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Formal tools for sub-phonemic patterns

e Our formalisms tend to privilege discrete symbolic units, as many
phonological patterns are insightfully described in these terms.

 Some phenomena are more challenging for this level of description (or just
fall outside the scope):
* Incomplete neutralization
* Gradual sound change
e Sub-phonemic change in representations over a lifetime

* |n this talk, we explore the potential of Dynamic Neural Fields for capturing
sub-phonemic patterns.



Empirical phenomenon: “Leaky Prosody”

* Lexical items come to take on the phonetic characteristics of the prosodic

environments in which they are typically produced (e.g., seyfarth 2014; Séskuthy & Hay
2017; Tang & Shaw 2021).

* In Mandarin Chinese, words that tend to attract a high degree of prosodic
prominence are produced with relatively high pitch, even in prosodically weak
environments; thus, prosody from context leaks into the lexicon (Tang & Shaw 2021).

Effects are lexically specific and sub-phonemic synchronically but may provide
seeds for gradual diachronic change.

* Frequency/informativity effect on segment count (Zipf 1949; Piantadosi et al. 2012) ma
derive from frequency/informativity effect on ms duration (Wright 1970; Seyfarth 2014).

* |exical tone/stress emerging from higher level prosodic prominence/intonation
* Lexical tone loss in predictable environments.



Architectural sketch (Tang & Shaw 2021)
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Today: alternative “flat model”

Feedback loop

* Potential advantage in learning surface distributions (distributional learning) vs.

Today’s flat model

Tang & Shaw (2021) proposal
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Framework: Dynamic Field Theory smoner e spencer 2016
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Schoner, G., & Spencer, J. P. (2016). Dynamic thinking: A
primer on dynamic field theory. Oxford University Press.



DFT: key properties for a flat model of leaky

prosody

 Multiple inputs to a field can exert
influence on stabilization.

Derives contrastive
hyperarticulation of VOT from
competitor inhibition
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Stern, M. C., & Shaw, J. A. (2022). Neural inhibition during speech planning
contributes to contrastive hyperarticulation. arXiv preprint arXiv:2209 12278.

Derives trace effect in speech
errors from competitor excitation
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Stern, M. C., Chaturvedi, M., & Shaw, J. A. (2022). A dynamic neural field
model of phonetic trace effects in speech errors. In Proceedings of the
Annual Meeting of the Cognitive Science Society (Vol. 44, No. 44),

Language, 89, 222-243

Derives effect of perception on
production in cue-distractor task

* Perception/production modelled as time .
varying processes, c.f., purely statistical 1
agent-based models (c.f, Harrington & Schiel 2017).

Roon, K. D., & Gafos, A. |. (2016). Perceiving while producing: Modeling
the dynamics of phonological planning. Journal of Memory and

on perceptual sensitivity
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Derives effect of production variation
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Harper, S. K. (2021). Individual Differences in Phonetic Variability and
Phonological Representation (Doctoral dissertation, University of

* Nested time scales: Learning occurs token- | oneniion
by-token (slow time scale) in response to =

production & perception (fast time scale).

Derives effect of word frequency

phonetic character

Gafos, A., & Kirov, C. (2009). A dynamical model of change in
phonological representations: The case of lenition. Phonological systems
and complex adaptive systems: Phonology and complexity, 219-240.
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Tilsen, S. (2019). Motoric mechanisms for the emergence of
non-local phonological patterns. Frontiers in Psychology, 10,




Model overview: pitch target
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Pitch planning field

(selection dynamics)
f k(x — x’)g(u(x’, t))dx’

Feedback ]—I Stable pitch

Pitch input from three
sources:

« lexicon: lexical pitch
target

« tone: phonological
pitch target

« prosody: prosodic
pitch target

* Lexicon updated to
Incorporate stable pitch




peak@241Hz

Formal expression of the model ¢
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Resting activation: h = -5 Models built with the COSIVINA Toolbox in Matlab:

Schneegans, S. (2021). COSIVINA: A Matlab Toolbox to Compose,
Simulate, and Visualize Neurodynamic Architectures (Version 1.4).

Field evolution speed: 7 = 20




Formal expression: gaussian inputs
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Simulation inputs are surface distributions

Input parameters based on Tang & (x —p)? ]
Shaw (2021) corpus of 1,655 Mandarin 2w?2
speakers.

 Starting Lexical input = sample of high T

s(x,t) = aexp [—

tone distribution (1/500t") ilex a=6

* Phonological pitch target = high tone (1% run) p =241
distribution (~41,000) w =39
* Prosodic context = distribution of pitch Sphon A =0

values at two levels of bigram suprisal p =238
* Low predictability (~10,000) w =94
 High predictability (~10,000) Spros A = 6

(low, high) p = 233, 226
Tang, K., & Shaw, J. A. (2021). Prosody leaks into the w =100, 92

memories of words. Cognition, 210, 104601.




Formal expression: interaction kernel

Tu(x, t) = —ux, t) + h + S1ex (X, £) + Sppon (X, £) + Spros(x,t) + f k(x — x’)g(u(x’, t))dx’ + gé(x,t)
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Simulations

1. Speech production planning as a time varying process (fast time
scale): establish effect of prosodic context on pitch target
* |nitialize two words with identical pitch targets

e Simulate one in a high prominence environment; one in a low prominence
environment.

2. Lexical learning as a time varying process (slow time scale): derive
leaky prosody from updating the lexicon

* update lexical representations based on where the field stabilizes on each fast
time scale simulation



Nested timescales
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Slow (e.g. hours):
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Fast time scale: single trial, high vs. low prominence
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Updating the lexical input from single trial
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Samples from lexical input distribution; one sample is
randomly selected and replaced with the new pitch value.
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Pitch (Hz)

Slow time scale: lexical drift over 500 trials
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Discussion: achievements

* Leaky prosody effect derived from simple assumptions

e Al: production inputs come from surface distributions
* Lexical target: sample of distribution of fO for high tone category
* Phonological tone: complete distribution of fO for high tone category
* Prosodic context: distribution of fO at a given level of surprisal

e A2: inputs jointly influence pitch target
* A3: flat model = stabilization instead of transformations

* Trial-by-trial variability

* Small lexical differentiation emerges over time from learning



Discussion: limitations

e Just one tone (high)

e Just two lexical items

e Just one feature dimension (pitch)

* No talker normalization (flat model)
* No signal transformations (ERB, MEL)



Discussion: parameter space

* Only lexical inputs (not
phonological/prosodic) updated

* Stable phonological input works
against lexical drift.

* Should persist even if phonological
representations are updated...

* Unless enough words shift in the
same direction

* Amplitude of inputs the same (> h
‘rest level’) for lexical,
phonological, prosodic targets

* Having lexical, phonological, and

prosodic inputs leads to faster
stabilization.

* Predicts we should be able to have
a pitch target with just one input.
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