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A B S T R A C T   

Previous work has demonstrated that words are hyperarticulated on dimensions of speech that differentiate them 
from a minimal pair competitor. This phenomenon has been termed contrastive hyperarticulation (CH). We 
present a dynamic neural field (DNF) model of voice onset time (VOT) planning that derives CH from an 
inhibitory influence of the minimal pair competitor during planning. We test some predictions of the model with 
a novel experiment investigating CH of voiceless stop consonant VOT in pseudowords. The results demonstrate a 
CH effect in pseudowords, consistent with a basis for the effect in the real-time planning and production of 
speech. The scope and magnitude of CH in pseudowords was reduced compared to CH in real words, consistent 
with a role for interactive activation between lexical and phonological levels of planning. We discuss the po-
tential of our model to unify an apparently disparate set of phenomena, from CH to phonological neighborhood 
effects to phonetic trace effects in speech errors.   

Introduction 

Contrastive hyperarticulation 

Previous work has shown that the pronunciation of a word is gra-
diently influenced by its relationships with other similar words in the 
lexicon. For example, phonological neighborhood density (Luce, 1986; 
Vitevitch & Luce, 2016)—defined broadly as the number of similar- 
sounding words in the lexicon (Vitevitch & Luce, 2016)—has been 
shown to affect the pronunciation of both vowels (Gahl et al., 2012; 
Munson, 2007; Munson & Solomon, 2004, 2016; Scarborough, 2010, 
2012, 2013; Wright, 2004) and consonants (Fox et al., 2015; Fricke 
et al., 2016). The number of similar-sounding words in the lexicon seems 
to influence pronunciation. Phonological neighborhood effects on pro-
nunciation can be characterized as global, since they are not targeted 
towards specific lexical competitors. However, a more local effect is 
caused by the presence of a minimal pair competitor. We consider a 
minimal pair competitor to be a word that differs from the target word in 
a single dimension of speech or “phonological feature”. The main 
phonological feature of interest in this paper is “voicing”, which dif-
ferentiates, e.g., the initial consonant of PET1 from that of minimal 

competitor BET. Consonant voicing corresponds articulatorily to the 
temporal coordination between oral and laryngeal gestures; voicing can 
be measured acoustically as the duration of the interval between the 
“burst” caused by the sudden release of an oral occlusion (e.g., of the lips 
for /p/2) and the onset of periodic vocal fold vibration associated with 
the following vowel. This duration is termed “voice onset time” (VOT: 
Abramson & Whalen, 2017; Lisker & Abramson, 1964). In conversa-
tional speech, “voiceless” consonants like /p, t, k/ are defined by a long 
VOT (about 40–80 ms), while “voiced” consonants like /b, d, g/ are 
defined by a short VOT (about 10–30 ms) (e.g., Chodroff & Wilson, 
2017). 

Change in the pronunciation of a word that specifically differentiates 
it from a minimal pair competitor—termed “contrastive hyper-
articulation” (CH: Wedel et al., 2018)—has been observed in several 
specific dimensions of speech, including vowel formants (Clopper & 
Tamati, 2014; Wedel et al., 2018), vowel duration (Goldrick et al., 2013; 
Schertz, 2013; Seyfarth et al., 2016), and voicing of voiceless consonants 
(Baese-Berk & Goldrick, 2009; Buz et al., 2016; Goldrick et al., 2013; 
Nelson & Wedel, 2017; Schertz, 2013; Wedel et al., 2018) and voiced 
consonants (Nelson & Wedel, 2017; Schertz, 2013; Seyfarth et al., 2016; 
Wedel et al., 2018). CH is magnified when the minimal pair is 
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contextually salient (Baese-Berk & Goldrick, 2009; Kirov & Wilson, 
2012; Seyfarth et al., 2016) and after the listener indicates that they 
heard the minimal pair competitor rather than the target word (Buz 
et al., 2016; Schertz, 2013). CH may underlie the influence of functional 
load—operationalized as the number of lexical items distinguished by a 
phonological feature (Hockett, 1967)—on articulation (Hall et al., 
2017). This influence has been argued to maintain the distinctiveness of 
words over time (Wedel, 2012; Wedel et al., 2013; Winter & Wedel, 
2016). While some have argued that global neighborhood effects are in 
fact reducible to local CH effects (Buz & Jaeger, 2016; Nelson & Wedel, 
2017; Wedel et al., 2018) or vice versa (Fox et al., 2015; Fricke et al., 
2016), others have argued that the two types of effects arise from (at 
least partially) independent sources (Clopper & Tamati, 2014). The 
focus of the present study is CH, rather than general neighborhood ef-
fects; however, the results have implications for understanding the 
relationship between these types of effects, a point we return to in the 
discussion section. 

Baese-Berk & Goldrick (2009:Experiment 2) offers a representative 
example of an experiment demonstrating CH. During each trial in this 
experiment, participants were shown a screen with three words, one of 
which (the target) was highlighted. The participant was instructed to 
read the target word to a “listener” (a lab confederate) who was viewing 
a different screen, identical to the participant’s but without the target 
word highlighted. The participant’s goal was to get the listener to select 
the correct target word. All target words were real words beginning with 
voiceless stop consonants (e.g., /p, t, k/), but they were divided into 
three conditions. Words in the “no competitor” condition had no mini-
mal pair competitor differing in initial consonant voicing, e.g. PIPE 
(*BIPE),3 and the two distractor words were unrelated to the target. 
Words in the “no context” condition had a minimal pair competitor, e.g. 
PAD (BAD), but this minimal pair was not presented as a distractor; 
again, the two distractors were unrelated to the target. In the “context” 
condition, the target’s minimal pair competitor was presented as an on- 
screen distractor. The VOT of words in the “no context” condition was 
hyperarticulated compared to those in the “no competitor” condition by 
an average of about 5 ms, phonetically differentiating the voiceless 
target from the voiced minimal pair competitor. Moreover, words in the 
“context” condition were hyperarticulated compared to those in the “no 
competitor” condition by about 10 ms, demonstrating an additional 
effect of the contextual salience of the minimal pair competitor. 

Possible sources of contrastive hyperarticulation 

A number of hypotheses have been proposed to explain CH. On one 
hand, CH may arise from relatively slow processes occurring over the 

lifetimes of language users. In episodic memory models of linguistic 
knowledge (Goldinger, 1998; Pierrehumbert, 2001, 2002), lexical rep-
resentations are phonetically detailed and continually updated after 
each production or perception of the lexical item. Crucially, in many 
implementations of such models, only successfully categorized exem-
plars influence the overall lexical representation (Hay et al., 2015; 
Wedel, 2006). Hypoarticulated productions of words with minimal pair 
competitors are more likely to be miscategorized than those of words 
without minimal pair competitors. Thus, over time, phonetic represen-
tations of words with minimal pair competitors will tend to become 
more peripheral, i.e., more differentiated from their minimal pair 
competitor. Episodic memory accounts of CH thus provide a possible 
mechanism underlying the observation that phonological category op-
positions which carry a greater functional load are less likely to merge 
over time (Wedel et al., 2013). However, this mechanism alone cannot 
account for the effect of the contextual salience of the minimal pair 
competitor, i.e. the difference between the “context” and the “no 
context” conditions. 

Thus, there is likely a role for relatively fast processes unfolding on 
millisecond timescales in the planning and production of speech. For 
instance, CH has been attributed to real-time listener accommodation on 
the part of the speaker (Munson & Solomon, 2004; Wright, 2004). Ac-
cording to this account, speakers are sensitive to the perceptual needs of 
the listener, and actively adjust their pronunciation in an attempt to 
maximize the likelihood that they will be accurately perceived by the 
listener (Lindblom, 1990). More broadly, this would constitute a specific 
case of audience design, whereby speakers take into account the likely 
perceptual experience of the listener (Arnold et al., 2012; Bell, 1984; 
Galati & Brennan, 2010). This theoretical position has been deployed to 
explain pronunciation variation, as in CH, as well as other language 
behaviors, including word choice, lexico-syntactic patterns, and 
semantic-pragmatic reasoning (for a review see Jaeger & Buz, 2017). 
With regard to CH, words with minimal pair competitors are more likely 
to be misperceived than words without minimal pair competitors 
(Vitevitch & Luce, 1998), so speakers might hyperarticulate dimensions 
of pronunciation that differentiate words from their minimal pair 
competitors, to accommodate the listener. Hyperarticulation would be 
further magnified when the minimal pair competitor is more salient in 
the context and therefore more confusable with the target. This account 
is supported by the finding that speakers actively adjust their pro-
nunciations in response to an explicit misunderstanding on the part of 
the listener (Buz et al., 2016; Schertz, 2013). 

