers who are non-native speakers of the target language.
However, phonetic heuristics may also break down. They are sometimes
too sensitive, and sometimes not sensitive enough. Consider, for example,
a common phonetic heuristic for a vowel between stop consonants: ‘a
period of voicing ... with formant structure containing a visible second
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formant that ended with abrupt lowering of intensity at the onset of the
second stop’ (Davidson 2010). Application of this heuristic to Tashlhiyt
Berber, for example, greatly overestimates the frequency of vowels in the
language (Ridouane 2008). A Berber word such as /t-bdg/ ‘it is wet’ contains
no vowels in the phonological representation, but is normally pronounced
with three periods of voicing that would meet the phonetic heuristic
above (Ridouane & Fougeron 2011). In this case, the phonetic heuristic is
too sensitive. On the other hand, English words such as support, which
contain two phonological vowels, are sometimes produced with just one
vocalic interval, meeting the above heuristic for a vowel (Davidson
2006b). In this case, the phonetic heuristic is not sensitive enough.
Heuristics break down because they do not capture the full range of phonetic
signals consistent with phonological form.

An alternative to the visual inspection of the phonetic signal is to statis-
tically compare one or more phonetic dimensions in two groups of words
that are hypothesised to differ in phonological structure. A wide range of
statistical tools have been deployed to this end (see e.g. Davidson 20064,
Lee et al. 2006, Wieling et al. 2016). For example, SSANOVAs can be
used to compare populations of splines (Gu 2013), such as tongue
shapes, T'D trajectories or even more complex derived variables (e.g.
change in tongue curvature over time; Ying et al. 2017), and have been
applied to various phonetic signals (Davidson 2006a). Similarly,
Functional Data Analysis (FDA) fits a series of splines to time aligned
signals, and has been shown to differentiate temporal differences associated
with prosodic context (Lee et al. 2006). Another approach uses
Generalised Additive Models, which have been developed to support
random effects, e.g. of talker. Generalised Additive Models have recently
been applied to EMA data, detecting dialect variation on the basis of move-
ment trajectories from large samples of speakers (Wieling et al. 2016).
These techniques can all be used to assess significant differences between
populations of trajectories, such as those produced in different prosodic
contexts or by speakers of different regional accents. However, a significant
difference between two populations of signals does not necessarily indicate
the nature of the phonological difference. As our case study demonstrates,
the same word can be produced with different phonological specifications.
Populations of signals can therefore be different not because they actuate
different phonological structures, but because they actuate different com-
binations of phonological structures (also Shaw & Davidson 2011).
Alternatively, populations of signals can differ due to phonetic factors.
For example, Shaw et al. (2016) demonstrate that tongue height in
Mandarin Chinese vowel production varies across tones. Despite the
common claim that tones and vowels are phonologically independent
(e.g. Yip 2002), there are dependencies between laryngeal and supra-
laryngeal articulation that result in small but statistically significant
subcategorical differences in lingual articulation for the same vowel pro-
duced with different tones. Thus statistical differences between surface
measurements offer no guarantee of a categorical phonological difference
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Figure 13
An illustrative figure based on Pierrehumbert & Beckman (1988), which was used
to argue for tonal underspecification. There is a correlation between the temporal
duration between the H tone and the L tone and the slope of a line fitted to the
FO contour. The numbers in each panel denote the steepness of the slope.

between samples. As with the heuristic use of phonetics, statistical com-
parison of continuous dimensions can be oversensitive, picking up differ-
ences that do not correspond to phonological structure (or to phonological
differences of theoretical interest).

A third approach is to use one part of the phonetic signal to predict
another. For example, Pierrehumbert & Beckman (1988: 37-38) rely on this
approach to argue for sparse tonal specifications in Japanese unaccented
words. They argue that in unaccented words only the first two syllables
are specified as LH. Because following syllables are unspecified, there is
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a general decline in FO toward the L tone in the next Accentual Phrase.
They show that the longer the duration between H and L, the shallower
the slope of the FO. Figure 13 is based on their illustrative figure. In this
case, the duration between H and L tones is used to predict the slope of
the FO fall. The relationship between these phonetic variables, number
of intervening syllables and the slope of the FO0 fall constitutes an argument
for the tonal targetlessness of intervening syllables.

This specific correlation requires manipulating the duration of the
hypothesised ‘targetless’ material, which may not always be possible, but
conceptually similar approaches have been applied to other arguments
for targetlessness.® Browman & Goldstein (1992) use a multiple regression
framework to assess whether English schwa contains an articulatory target.
They reason that schwa can be claimed to be targetless in sequences such as
[pVipapV,p/ if the spatial position of the articulators can be reliably pre-
dicted by the flanking vowels in a two-parameter (one coefficient for each
flanking vowel) linear regression model (also Lammert et al. 2014). They
argue that schwa in such words has a target of its own, since regression
models with an intercept term, representing the mean height of the
signal, tended to outperform models informed only by flanking vowel
positions. This same approach has been generalised to assess vowel specifi-
cation on the basis of formant trajectories (Choi 1995). Choi demonstrates
that the F2 of Marshallese vowels can be predicted from flanking conso-
nants, and argues that they are therefore unspecified for backness.

