A dynamic neural field model of leaky prosody: proof of concept

Jason A. Shaw¹ & Kevin Tang²

Yale University¹, Heinrich-Heine University²

Formal tools for sub-phonemic patterns

- Our formalisms tend to privilege discrete symbolic units, as many phonological patterns are insightfully described in these terms.
- Some phenomena are more challenging for this level of description (or just fall outside the scope):
 - Incomplete neutralization
 - Gradual sound change
 - Sub-phonemic change in representations over a lifetime
- In this talk, we explore the potential of Dynamic Neural Fields for capturing sub-phonemic patterns.

Empirical phenomenon: "Leaky Prosody"

- Lexical items come to take on the phonetic characteristics of the prosodic environments in which they are typically produced (e.g., Seyfarth 2014; Sóskuthy & Hay 2017; Tang & Shaw 2021).
- In Mandarin Chinese, words that tend to attract a high degree of prosodic prominence are produced with relatively high pitch, even in prosodically weak environments; thus, **prosody** from context **leaks into the lexicon** (Tang & Shaw 2021).
- Effects are lexically specific and **sub-phonemic** synchronically but may provide seeds for gradual diachronic change.
 - Frequency/informativity effect on segment count (Zipf 1949; Piantadosi et al. 2012) may derive from frequency/informativity effect on ms duration (Wright 1970; Seyfarth 2014).
 - lexical tone/stress emerging from higher level prosodic prominence/intonation
 - Lexical tone loss in predictable environments.

Architectural sketch (Tang & Shaw 2021)

- Leaky prosody facts suggest that phonetic outputs may feedback into the lexicon.
- Possibly imperfect (incomplete) compensation for effect of prosodic environment on phonetic realization.

Tang, K., & Shaw, J. A. (2021). Prosody leaks into the memories of words. *Cognition*, *210*, 104601.

c.f., Turk & Shattuck-Hufnagel (2020)

Today: alternative "flat model"

 Potential advantage in learning surface distributions (distributional learning) vs. transformational rule (multi-factor regression/highly parameterized generative model)

Framework: Dynamic Field Theory (Schöner & Spencer 2016)

- Cognitive representations are continuous parameters (here, pitch) governed by populations of neurons.
- The distribution of **activation** across a neural population is represented by a dynamic neural field (DNF).
- Activation at each field location evolves over time under the influence of inputs until the system stabilizes

Schöner, G., & Spencer, J. P. (2016). *Dynamic thinking: A primer on dynamic field theory*. Oxford University Press.

DFT: key properties for a flat model of leaky prosody

• Multiple inputs to a field can exert influence on stabilization.

• Perception/production modelled as time varying processes, c.f., purely statistical agent-based models (c.f., Harrington & Schiel 2017).

 Nested time scales: Learning occurs tokenby-token (slow time scale) in response to production & perception (fast time scale).

Gafos, A., & Kirov, C. (2009). A dynamical model of change in phonological representations: The case of lenition. *Phonological systems* and complex adaptive systems: *Phonology and complexity*, 219-240.

Tilsen, S. (2019). Motoric mechanisms for the emergence of non-local phonological patterns. *Frontiers in Psychology*, *10*, 2143.

Model overview: pitch target

Pitch input from three sources:

- lexicon: lexical pitch target
- **tone**: phonological pitch target
- **prosody**: prosodic pitch target
- Lexicon updated to incorporate stable pitch

DNF parameter

Resting activation: h = -5Field evolution speed: $\tau = 20$ Models built with the COSIVINA Toolbox in Matlab: Schneegans, S. (2021). COSIVINA: A Matlab Toolbox to Compose, Simulate, and Visualize Neurodynamic Architectures (Version 1.4).

Formal expression: gaussian inputs

 $\tau \dot{u}(x,t) = -u(x,t) + h + \frac{s_{lex}(x,t) + s_{phon}(x,t) + s_{pros}(x,t)}{\int k(x-x')g(u(x',t))dx' + q\xi(x,t)}$

$$s(x,t) = a \exp\left[-\frac{(x-p)^2}{2w^2}\right]$$

Simulation inputs are surface distributions

Input parameters based on Tang & Shaw (2021) corpus of 1,655 Mandarin speakers.

- Starting Lexical input = sample of high tone distribution (1/500th)
- Phonological pitch target = high tone distribution (~41,000)
- Prosodic context = distribution of pitch values at two levels of bigram suprisal
 - Low predictability (~10,000)
 - High predictability (~10,000)

Tang, K., & Shaw, J. A. (2021). Prosody leaks into the memories of words. *Cognition*, *210*, 104601.

$$s(x,t) = a \exp\left[-\frac{(x-p)^2}{2w^2}\right]$$

Input parameters	
S _{lex}	a = 6
(1 st run)	<i>p</i> = 241
	<i>w</i> = 99
Sphon	a = 6
	<i>p</i> = 238
	<i>w</i> = 94
Spros	a = 6
(low, high)	<i>p</i> = 233 , 226
	<i>w</i> = 100 , 92

Formal expression: interaction kernel

Simulations

- 1. Speech production planning as a time varying process (fast time scale): establish effect of prosodic context on pitch target
 - Initialize two words with identical pitch targets
 - Simulate one in a high prominence environment; one in a low prominence environment.
- 2. Lexical learning as a time varying process (slow time scale): derive leaky prosody from updating the lexicon
 - update lexical representations based on where the field stabilizes on each fast time scale simulation

Nested timescales

Fast time scale: single trial, high vs. low prominence

Updating the lexical input from single trial

Samples from lexical input distribution; one sample is randomly selected and replaced with the new pitch value.

Slow time scale: lexical drift over 500 trials

Discussion: achievements

- Leaky prosody effect derived from simple assumptions
 - A1: production inputs come from surface distributions
 - Lexical target: sample of distribution of f0 for high tone category
 - **Phonological tone**: complete distribution of f0 for high tone category
 - **Prosodic context**: distribution of f0 at a given level of surprisal
 - A2: inputs jointly influence pitch target
 - A3: flat model \rightarrow stabilization instead of transformations
- Trial-by-trial variability
- Small lexical differentiation emerges over time from learning

Discussion: limitations

- Just one tone (high)
- Just two lexical items
- Just one feature dimension (pitch)
- No talker normalization (flat model)
- No signal transformations (ERB, MEL)

Discussion: parameter space

- Only lexical inputs (not phonological/prosodic) updated
 - Stable phonological input works against lexical drift.
 - Should persist even if phonological representations are updated...
 - Unless enough words shift in the same direction
- Amplitude of inputs the same (> h 'rest level') for lexical, phonological, prosodic targets
 - Having lexical, phonological, and prosodic inputs leads to *faster stabilization*.
 - Predicts we should be able to have a pitch target with just one input.

$$\tau \dot{u}(x,t) = -u(x,t) + h + s_{lex}(x,t) + s_{phon}(x,t) + s_{pros}(x,t) + \int k(x-x')g(u(x',t))dx' + q\xi(x,t)dx' + q\xi(x,t)$$