CH has also been attributed to real-time speaker-internal processes, 
independent of the listener. This kind of hypothesis is based on “inter-
active activation” models of speech planning in which activation of one 
representational unit (e.g., lexical item or phoneme) causes partial 
activation of related representational units (Dell, 1986; Dell et al., 1999, 
2021). For instance, consider the planning of the word PUN, schema-
tized in an interactive activation framework in Fig. 1. First, intention to 
produce PUN increases activation of its lexical representation. Via 
connections between lexical and phonological levels of planning, acti-
vation of the lexical representation PUN increases activation of its 
constituent phonological representations /p/, /ʌ/, and /n/. These 
lexical-phonological connections are bidirectional, so the active 
phonological representations send activation back to the lexical level, 
forming an excitatory feedback loop. Importantly, at this stage, lexical 
representations which overlap in their phonological representation with 
the target word also receive some activation via phonological-lexical 
feedback. The minimal pair BUN, differing from the target PUN in 
only one phonological feature (voicing of the initial consonant), receives 
a non-negligible amount of activation at this stage. Because of the 
bidirectional nature of interactive activation, the competitor lexical 
representation BUN subsequently sends some activation to the 
competitor phoneme /b/, which is not part of the phonological repre-
sentation of the target word PUN. It has been proposed that partial 
activation of the competitor phoneme (in this case, /b/) drives 

Fig. 1. During planning of PUN, interactive activation (double arrows) causes 
partial activation of the competitor phoneme /b/ (red arrow). (For interpre-
tation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 

3 The asterisk indicates absence from the lexicon. 
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hyperarticulation of the target phoneme (in this case, /p/) (Baese-Berk 
& Goldrick, 2009). According to this hypothesis, the different magni-
tudes of CH (between the “context” and “no context” conditions) can be 
derived from different magnitudes of activation of the competitor 
phoneme. In the “context” condition, the competitor receives activation 
from the visual context, in addition to the activation it receives from 
phonological-lexical feedback, driving a larger CH effect. However, the 
actual mechanism by which competitor activation in planning leads to 
CH in articulation has not been specified. 

The notion that multiple active phonological representations can 
simultaneously influence articulatory movement is consistent with 
“cascading activation” models of speech planning (Alderete et al., 2021; 
Goldrick & Blumstein, 2006; Goldrick & Chu, 2014). Such models have 
been used to explain the phonetic “trace” effect observed in speech er-
rors, whereby errorful productions exhibit a “trace” of the intended 
phoneme (Goldrick et al., 2016). For instance, if BUN were produced 
errorfully, instead of the intended PUN, the initial /b/ would tend to 
have a longer VOT, exhibiting a trace of the intended /p/, compared to a 
non-errorful production of BUN. Applied to CH, this mechanism appears 
to make an incorrect prediction: partial activation of the competitor 
phoneme should cause the target word to be more similar to the minimal 
pair, i.e., hypo-, not hyper-, articulated. To address this issue, it has been 
proposed that the activation dynamics of competitors differ between 
errorful and non-errorful speech: when an error is produced, the 
intended target is still quite active, deriving a trace effect; in non- 
errorful speech, the target word dominates planning, and competitors 
do not receive enough activation to influence pronunciation (e.g., Baese- 
Berk & Goldrick, 2009:549). CH in non-errorful speech is proposed to 
derive from a mechanism distinct from the one deriving trace effects in 
errors. However, such a proposal is only necessary if cascading activa-
tion between levels of planning is assumed to be excitatory, pulling the 
pronunciation towards that of active representation(s). If a minimal pair 
competitor can exert an inhibitory influence on pronunciation planning 
processes, then partial activation of the minimal pair could drive 
dissimilation rather than assimilation. In this way, both trace effects and 
CH could derive from partial activation of competitors, the difference 
residing solely in the polarity of the influence of the competitor: excit-
atory (trace effect) or inhibitory (CH). Inhibitory mechanisms in speech 
planning have previously been proposed to account for dissimilation 
between simultaneously planned English vowels (Tilsen, 2007, 2009, 
2013) and Mandarin tones (Tilsen, 2013). In the present study, we 
implement the hypothesis that inhibitory influence from a minimal pair 
competitor on pronunciation planning contributes to CH, using a neural 
dynamic model of speech planning based on Dynamic Field Theory 
(DFT: Schöner et al., 2016). Then, we test the predictions of the model 
with a novel experiment. 

The remainder of the paper is structured as follows. In Section ‘Dy-
namic neural field model of VOT planning’, we present a neural dynamic 
model of VOT planning, and demonstrate using simulations how the 
model generates CH from inhibitory influence from a minimal pair 
competitor. In Sections ‘Speech production experiment design’ and 
‘Experiment results’, we present and discuss the results of a speech 
production experiment designed to test predictions of the neural model. 
Section ‘General discussion’ is a general discussion, integrating the 
modeling and experimental results and suggesting directions for future 
work. Section ‘Conclusion’ concludes. 

Dynamic neural field model of VOT planning 

In DFT, features relevant to perception, behavior, and cognition are 
modeled as continuous parameters represented by populations of neu-
rons. The distribution of activation (spike rate) across the neurons in a 
population is modeled as a dynamic neural field (DNF). DNFs evolve over 
time under the influence of input (e.g., from sensory surfaces), lateral 
interactions, and noise. An important characteristic of DNFs is their 
ability to resolve competition. A single DNF can be simultaneously 

influenced by multiple inputs, and the dynamics of the field specify how, 
under the right conditions, these inputs will resolve to a single output, 
sometimes reflecting characteristics of both inputs. This mechanism has 
been shown to derive the influence of perceptual input on the initiation 
timing of speech movements (Roon & Gafos, 2016), the influence of 
distractors on the location of reaching movements (Erlhagen & Schöner, 
2002), and the influence of phonological competitors on speech targets 
in errors (Stern et al., 2022). 

In many DNF implementations, inputs to the field are strictly excit-
atory, increasing activation in a region of the field until a stable peak of 
activation forms in that region corresponding to, e.g., a particular 
percept or movement plan. However, it has been proposed that regions 
of DNFs can also be selectively inhibited in order to prevent formation of a 
stable peak in that region. This mechanism has been hypothesized to 
regulate attention in the presence of multiple salient percepts (Houghton 
& Tipper, 1994). Models of selective inhibition have been shown to 
derive the “negative priming” (Tipper, 1985) and “inhibition of return” 
(Posner & Cohen, 1984) effects observed in response-distractor tasks. Of 
particular relevance for CH, these models also exhibit dissimilation of 
movement targets from distractors in manual reaching and eye saccades 
(Tipper et al., 2000), as well as English vowel (Tilsen, 2007, 2009) and 
Mandarin tone production (Tilsen, 2013). In order to derive dissimila-
tion from selective inhibition, it is assumed that different feature rep-
resentations (modeled as DNF input distributions) overlap to some 
degree in feature space. Thus, selective inhibition of, e.g., a voiced 
consonant category (distributed over the lower values in a VOT planning 
field) causes partial inhibition of the voiceless consonant category. In 
particular, those neurons which are sensitive to the lowest VOT values in 
the voiceless distribution will be inhibited. In this way, the VOT target of 
a voiceless production planned during selective inhibition of the voiced 
category will tend to be higher, i.e. more hyperarticulated, compared to a 
production planned during no selective inhibition. Selective inhibition 
thus offers a mechanism by which influence of a minimal pair compet-
itor on planning can lead to CH. In particular, inhibitory projection from 
a voiced competitor to a VOT planning field during production of a 
voiceless target is expected to cause increased VOT, i.e. CH. We 
demonstrate this in the following subsections. 

Data availability 

The modeling reported below was done using the MATLAB-based 
software COSIVINA (Schneegans, 2021). Scripts for simulating the re-
sults below are available on OSF at https://osf.io/hz8fp/. 