In modelling contextual effects on English schwa, Browman & Goldstein
(1992) also deploy what we consider to be a fourth type of approach. They
simulated phonetic data from various phonological hypotheses, including
targetlessness, and compared the simulated data to the experimental data.
They found a qualitative match between simulated data and experimental
data when English schwa is specified in the model with a neutral vowel
target and overlapped in time with the following vowel, a result that con-
verges nicely with the regression analysis described above, and makes
different predictions than the targetless specification (particularly in high
vowel environments). Browman & Goldstein explore several possible
phonological configurations by specifying gestural scores by hand and
examining the phonetic consequences. More recent simulations derive
gestural scores from coupled oscillators (Saltzman et al. 2008) or posit
coordination topologies isomorphic with syllable structure while fitting
lower-level parameters to the data (Shaw & Gafos 2010, 2015, Gafos
et al. 2014). The computational toolkit we have introduced belongs to
this fourth type of approach, which assesses competing phonological
hypotheses computationally, by simulating those hypotheses in the phys-
ical dimensions of phonetic data. This can of course be combined with
other methods described above. For example, in their investigation of the

8 Manipulation of speech rate (Solé 1992, Strycharczuk et al. 2014) has also been used
to probe phonological specification, the key assumption being that only phonologic-
ally specified features (not the mechanical consequences of coarticulation) maintain
proportional influence over the phonetic signal across speech rates.
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effects of prosodic structure on articulation, Parrell et al. (2013) first simu-
lated trajectories from the TaDA articulatory synthesiser under different
prosodic conditions. They tested their FDA-based measure of prosodically
dictated temporal modulation on the simulated data to verify that it picked
up the a priori known prosodic differences before extending the measure to
investigate prosodic effects in naturally produced speech. Like our
approach, this method relies on phonologically informed simulation to
guide statistical analysis of the data in terms of phonological structure.

In comparison with other models instantiating the fourth class of
approaches described above, our toolkit is in some ways more bottom-
up, requiring fewer theoretical commitments and also fewer researcher
degrees of freedom.’ First, the parameters in the model, i.e. the values of
the DC'T coefficients, are determined by the data, according to the algo-
rithm in (4). Second, our approach does not privilege particular points
in time as having greater phonological relevance than others. In many of
the studies described above, specific moments in time are selected for anal-
ysis. For example, Browman & Goldstein (1992), Shaw et al. (2016) and
Blackwood Ximenes et al. (2017) select, by automatic algorithm, a specific
point in time to represent the spatial position of a vowel. Regardless of
whether the algorithm is based on displacement of articulators, formant
values, minimum/maximum velocity, the temporal midpoint of voicing,
etc., ‘target’ selection introduces a researcher degree of freedom. Our
toolkit alleviates the necessity of picking points in time associated with
the target phonological structure. This aspect of the approach is particu-
larly useful for addressing the presence/absence of a target, as it is prob-
lematic to choose a point in time corresponding to a target that might
not be there. Thus our approach makes the presence or absence of
targets a largely empirical question, which can be addressed with phonetic
data. One assumption that we have adopted here is that targetlessness cor-
responds to linear interpolation in the phonetics. Beyond this, since the
parameters capturing phonetic signal modulation are fitted to the data
quantitatively, the bottom-up approach remains compatible with most
higher-level theories of phonological representation, including dynamic-
ally defined gestural units, as in Articulatory Phonology. Perhaps most
importantly, the number of parameters in our representation of the
signal is small, and each has a phonological interpretation. This property
contrasts with GAMs, FDA and other powerful algorithms capable of
fitting non-linear data, and, in particular, it facilitates a phonological inter-
pretation of the phonetic signal.

6.4 Broader applications

Although the computational toolkit we have assembled to assess interpo-
lation takes continuous phonetic data as input, the results for devoiced

9 ‘Researcher degrees of freedom’ refers to flexibility in methods of data collection,
reporting and analysis that affect statistical assessment of a hypothesis (see e.g.
Simmons et al. 2011).
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vowels in Japanese are remarkably categorical. Most tokens are either pro-
duced without a vowel target or with a full vowel target. The approach
does not dictate such categorical outcomes (see Fig. 8§ and Appendix A).
With respect to deletion of high vowels in Japanese, the categorical
nature of the variation, as revealed by application of our approach, and
its interaction with other grammatical factors suggest that the phenom-
enon has a distinctly phonological character. Although there is a long
line of research on formal architectures that can model variable phono-
logical processes (for an overview, see Coetzee & Pater 2011), the develop-
ment of formal tools for assessing whether the data require a phonological
solution has lagged behind. We are optimistic about the prospects of
applying our computational toolkit to a wider variety of phenomena, and
curious about the extent to which other cases of ‘phonetic reduction’ are
actually manifestations of optional phonological processes.” We hope
that the proposed toolkit will be used broadly in reassessing alleged cases
of reduction to test whether they should be modelled as reduction or as
optional processes of phonological deletion/targetlessness.