Model structure 

The structure of the DNF model of VOT planning presented here is 
mostly identical to that described in (Stern et al., 2022). The model is 
summarized in Eq. (1): 

τu̇(x, t) = − u(x, t) + h+ starget(x, t)+ smp(x, t)

+

∫

k(x − x′

)g(u(x
′

, t) )dx′

+ qξ(x, t)
(1) 

The key component of the model is the activation field u defined over 
the VOT dimension x at each moment in time t. We set the range of x to 
200, representing a range of possible VOT targets (in ms). The rate of 
change of activation u̇(x, t) is inversely related to current activation 
u(x, t), so Eq. (1) represents a dynamical system with a point attractor at 
h + starget(x, t) + smp(x, t) +

∫
k(x − x′

)g(u(x′

, t) )dx′

+ qξ(x, t). τ is a time 
constant, with higher values corresponding to slower rates of field 
evolution. The resting level h is assumed to be below zero for all field 
locations (neurons), by convention at − 5. Each field input starget(x, t) and 
smp(x, t) is represented as a separate Gaussian distribution of the form 
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s(x, t) = a exp

[

−
(x − p)2

2w2

]

(2)  

where a controls the amplitude or strength of the input, p controls the 
position of the input in the field, and w controls the width of the input 
distribution (see Fig. 4). starget represents the target voiceless distribu-
tion, and smp represents the voiced minimal pair distribution. This 
treatment of speech intentions as distributions in feature space is similar 
to previous conceptualizations of speech production goals as “ranges” 
(Byrd & Saltzman, 2003), “windows” (Keating, 1990) or “convex re-
gions” (Guenther, 1995). Each neuron x′ which exceeds an activation 
threshold contributes activation to other neurons x via an interaction 
kernel k(x − x′

) given by 

k(x − x′

) =
cexc
̅̅̅̅̅
2π

√
σexc

exp

[

−
(x − x′

)
2

2σ2
exc

]

−
cinh
̅̅̅̅̅
2π

√
σinh

exp

[

−
(x − x′

)
2

2σ2
inh

]

− cglob

(3) 

The effects of both excitatory and inhibitory interaction are modeled 
as Gaussian distributions centered on each neuron x′ . cexc and cinh control 
the magnitude of excitatory and inhibitory interaction, respectively, and 
σexc and σinh control the width of each interaction distribution. cglob 

contributes additional across-the-board inhibition from each above- 
threshold neuron. In our model, cexc > cinh > cglob and σexc < σinh, so 
interaction is excitatory (positive effect on activation) for nearby neu-
rons and inhibitory (negative effect on activation) for more distant 
neurons. Lateral excitation contributes to the stabilization of activation 
peaks which drive articulation, while lateral inhibition prevents 

runaway expansion of activation peaks. The activation threshold for 
interaction is given by a sigmoidal function g(u), where β controls the 
steepness of the threshold, as seen in Eq. (4) and Fig. 3. 

g(u) =
1

1 + exp(− βu)
(4) 

By convention, the threshold is set to u = 0 so that lateral interaction 
kicks in only when activation is positive. Finally, noise is simulated by 
adding normally distributed random values ξ(x, t) weighted by a 
parameter q. 

Simulation results 

In this subsection, we use the model described above to simulate VOT 
planning for voiceless stop consonants in a number of conditions. The 
values of the field parameters used in all simulations are listed in 
Table 1, and the values of the input parameters are listed in Table 2. The 
input distributions are plotted in Fig. 4. 

Since part of our aim is to unify CH with trace effects in speech errors, 
we set the parameters of the DNF to be identical to those in Stern et al. 
(2022). This includes τ, h, β, and q as well as the parameters of the 
interaction kernel (see Fig. 2). The global inhibition parameter cglob is 
large enough relative to the range of input amplitudes that we consider 
to ensure selection dynamics. That is, under these conditions, only a 
single peak will form regardless of the number of inputs to the field. This 
is crucial because human speech only allows the production of one VOT 
value per segment. The values of the input parameters (Table 2) were 
determined as follows. ptarget and pmp (the centers of the input distribu-
tions) were set to 70 ms and 20 ms, respectively, and both wtarget and wmp 

were set to 30, broadly consistent with recent reports of means and 
standard deviations measured for American English stop consonants 
(Chodroff & Wilson, 2017). atarget was set to 6 in all simulations in order 
to ensure the formation of a stable activation peak in the context of a 
resting activation level h = − 5. In order to investigate the effects of 
influence from a voiced minimal pair on VOT planning for a voiceless 
target, we varied amp from − 6 to 4 in steps of 0.5. At each value of amp, 
we simulated 500 instances of field evolution with 120 time steps each. 
The VOT target for each simulation was calculated as the point of 
maximum activation in the field at the final time step. Fig. 5 displays the 
results. 

Fig. 5 demonstrates a clear trend whereby decreasing voiced input 
amplitude, amp (increasing the magnitude of inhibitory input), corre-
sponds to a larger (more hyperarticulated) voiceless VOT target. This is 
because starget and smp partially overlap, so inhibitory input from smp 

depresses activation in those regions of the field that correspond to a 
more hypoarticulated voiceless VOT production. This is consistent with 
the empirical observation that CH of voiceless consonants is driven by a 
decrease in the likelihood of hypoarticulated productions, rather than an 
overall shift in the VOT distribution; i.e., CH is the result of a change in 
the skewness of the VOT distribution, rather than the mode (Buz et al., 
2016). Increasing the amplitude of inhibitory input increases the 
magnitude of hyperarticulation: there is an approximately linear 

Fig. 3. Sigmoidal function g(u) gating lateral interaction; β = 4.

Table 1 
DNF parameter values.  

Parameter Value 

τ 20 
h − 5 
β 4 
cexc 15 
cinh 5 
cglob 0.9 
σexc 5 
σinh 12.5 
q 1  

Table 2 
Input parameter values.  

Input Parameter Value 

starget (voiceless target) p 70 
w 30 
a 6 

smp (voiced minimal pair) p 20 
w 30 
a varies  
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Fig. 2. Lateral interaction kernel k(x − x′

).  

Fig. 4. Right: voiceless target input distribution with constant positive amplitude a. Left: voiced minimal pair input distribution with varying a. Blue lines indicate 
positive values of a; red lines indicate negative values of a. The three bold lines correspond to the highlighted results in Fig. 5. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. VOT targets generated by the DNF under the influence of two inputs: the voiceless target starget and the voiced minimal pair competitor smp of varying 
amplitude, amp. Dotted black line: amp = 0, CH = 0 (“no competitor” condition from Baese-Berk & Goldrick, 2009). Dashed red line: amp = –3, CH ≈ 5 (“no context” 
condition). Solid red line: amp = –6, CH ≈ 10 (“context” condition). (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 
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correlation between amp and VOT target. The range of CH magnitudes 
observed in Fig. 5 covers that observed in the three conditions from 
Baese-Berk & Goldrick (2009:Experiment 2), and allows us to under-
stand the difference between these conditions as a difference in strength 
of inhibitory input from the minimal pair competitor. An example of 
field evolution in each of these conditions is displayed in Fig. 6. 

The field location of the activation peak shifts slightly depending on 
the magnitude of inhibitory voiced input: 70 ms (left), 75 ms (middle), 
and 80 ms (right). We can also observe that inhibitory voiced input slows 
down the formation of an activation peak. With no inhibitory input, the 
first neurons surpass the threshold for interaction (u = 0) at about the 
40th time step, and the subsequent combination of local lateral excita-
tion and global lateral inhibition causes an activation peak to form quite 
quickly. With intermediate inhibition, the first neurons do not surpass 
the threshold until about the 60th time step, and with strong inhibition, 
no neurons surpass the threshold until the very end of the 120-step 
simulation. In fact, in some simulations, 120 time steps was not 
enough time for any activation peak to form when amp = − 6.4 Thus, this 
model predicts a positive relationship between planning time and the 
magnitude of CH, a prediction which could be tested with an experiment 
designed to measure both response time and VOT. 

Another observation from Fig. 5 is that, when amp is positive, we 
observe a decrease in VOT, i.e. a hypoarticulation effect, consistent with 
the trace effect in speech errors (Stern et al., 2022). This framework thus 
allows us to understand both trace effects in speech errors and CH effects 
in non-errors as arising from the influence of lexical competitors on 
speech planning. The difference is that in the former case, this influence 
is excitatory, while in the latter case, it is inhibitory. 

By understanding the range of previously observed CH effect mag-
nitudes as arising from a cline of amplitudes of competitor inputs to a 
DNF governing pronunciation planning, we predict that intermediate 
input amplitudes should lead to intermediate CH effect magnitudes. For 
instance, VOT planning for a voiceless target under the influence of a 
voiced minimal pair competitor with input amplitude between 0 and − 3 
should lead to a small CH effect, i.e. smaller than 5 ms, the CH effect 
observed in the “no context” condition. One way to reduce the input 
amplitude of the competitor is to examine pseudoword production. Since 
pseudowords have no lexical representation, the network of interaction 
that activates the competitor has one less node, thereby decreasing the 
activation of the whole network, including the competitor (see Fig. 1). In 

order to further vary the amplitude of competitor input, we can addi-
tionally introduce visual input to the competitor, similar to the “context” 
condition. The model predicts that CH should be observable for pseu-
dowords, but it should be reduced in magnitude compared to CH in real 
words. We tested these predictions with an experiment, described in the 
following section. 

Speech production experiment design 

Our experimental design is largely a replication of Baese-Berk & 
Goldrick (2009:Experiment 2) with two main differences: target items 
were pseudowords, rather than real words, and the experiment was 
conducted over Zoom, rather than in the lab. 

Data availability 

All figures and analyses reported below were done in R version 4.1.2 
(R Core Team, 2021). The anonymized data and R code are available on 
OSF at https://osf.io/hz8fp/. 

Participants 

24 adults participated in the experiment (ages 18–36, M = 24.88, SD 
= 4.97; 17 women, 7 men). This number of participants is twice that 
included in Baese-Berk & Goldrick (2009:Experiment 2), and was chosen 
in order to maximize the likelihood of detecting an effect (minimize the 
likelihood of a Type II error), given an expected increase in noise in 
online compared to in-person data collection. All participants self- 
reported that they were native speakers of American English, and that 
they had no history of speech, language, or hearing impairment. All 
participants provided informed consent under Yale University IRB 
#2000030436. 

Materials 

The experimental stimuli consisted of mono- and di-syllabic pseu-
dowords beginning with voiceless stop consonants (see Appendix A for 
the complete list of stimuli). Two independent variables were manipu-
lated: (1) whether or not the pseudoword had a minimal pair competitor 
in word-initial stop consonant voicing (e.g., TIVE /taɪv/, which has a 
minimal pair competitor DIVE /daɪv/ in the lexicon, vs. TIBE /taɪb/, 
which lacks a minimal pair competitor DIBE /daɪb/ in the lexicon) and 
(2) whether or not the minimal pair was salient in the context, i.e., 
presented as a competitor on the screen or not. Crossing these factors 
yields four experimental conditions. There were 12 target items per 
condition (four items for each major place of articulation: labial (/p/), 
alveolar (/t/), and velar (/k/)), for a total of 48 experimental target 
items. For the same reasons described above for participant selection, 
this number of experimental target items was chosen to be a substantial 

Fig. 6. Examples of field evolution in the three conditions from Baese-Berk & Goldrick (2009:Experiment 2). Left: amp = 0, CH = 0 (“no competitor”). Middle: amp =

–3, CH = 5 (“no context”). Right: amp = –6, CH = 10 (“context”). 

4 There are, in principle, different methods of interpreting the activation 
profile of the field in terms of an actionable target. Here, we selected the field 
position (neuron) with the highest activation level, which allows us to interpret 
field activation in terms of a VOT target even when no neuron breaches the 
interaction threshold. Some alternative methods, including integrating over 
above threshold neurons (Schöner et al., 2016) or selecting the first neuron to 
cross threshold (Harper, 2021), do not return a target value unless the field 
stabilizes. 
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increase over the number (36) included in Baese-Berk & Goldrick (2009: 
Experiment 2). Each target item in the “minimal pair in lexicon” con-
dition was matched for initial consonant and vowel with a target item in 
the “no minimal pair in lexicon” condition. Target items were balanced 
across levels of both independent variables for a number of phonotactic 
probability and phonological neighborhood measures (Vitevitch & Luce, 
2004), summarized below:  

• Sum segmental probability: log-transformed probability of each 
phoneme appearing in that position in the word, summed over all 
phonemes in the word  

• Sum biphone probability: log-transformed probability of each 
sequence of two adjacent phonemes (biphone) appearing in that 
position in the word, summed over all biphones in the word  

• Neighborhood density: count of real words that can be created by 
adding, removing, or changing one phoneme in the word  

• Neighborhood frequency: mean frequency of occurrence of all 
phonological neighbors 

The results of Welch’s t-tests comparing each control measure be-
tween levels of the independent variables are displayed in Table 3. 

24 filler items were also included, for a total of 72 items. Six filler 
items began with /s/ (e.g. SIP), six began with /ʃ/ (e.g. SHIP), and 12 
began with a voiced stop consonant (e.g. DESK). Those beginning with 
voiced stop consonants were all minimal pair competitors of experi-
mental stimuli, while the filler items beginning with /s/ and /ʃ/ were 
unrelated to the experimental items. Filler items included both real and 
pseudowords, and, like the experimental items, varied according to 

whether they had a minimal pair competitor in the lexicon or not and 
whether the minimal pair competitor was present on the screen or not. 

Procedure 

The experiment was conducted over a Zoom call hosted by the 
experimenter. Before the experiment, participants were instructed to 
join the Zoom call from a computer (not a phone) in a quiet room with a 
good internet connection. At the beginning of the experiment, the 
experimenter changed the participant’s displayed name in the Zoom call 
to “speaker”, and changed their own name to “experimenter”. A lab 
confederate was also present in the call, whose Zoom name was changed 
to “listener”. The participant (henceforth “speaker”) was told that the 
listener was another naïve participant. Everyone in the Zoom call kept 
their cameras off but their microphones on for the duration of the 
experiment. 

All instructions and stimuli were presented on a slideshow using 
screen sharing. During each trial, three words were presented on the 
shared screen: the target and two competitors, as seen in Fig. 7. Before 
the experiment began, the speaker was sent a pdf that matched the 
shared screen, except that the target word for each trial was bolded and 
underlined. At the start of the experiment, the speaker was instructed to 
arrange their computer screen so that they could see both this pdf and 
the shared Zoom screen at the same time. Each time the experimenter 
advanced to the next trial, the listener cued the speaker by saying 
“ready”. Then, the speaker produced the target word in the phrase “type 
the ___ number”. This phrase was chosen in order to encourage fluent 
pronunciation. Words produced in isolation, i.e., not in a larger phrase, 
tend to have a slower “clear speech” pronunciation, which has previ-
ously been argued to obscure CH effects (Buz et al., 2016; Wedel et al., 
2018). In this phrase, the target word does not occur at a major prosodic 
boundary, which could condition lengthening of the target word. 
Moreover, the speaker was instructed not to speak slowly or pause be-
tween words, but rather to speak at a quick, conversational pace. The 
listener then typed the number that corresponded to the word they 
heard (“1” = left, “2” = center, “3” = right) into the Zoom chat. If the 
response was correct, the experimenter played a bell sound; if it was 
incorrect, the experimenter played a buzz sound. The listener (a lab 
confederate) did not have independent access to the correct answers, 
and was simply instructed to participate naturally in the experiment. In 
order to increase motivation, participants were informed that they 

Table 3 
Results of Welch’s t-tests comparing control variables between levels of the two 
independent variables. Measures are from (Vitevitch & Luce, 2004).   

Minimal pair in 
lexicon vs. no minimal 
pair in lexicon 

Minimal pair on screen 
vs. no minimal pair on 
screen  

t df p t df p 

Sum segmental probability  − 0.14  45.81  0.89  0.41  44.98  0.69 
Sum biphone probability  0.62  41.68  0.54  0.71  44.09  0.48 
Neighborhood density  0.02  45.28  0.98  − 0.49  43.47  0.63 
Neighborhood frequency  − 0.71  33.76  0.49  − 1.45  23.35  0.16 
Sum segmental probability 

of minimal pair  
− 0.17  45.82  0.87  0.46  45.58  0.64 

Sum biphone probability of 
minimal pair  

0.61  41.46  0.54  − 0.32  41.02  0.75 

Neighborhood density of 
minimal pair  

− 0.78  44.05  0.44  − 1.08  45.87  0.29 

Neighborhood frequency of 
minimal pair  

− 1.35  37.60  0.19  0.49  39.77  0.63  

A 

B 

Fig. 7. A: Example stimulus display from the “minimal pair in lexicon”, 
“minimal pair on screen” condition. B: The corresponding display in the 
speaker’s pdf. 

Fig. 8. Correlations among lexical control measures.  

M.C. Stern and J.A. Shaw                                                                                                                                                                                                                    



Journal of Memory and Language 132 (2023) 104443

8

would receive an extra $5 if they finished the experiment with an ac-
curacy of 95% or higher (all participants finished above 95%, most at 
100%). The complete instructions are included in Appendix B. 