As discussed in the introduction, the toolkit is designed to address the
general issue of phonetic underspecification, whether the source is phono-
logical deletion or lexical underspecification or non-specification. One
domain within which the current toolkit may be particularly applicable is
intonation. As mentioned in the introduction, the issue of underspecifica-
tion (targetlessness) is particularly important in the domain of intonation,
because the dominant analytical framework of intonation, the autosegmen-
tal/metrical model of intonation, generally assumes sparse tonal specifica-
tion (see Xu et al. 2015 vs. Arvaniti & Ladd 2015 for a recent exchange
of opinions on this matter). Since intonation, just like the articulatory data
reported here, comes with much natural variability, including individual
variation, application of these tools to the tonal underspecification hypoth-
esis may prove to be informative. For example, the trade-off between
signal length and FO slope identified by Pierrehumbert & Beckman
(1988) and shown in Fig. 13 is a natural consequence of DCT, since
the amplitude of DC'T' components are inversely related to the length of
the signal (see (4), where y(k) is amplitude and L is signal length).
Moreover, there are some ‘bumps’ on the ‘linear’ FO trajectories, which
could be due either to non-linguistic perturbations of the signal or phono-
logical specifications, precisely the type of distinction that can be addressed
in our framework.

In closing this section on the broader applicability of our approach,
we would like to summarise aspects of our analysis that we expect will
vary depending on the specific dataset being analysed. We chose three
DCT coefficients to model tongue-dorsum trajectories over [VcuCV/
sequences, but the number of DCT coefficients deployed in a given
analysis will depend on the complexity of the data. For example, DCT

10 For another case of categorical but optional phonology, see Strycharczuk et al.
(2014) on voicing in Quito Spanish fricatives.
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fits to formant transitions in diphthongs have typically used just two com-
ponents (Elvin et al. 2016); longer sequences influenced by multiple over-
lapping gestures will likely require more. In the general case, we advise
selecting DCT components based on two criteria: the precision with
which they fit the data and the clarity of their linguistic interpretation.
The maximum hypothesised number of phonologically dictated modula-
tions in the signal under analysis may serve as an appropriate guideline.
Second, we reported simulations of the targetless (linear interpolation) tra-
jectory based on variance around DC'T coefficients equivalent to the level
of variability observed in voiced vowels. It is conceivable that a devoiced
(or reduced) vowel could have greater variability than a full vowel, and
we have explored this possibility as well (see Appendix A). The broader
point is that our approach is flexible. Although it is clear that the represen-
tational space dealing with simulation and classification is stochastic in
nature, our methodological approach does not dictate the level of variabil-
ity used in the simulations, and it may at times be advisable to consider
scaling these parameters. For example, injecting only the level of variabil-
ity found in full vowels into our linear interpolation simulations still gen-
erated the occasional ‘accidental’ vowel from a targetless trajectory, but by
gradually increasing variability, it would be possible to identify how vari-
ability influences the probability of accidental vowels. Finally, in the
Bayesian classification stage of our analysis, we did not make use of the
prior, but this option is available, and may be useful in cases in which
there are independent reasons to suspect that one form or another has
greater likelihood than the other, as in, for example, non-native speech pro-
duction (Davidson 2010, Wilson & Davidson 2013). For the case of
Japanese high vowel devoicing, we did not have such evidence, so we
simply posited that they are equally likely. In short, the computational
tools that we have introduced here have the flexibility to be deployed in a
wide range of cases in which the phonetic specification of a target is at issue.

7 Conclusion

We have developed a set of computational tools to assess the presence vs.
absence of phonological specification in phonetic data. The set of tools,
consisting of Discrete Cosine Transform, stochastic sampling and
Bayesian classification, does so without requiring explicit labelling of the
target structure. In this sense, the toolkit can be productively deployed
as a phonological feature detector. We demonstrated the approach with
analysis of EMA recordings of voiced and devoiced vowels in Tokyo
Japanese, contributing to a debate about whether devoiced vowels are
specified for lingual articulatory targets. Analysed within the computa-
tional framework described here, these data elucidated some previously
unknown aspects of the pattern, including its highly categorical nature
and phonological conditions under which devoiced vowels also lack
lingual articulatory targets.
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Largely data-driven, adaptable to a range of phonetic signals, and compat-
ible with a broad spectrum of representational frameworks in phonology,
the computational toolkit can be widely deployed to link hypotheses
about the specification (or non-specification) of phonological elements,
including features, gestures and tones, to phonetic data.
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