After five practice trials with stimuli unrelated to the experimental 
stimuli, participants were instructed to ask the experimenter any ques-
tions they had. Then, the experimenter began recording the Zoom call, 
and each stimulus was presented twice, for a total of 144 trials (96 
experimental, 48 fillers). The “minimal pair on screen” condition 

alternated between the two presentation lists, such that each stimulus 
was presented once with its minimal pair as an on-screen competitor, 
and once without. Four pseudo-randomizations of each presentation list 
were created, varying in the presentation order of the stimuli and in the 
relative positions of the target and competitors on the screen. Each of the 
six possible relative screen positions were used an equal number of times 
in each pseudo-randomization. In each pseudo-randomization, no two 
consecutive targets were minimal pairs (in any phonological feature in 
any position in the word) or had the same initial consonant and vowel; 
no two consecutive trials had the same two competitors; and no three 
consecutive trials had the same relative screen positions. Each pseudo- 
randomization of the first presentation list was combined with each 
pseudo-randomization of the second presentation list to create 16 
unique combinations. Then, the presentation order of the two lists was 
varied to create 32 unique combinations. Each of the 24 participants 
thus completed the experiment with a unique stimulus presentation 
order. Participants were given a short break after each quarter of the 
experiment (three breaks total). The entire experiment lasted less than 
30 min. 

Data processing 

Each participant in the Zoom call was individually recorded, allow-
ing the creation of a wav file including only the speaker’s audio. Silences 
between trials were removed from the wav file in Praat (Boersma & 
Weenink, 2021) using a custom script (Lennes, 2017), and the resulting 
file was force-aligned at the word and segment levels using the Montreal 
Forced Aligner (McAuliffe et al., 2017) with a customized English dic-
tionary including phonetic transcriptions of the pseudoword stimulus 
items. Next, using AutoVOT (Sonderegger & Keshet, 2012), an auto-
mated VOT measurement algorithm was trained using 216 hand mea-
surements in Praat from the onset of the release burst to the first zero- 
crossing of periodic vocal fold vibration: one measurement from each 
following vowel height (high, mid, low) from each consonant (/p/, /t/, 
/k/) from each subject (3 × 3 × 24). Even in ambiguous cases (e.g., 
when the release burst overlapped with some periodic energy from the 
preceding vowel, or when there was still some noise at the onset of 
periodicity), release burst and onset of periodic energy were always used 
as the indicators of the two events of interest. Since the AutoVOT al-
gorithm requires the segment boundaries in the input TextGrids to be 
wider than the acoustic boundaries, we used a set of custom Praat scripts 
(Chodroff, 2019) to lengthen the segment boundaries of the word-initial 
voiceless stop consonants that were output by the Montreal Forced 
Aligner. Then, the trained algorithm was used to automatically measure 

Fig. 9. Scree plot of PCA results.  

Table 4 
Loadings of the eight original variables on the two retained components. The 
highest loadings on each component are bolded.  

Variable Comp.1 Comp.2 

sum segmental probability  0.46  0.15 
sum biphone probability  0.46  0.13 
neighborhood density  − 0.23  0.61 
neighborhood frequency  − 0.19  0.03 
sum segmental probability of minimal pair  0.49  0.16 
sum biphone probability of minimal pair  0.45  0.21 
neighborhood density of minimal pair  − 0.2  0.65 
neighborhood frequency of minimal pair  − 0.07  0.31  

Fig. 10. Mean VOT by condition. Error bars indicate standard error of the mean.  
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the VOT of all 2,304 experimental tokens. In order to account for the 
effect of speech rate on VOT (Kessinger & Blumstein, 1997), a measure 
of speech rate was calculated as the duration in milliseconds from onset 
to offset of the trial (onset of “type” to offset of “number”). 

Trials were removed from analysis for the following reasons: (1) the 
speaker was disfluent or there was an interruption from background 
noise or internet connectivity issues (138 trials, 5.99%), (2) the listener 
responded inaccurately (6 trials, 0.26%), (3) VOT was less than 25 ms 
(likely a categorical error) (91 trials, 3.95%), or (4) speech rate was 
greater than three standard deviations from the mean (21 trials, 0.91%). 
In total, 2,048 trials (89.89%) were retained for analysis. 

Experiment results 

Before presenting the main results of the experiment, analyzed using 
Bayesian mixed effects regression models, we first present an analysis of 
the control variables that enter into the model. 

Principal component analysis of phonotactic probability and phonological 
neighborhood measures 

Although target items were balanced across the four experimental 
conditions for phonotactic probability and phonological neighborhood 
measures (as seen in Table 3), it is still useful to include these measures 
as control predictors in the mixed effects regression. However, as seen in 
Fig. 8, there are a number of strong correlations between these control 
measures. These correlations could lead to a multicollinearity issue in 
the regression. In order to address this issue, we conducted principal 
component analysis (PCA) to identify the directions of maximal vari-
ability in the eight-dimensional space defined by these variables. The 
scree plot in Fig. 9 reveals an elbow at component 3, suggesting reten-
tion of the first two components. These two components account for 
64% of the variance in the original dataset. 

The loadings of the eight original variables on the two retained 
components—displayed in Table 4—suggest the following interpreta-
tion: component 1 generally indexes phonotactic probability (sum 

segmental probability and sum biphone probability of the target and 
minimal pair), while component 2 generally indexes phonological 
neighborhood density of the target and minimal pair. Importantly for 
the linear mixed effects regression, these two components are orthog-
onal to each other, addressing the issue of multicollinearity. 

Bayesian mixed effects model of VOT 

To analyze the effect of experimental condition on VOT, we per-
formed Bayesian mixed effects regression using the brms package 
(Bürkner, 2017) in R (R Core Team, 2021). The model included the 
following control predictors: components 1 and 2 from the PCA, speech 
rate, trial number, and place of articulation. Place of articulation was 
treatment coded with “labial” as the reference level. The other measures 
were scaled and centered. The experimental fixed factors were minimal 
pair existence, minimal pair salience, and their interaction. Both 
experimental fixed factors were treatment coded with “false” as the 
reference level. The model included random slopes by subject for all 
experimental fixed factors, and a random slope by item for minimal pair 
salience. 

We followed recommendations from Franke & Roettger (2019) for 
fitting Bayesian mixed models. We used the default priors of the brms 
package: a Student’s t-distribution (v = 3, μ = 69, σ = 20.8) for the 
intercept, a Student’s t-distribution (v = 3, μ = 0, σ = 20.8) for the 
standard deviation of the likelihood function and the random effects, 
and unbiased (“flat”) priors for regression coefficients. We ran four 
sampling chains for 2000 iterations with a warm-up period of 1000 it-
erations for each model. All R-hat values (a diagnostic for convergence) 
were 1.0, indicating that the chains mixed successfully. Next, we 
removed observations with residuals to the model fit greater than 3 
standard deviations from the mean (17 observations, 0.83%), and re-ran 
the model. Below we report the expected values of each regression co-
efficient under the posterior distribution and their 95% credible in-
tervals (CrI). We consider it compelling evidence that a fixed factor 
reliably influenced VOT if the 95% CrI of the posterior distribution of the 
factor’s coefficient does not overlap with 0. Since the theoretical 

Fig. 11. Mean VOT target (z-axis) by voiceless target input amplitude atarget (x-axis) and voiced competitor input amplitude amp (y-axis). The center of the target 
distribution ptarget = 70 ms is shown with a flat plane; values above this plane (yellow) indicate CH, and values below this plane (blue) indicate a trace effect. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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prediction is for a small effect, even a reliable effect that is only a few 
milliseconds in magnitude is important. First, we address the effects of 
the control predictors. Component 1 (phonotactic probability) 
decreased VOT, such that more phonotactically probable stimuli were 
produced with shorter VOT (β = − 1.16, 95% CrI = [− 1.88, − 0.42]). 
Although reliable (the 95% CrI does not overlap with 0), the effect was 
small: an increase in component 1 by one standard deviation is predicted 
to decrease VOT by only 1.16 ms. The 95% CrI for the effect of 
component 2 (neighborhood density) overlapped with 0 (β = 0.43, 95% 
CrI = [− 0.61, 1.51]), and so was not reliable. Speech rate reliably 
increased VOT, such that VOT was longer at slower speech rates (β =
7.07, 95% CrI = [6.34, 7.81]). Trial number reliably decreased VOT: as 
the experiment continued, participants tended to produce shorter VOT 
(β = − 1.20, 95% CrI = [− 1.83, − 0.57]); the magnitude of this effect was 
also quite small. Finally, place of articulation reliably affected VOT, such 
that alveolar (/t/: β = 13.64, 95% CrI = [10.24, 16.96]) and velar (/k/: 
β = 12.60, 95% CrI = [9.19, 15.89]) consonants had longer VOT than 
labial consonants (/p/). Turning to the experimental predictors, there 
was no reliable main effect of either minimal pair existence (β = 0.04, 
95% CrI = [− 3.25, 3.39]) or minimal pair salience (β = − 0.29, 95% CrI 
= [− 2.10, 1.49]). However, there was a positive interaction: VOT was 
increased by a minimal pair competitor on the screen, but only when 
that minimal pair competitor was also a real word (β = 2.50, 95% CrI =
[0.04, 4.93]). As predicted, the magnitude of this CH effect was small 
compared with the previously observed effect on real words: 2.5 ms. The 
interaction is visualized in Fig. 10. 

Discussion 

The experiment results are consistent with a basis for CH in the real- 
time planning and production of speech, since pseudowords have no 
long-term lexical representations. Importantly, the CH effect in 

pseudowords was smaller in scope (only appearing when there was a 
real word minimal pair that was also present as an on-screen competitor) 
and magnitude (model estimate = 2.5 ms) compared to the CH effects 
observed with real words, i.e., 5 ms when the minimal pair was not 
contextually salient and 10 ms when it was (Baese-Berk & Goldrick, 
2009). The reduced scope and magnitude of the pseudoword CH effect is 
consistent with reduced influence from the minimal pair competitor on 
pronunciation planning, due to reduced activation from a lexical level of 
planning. 

General discussion 

Cognitive mechanisms underlying speech production have been 
increasingly informed by the details of speech pronunciation. We pro-
posed that a specific type of pronunciation variation, known as 
contrastive hyperarticulation (CH), is rooted in inhibitory neural con-
nections between competitor lexical representations5 and processes of 
pronunciation planning. A computational model of this proposal, 
developed within the framework of Dynamic Field Theory (DFT), 
derived the results of past studies and made new predictions. Specif-
ically, varying competitor strength—i.e, the amplitude, a, of the 
competitor lexical item’s input to a dynamic neural field (DNF) gov-
erning pronunciation planning—derived the effect size in our experi-
ment as well as the conditions in Baese-Berk & Goldrick (2009: 
Experiment 2). With competitor input amplitude at − 1.5, we derived 
our results. Increasing the amplitude of inhibitory input to − 3 derived 
the effect found for real words in the “no context” condition of Baese- 
Berk & Goldrick (2009:Experiment 2). Increasing inhibitory input 
amplitude further to − 6 derived the effect found for real words in the 
“context” condition of Baese-Berk & Goldrick (2009:Experiment 2). 
Thus, the variety of observed CH effect magnitudes can be derived by 
scaling a single model parameter, competitor strength. In addition, 
positive (excitatory) values of this parameter derive hypoarticulation or 
“trace” effects of varying magnitudes, as observed in speech errors 

Table A1 
Experimental stimuli from presentation list 1. In list 2, the “minimal pair on screen” and “no minimal pair on screen” conditions are switched. Minimal pairs differing in 
word-initial consonant voicing are included in parentheses, but were not presented as target items except during filler trials.   

Minimal pair in lexicon No minimal pair in lexicon 

Minimal pair on screen (list 1) Labial Alveolar Velar Labial Alveolar Velar 

1. peam 1. teth 1. keese 1. peeb 1. tep 1. keet 
(beam) (death) (geese) (beeb) (dep) (geet) 
2. pelch 2. todge 2. cosh 2. peft 2. tob 2. codge 
(belch) (dodge) (gosh) (beft) (dob) (godge) 
3. pid 3. tesk 4. kig 3. pim 3. teld 3. kip 
(bid) (desk) (gig) (bim) (deld) (gip) 
4. potch 4. tive 4. kulp 4. podge 4. tibe 4. kulk 
(botch) (dive) (gulp) (bodge) (dibe) (gulk)        

No minimal pair on screen (list 1) Labial Alveolar Velar Labial Alveolar Velar 
1. pag 1. teff 1. coof 1. paz 1. teg 1. koom 
(bag) (deaf) (goof) (baz) (deg) (goom) 
2. pabble 2. tid 2. kiv 2. packle 4. tiv 2. kidge 
(babble) (did) (give) (backle) (div) (gidge) 
3. pathe 3. tupe 3. kide 3. pame 3. toog 3. kife 
(bathe) (dupe) (guide) (bame) (doog) (gife) 
4. pottle 4. tope 4. kest 4. possle 4. tobe 4. keft 
(bottle) (dope) (guest) (bossle) (dobe) (geft)  

Table A2 
Filler stimuli beginning with sibilants. Stimuli beginning with both /s/ and /ʃ/ 
were presented.  

Minimal pair in lexicon No minimal pair in lexicon 

1. sack (shack) 1. sap (shap) 
2. sip (ship) 2. sick (shick) 
3. same (shame) 3. safe (shafe) 
4. sin (shin) 4. sing (shing) 
5. save (shave) 5. saint (shaint) 
6. sore (shore) 6. soap (shoap)  

5 It is worth highlighting the fact that we model inhibition as coming from 
lexical representations, rather than sublexical representations like phonemes or 
syllables. The reason for this is empirical: CH (as well as other forms of context- 
based phonetic enhancement and reduction: Hall et al., 2018) appear to operate 
primarily on lexical items, rather than sublexical units. Both the /p/ in PET and 
the /p/ in PEP have a sublexical competitor /b/; CH is observed in the pro-
nunciation of PET relative to PEP because of the presence of a lexical competitor 
in the former (BET) but not the latter (*BEP) case. 

M.C. Stern and J.A. Shaw                                                                                                                                                                                                                    



Journal of Memory and Language 132 (2023) 104443

11

Table A3 
Unrandomized list of trials including target items and both competitors for practice trials and both presentation lists.  

list trial type minimal pair in lexicon minimal pair on screen place of articulation target competitor 1 competitor 2 

practice practice — — — vent vine chair 
practice practice — — — teef teeth phone 
practice practice — — — pite pote thick 
practice practice — — — beef beeth door 
practice practice — — — leel real plant 
1 experimental yes yes labial peam beam sack 
1 experimental yes yes labial pelch belch sip 
1 experimental yes yes labial pid bid same 
1 experimental yes yes labial potch botch shap 
1 experimental yes yes alveolar teth death shick 
1 experimental yes yes alveolar todge dodge shafe 
1 experimental yes yes alveolar tesk desk sin 
1 experimental yes yes alveolar tive dive save 
1 experimental yes yes velar keese geese sore 
1 experimental yes yes velar cosh gosh sing 
1 experimental yes yes velar kig gig saint 
1 experimental yes yes velar kulp gulp soap 
1 experimental yes no labial pag sack shack 
1 experimental yes no labial pabble sip ship 
1 experimental yes no labial pathe same shame 
1 experimental yes no labial pottle sin shin 
1 experimental yes no alveolar teff save shave 
1 experimental yes no alveolar tid sore shore 
1 experimental yes no alveolar tupe sap shap 
1 experimental yes no alveolar tope sick shick 
1 experimental yes no velar coof safe shafe 
1 experimental yes no velar kiv sing shing 
1 experimental yes no velar kide saint shaint 
1 experimental yes no velar kest soap shoap 
1 experimental no yes labial peeb beeb shack 
1 experimental no yes labial peft beft ship 
1 experimental no yes labial pim bim shame 
1 experimental no yes labial podge bodge sap 
1 experimental no yes alveolar tep dep sick 
1 experimental no yes alveolar tob dob safe 
1 experimental no yes alveolar teld deld shin 
1 experimental no yes alveolar tibe dibe shave 
1 experimental no yes velar keet geet shore 
1 experimental no yes velar codge godge sing 
1 experimental no yes velar kip gip saint 
1 experimental no yes velar kulk gulk soap 
1 experimental no no labial paz sack shack 
1 experimental no no labial packle sip ship 
1 experimental no no labial pame same shame 
1 experimental no no labial possle sin shin 
1 experimental no no alveolar teg save shave 
1 experimental no no alveolar tiv sore shore 
1 experimental no no alveolar toog sap shap 
1 experimental no no alveolar tobe sick shick 
1 experimental no no velar koom safe shafe 
1 experimental no no velar kidge sing shing 
1 experimental no no velar kife saint shaint 
1 experimental no no velar keft soap shoap 
1 filler yes yes ʃ shack sack pag 
1 filler yes yes ʃ ship sip pabble 
1 filler yes yes ʃ shame same pathe 
1 filler yes no ʃ shin tesk desk 
1 filler yes no ʃ shave tive dive 
1 filler yes no ʃ shore keese geese 
1 filler no yes s sap shap tupe 
1 filler no yes s sick shick tope 
1 filler no yes s safe shafe coof 
1 filler no no s sing codge godge 
1 filler no no s saint kip gip 
1 filler no no s soap kulp gulp 
1 filler yes yes labial beam peam sack 
1 filler yes yes alveolar dodge todge shafe 
1 filler yes yes velar gig kig saint 
1 filler yes no labial belch same shame 
1 filler yes no alveolar desk sore shore 
1 filler yes no velar geese saint shaint 
1 filler no yes labial beeb peeb shack 
1 filler no yes alveolar deld teld shin 
1 filler no yes velar gosh cosh sing 

(continued on next page) 
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Table A3 (continued ) 

list trial type minimal pair in lexicon minimal pair on screen place of articulation target competitor 1 competitor 2 

1 filler no no labial bodge sip ship 
1 filler no no alveolar dibe sap shap 
1 filler no no velar geet sing shing 
2 experimental yes no labial peam sack shack 
2 experimental yes no labial pelch sip ship 
2 experimental yes no labial pid same shame 
2 experimental yes no labial potch sin shin 
2 experimental yes no alveolar teth save shave 
2 experimental yes no alveolar todge sore shore 
2 experimental yes no alveolar tesk sap shap 
2 experimental yes no alveolar tive sick shick 
2 experimental yes no velar keese safe shafe 
2 experimental yes no velar cosh sing shing 
2 experimental yes no velar kig saint shaint 
2 experimental yes no velar kulp soap shoap 
2 experimental yes yes labial pag bag sack 
2 experimental yes yes labial pabble babble sip 
2 experimental yes yes labial pathe bathe same 
2 experimental yes yes labial pottle bottle shap 
2 experimental yes yes alveolar teff deaf shick 
2 experimental yes yes alveolar tid did shafe 
2 experimental yes yes alveolar tupe dupe sin 
2 experimental yes yes alveolar tope dope save 
2 experimental yes yes velar coof goof sore 
2 experimental yes yes velar kiv give sing 
2 experimental yes yes velar kide guide saint 
2 experimental yes yes velar kest guest soap 
2 experimental no no labial peeb sack shack 
2 experimental no no labial peft sip ship 
2 experimental no no labial pim same shame 
2 experimental no no labial podge sin shin 
2 experimental no no alveolar tep save shave 
2 experimental no no alveolar tob sore shore 
2 experimental no no alveolar teld sap shap 
2 experimental no no alveolar tibe sick shick 
2 experimental no no velar keet safe shafe 
2 experimental no no velar codge sing shing 
2 experimental no no velar kip saint shaint 
2 experimental no no velar kulk soap shoap 
2 experimental no yes labial paz baz shack 
2 experimental no yes labial packle backle ship 
2 experimental no yes labial pame bame shame 
2 experimental no yes labial possle bossle sap 
2 experimental no yes alveolar teg deg sick 
2 experimental no yes alveolar tiv div safe 
2 experimental no yes alveolar toog doog shin 
2 experimental no yes alveolar tobe dobe shave 
2 experimental no yes velar koom goom shore 
2 experimental no yes velar kidge gidge sing 
2 experimental no yes velar kife gife saint 
2 experimental no yes velar keft geft soap 
2 filler yes no ʃ shack pag bag 
2 filler yes no ʃ ship pabble babble 
2 filler yes no ʃ shame pathe bathe 
2 filler yes yes ʃ shap sap tesk 
2 filler yes yes ʃ shick sick tive 
2 filler yes yes ʃ shafe safe keese 
2 filler no no s sin tupe dupe 
2 filler no no s save tope dope 
2 filler no no s sore coof goof 
2 filler no yes s sing shing codge 
2 filler no yes s saint shaint kip 
2 filler no yes s soap shoap kulp 
2 filler yes no labial beam sack shack 
2 filler yes no alveolar dodge safe shafe 
2 filler yes no velar gig saint shaint 
2 filler yes yes labial bottle pottle shap 
2 filler yes yes alveolar did tid shafe 
2 filler yes yes velar give kiv sing 
2 filler no no labial beeb sack shack 
2 filler no no alveolar deld sin shin 
2 filler no no velar gosh sing shing 
2 filler no yes labial baz paz shack 
2 filler no yes alveolar deg teg sick 
2 filler no yes velar geft keft soap  
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(Stern et al., 2022). Our theory thus offers a unified explanation of these 
apparently disparate phenomena. The model also makes predictions 
regarding response time, specifically: (i) a positive correlation between 
competitor strength and response time, and (ii) a positive correlation 
between response time and the magnitude of CH. These predictions 
remain to be tested. Broadly, the explicit incorporation of both temporal 
and feature gradience into a single model of pronunciation planning 
allows the generation of a rich and precise set of empirical predictions 
(Roon & Gafos, 2016). For instance, in the model, activation peaks 
narrow over time via the combination of lateral excitation and lateral 
inhibition. This predicts a relationship between response time and 
response variability, such that—all else equal—shorter response times 
should correspond with more variable responses, because the activation 
peak corresponding to the planned response has less time to narrow. 
Such a relationship between response time, width of neural activation 
peak, and response variability has been observed in manual reaching 
movements (Erlhagen & Schöner, 2002) and rhesus monkey motor 
mortex (Georgopoulos et al., 1986)—it remains to be tested in human 
speech. 

A reviewer raised the possibility that it is the relationship between 
activation of the target word and activation of the minimal pair com-
petitor—rather than activation of the minimal pair competitor, per 
se—that determines the pronunciation outcome. In order to investigate 
this issue, we ran simulations using the same parameters described in 
Section ‘Dynamic neural field model of VOT planning’, but varying both 
competitor and target input amplitude. We varied the competitor input 
amplitude, amp, from − 6 to 5 and the target input amplitude, atarget, from 
5 to 10, both in steps of 0.5. We simulated 500 productions in each 
condition and recorded each VOT target. Fig. 11 displays the results. 
Consistent with the results in Section ‘Simulation results’, the primary 
predictor of the qualitative behavior of the system is the competitor 
input amplitude, amp. When amp is negative, CH is observed; when amp is 
positive, a trace effect is observed.The magnitude of each type of effect 
correlates with the absolute value of amp. In contrast, the target input 
amplitude, atarget, modulates the magnitude of competitor influence. 
Greater atarget corresponds with less competitor influence, i.e., smaller 
CH when competitor input is inhibitory, and a smaller trace effect when 
competitor input is excitatory. Interestingly, there is an asymmetry be-
tween CH and trace effects in this regard. The magnitude of CH is 
relatively robust to changes in atarget: when competitor input is strongly 
inhibitory (amp = − 6),6 mean CH ranges from 6.1 ms (atarget = 10) to 
10.4 ms (atarget = 5). However, when competitor input is strongly 
excitatory (amp = 5), the magnitude of the trace effect ranges from 8.4 
ms (atarget = 10) to 24.9 ms (atarget = 5). This is because as amp approaches 
atarget, the two hills of activation begin to merge into a single peak, 
approximately equidistant from the centers of the two input distribu-
tions pmp and ptarget. No such mechanism operates when amp is negative. 
Thus, while these post-hoc simulations support our claim that the 
magnitude of CH is primarily determined by activation of a minimal pair 
competitor, it also suggests the need for follow-up work investigating 
the influences of target and competitor activation in relation to CH and 
trace effects. 

In the model presented here, CH is derived from a mechanism in-
ternal to the speech production system, i.e., inhibitory input from 
competitor lexical representations to pronunciation planning fields. The 
listener has no explicit role in the model. However, the speaker-internal 
inhibitory mechanism is compatible with audience design theories of CH 
(Buz et al., 2016; Munson & Solomon, 2004; Schertz, 2013; Wright, 
2004). Inhibition can be seen to implement audience design on the part of 
the speaker, since inhibition has the effect of making pronunciations 

more easily perceivable for the listener. In this way, a potential theo-
retical dichotomy between “speaker-internal” vs. “audience design” 
mechanisms of CH can be resolved. The mechanism itself is speaker- 
internal, but it may serve a listener-oriented function. This conceptual-
ization has the potential to shed light on previously observed listener- 
driven modulation of CH effects. For instance, Buz et al. (2016) 
observed an increase in the magnitude of CH following explicit mis-
recognitions by a simulated listener. In the present framework, there are 
at least two potential mechanisms that might drive this effect. First, it is 
possible that as speakers sense an increased risk of listener mis-
recognition, this causes an increase in the activation of competitors, 
increasing the magnitude of inhibitory input from competitors to pro-
nunciation planning fields, thus increasing the magnitude of CH. This 
mechanism would capture the intuition that strongly intending not to 
say a word actually increases mental activation of that word, and is 
consistent with the observation in Buz et al. (2016) that listener-driven 
modulation of CH was only observed on trials where the minimal pair 
competitor was present. Another possibility is that increased speaker 
awareness of the risk of listener misrecognition modulates the function 
relating lexical activation to field input, leading to greater inhibitory 
input given the same magnitude of competitor activation (see further 
discussion of this function below). Further modeling and empirical work 
would be necessary to refine and distinguish between these proposed 
mechanisms. 

The difference in CH magnitude between real words and pseudo-
words supports a role for lexical representations in contributing to CH. 
So far, we have considered the hypothesis that this contribution takes 
place primarily during the planning of individual utterances, increasing 
the strength of inhibitory input from competitor lexical items to pro-
nunciation planning fields. However, another possibility, discussed in 
Section ‘Possible sources of contrastive hyperarticulation’, is that lexical 
representations contribute to CH on a slower timescale, via updating of 
detailed episodic memories of perceived and produced pronunciations 
(e.g., Goldinger, 1998; Pierrehumbert, 2001, 2002). In the present 
framework, this amounts to lexical representations updating their input 
distributions, parameterized as p and w. It is possible that the coupling 
relationships between lexical representations and pronunciation plan-
ning fields are somewhat idiosyncratic, such that each lexical repre-
sentation projects a unique set of inputs to pronunciation planning 
fields. These coupling relationships might change subtly over the life-
times of language users based on experience (Gafos & Kirov, 2009), 
leading to the observed idiosyncratic phonetic differences between 
lexical items (e.g., Tang & Shaw, 2021). It is possible that lexical rep-
resentations contribute to CH via mechanisms on both timescales: 
interactive activation during speech planning, and long-term shifts in 
distributions of episodic memories. A combination of real-time and long- 
term effects on pronunciation details has previously been observed in 
the relationship between contextual predictability and phonetic cues of 
prominence like duration, pitch, and intensity (Seyfarth, 2014; Sóskuthy 
& Hay, 2017; Tang & Shaw, 2021). The contribution of a long-term 
mechanism is possibly apparent in the fact that VOT was overall 
slightly higher in the real words from Baese-Berk & Goldrick (2009) 
(baseline condition = 72 ms) compared to the pseudowords from the 
present experiment (baseline = 69 ms). However, the present experi-
ment was not an exact replication of Baese-Berk & Goldrick (2009); most 
notably, our experiment was conducted over Zoom rather than in per-
son. This may have affected the degree of clear speech employed by 
participants, which has been argued to affect the magnitude of CH ef-
fects (Wedel et al., 2018). Thus, it is difficult to interpret any direct 
quantitative comparison between the results of our study and those of 
Baese-Berk & Goldrick (2009). 

Deriving the range of observed CH and trace effects from competitor 
strength raises a number of novel research questions. In our simulations, 
we varied competitor strength systematically to observe its effects on 
pronunciation. Presumably, the ranges of competitor strength derive 
from other factors that can be built into a more elaborate model. In 

6 VOT targets reported in the simulation include some cases in which the field 
did not stabilize within the timeframe of the simulation, which is possible given 
our method of interpreting field dynamics in terms of VOT targets (see footnote 
5). 
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future work, we plan to derive competitor strength and polarity directly 
from the lexicon. This will enable us to define the magnitude of a as a 
function of lexical activation, such that more active lexical items project 
stronger input to pronunciation planning DNFs. We also posited that the 
polarity of a (i.e., excitatory vs. inhibitory) varies, deriving the difference 
between CH (from inhibitory competitor input) and trace effects (from 
excitatory competitor input). What determines the polarity of a? One 
possibility is that input polarity is a function of the similarity of the 
current state of the field to the lexical representation’s preferred state of 
the field, i.e., the state that would be induced by excitatory input from 
that lexical representation. For instance, in the example in Fig. 1, since 
PUN becomes active before BUN, by the time BUN is active enough to 
affect pronunciation planning DNFs, the VOT field is in a state more 
consistent with a voiceless production than a voiced production. This 
induces the BUN-to-VOT projection to be inhibitory. These elaborations 
would derive competitor strength and polarity directly from the lexicon, 
leading to new predictions for how pronunciation varies across words. 

Another future direction involves deriving speech errors. Noise in the 
relationship between field state and input polarity offers a possible 
mechanism underlying speech errors: sometimes, lexical-to- 
phonological projection is excitatory, even when the field state differs 
from the lexical item’s preferred state, leading to a trace effect. The fact 
that visual input to the minimal pair competitor increases the magnitude 
of CH (by hypothesis, by increasing the magnitude of inhibitory lexical- 
to-phonological input) supports the notion that the magnitude of input is 
a positive monotonic function of lexical activation, regardless of the 
polarity of input. Noise around the polarity of the input could cause a 
strong inhibitory input to flip to a strong excitatory input, driving the 
field towards a state consistent with the pronunciation of a lexical 
competitor, i.e., a speech error. 

In our account, CH derives from decreased activation in certain re-
gions of a pronunciation planning field caused by inhibitory input from a 
minimal pair competitor. A reviewer raises the possibility that this 
metrically specific decrease in neural activation might be caused by a 
different mechanism, like habituation via synaptic fatigue. Pursuing this 
possibility would raise a number of interesting questions. For instance, 
why would competitor activation cause synaptic fatigue in fields gov-
erning dimensions of pronunciation on which the competitor differs 
from the target word, but not in fields governing dimensions on which 
the competitor and target overlap? Moreover, how do patterns of syn-
aptic fatigue differ between non-errorful and errorful speech, such that 
CH occurs in the former but trace effects occur in the latter? We feel that, 
at this point, our inhibition account is the most promising in terms of 
coverage of existing empirical facts and generation of novel predictions, 
but it would be useful to carefully formulate alternatives in order to 
compare their predictions with those of our account. 

To take a broader theoretical perspective on our proposal, we can ask 
why the neurocognitive mechanisms underlying speech planning would 
have evolved to incorporate both excitatory and inhibitory interactions 
between lexical and phonological levels of planning. In other words, 
why would activating one lexical representation affect the activation of 
other similar lexical representations (competitors), and why would 
competitors affect pronunciation planning? From the perspective of 
production, interactive lexical-phonological activation can be seen to 
have a facilitative effect, speeding up the process of activation peak 
stabilization in pronunciation planning fields via additional input from 
competitors. Thus, having competitors facilitates pronunciation. Of 
course, activating lexical competitors and allowing them to influence 
pronunciation planning introduces a risk that the planning process 
might converge on a competitor pronunciation, rather than the target. In 
fact, the cost of excitatory interaction is likely often seen in speech er-
rors, when a competitor is produced instead of the target. Excitatory 
projections bring the benefit of faster speech production and the risk of 
occasional errors. Inhibitory lexical-to-phonological projection can be 
seen to mitigate this risk. By projecting inhibitory input to just those 
pronunciation planning fields that differentiate the competitor from the 

target (via the mechanism described above), competitors are able to 
facilitate planning of dimensions of pronunciation which are shared 
with the target without disrupting planning of dimensions which are not 
shared with target. Moreover, as discussed above, this inhibitory 
mechanism serves the additional function of making pronunciations 
more easily perceivable by listeners. Both excitatory and inhibitory 
coupling mechanisms between the lexicon and pronunciation planning 
fields have clear roles in a speech production system evolved for 
efficiency. 

Explicitly incorporating these hypothesized lexical-phonological 
coupling mechanisms into the present model has the potential to shed 
new light on the mechanisms underlying the effects of phonological 
neighborhoods on speech production. Different studies have identified 
facilitation (Vitevitch, 2002), inhibition (Gordon & Kurczek, 2014), 
hyperarticulation (Munson & Solomon, 2004), and hypoarticulation 
(Gahl et al., 2012) induced by phonological neighborhood density. 
Perhaps this diversity of findings is a result of the coarseness of existing 
phonological neighborhood density measures: most commonly, the 
number of real words that can be created by adding, removing, or 
changing a single phoneme. In the framework presented here, neigh-
borhood density itself is not expected to have a consistent effect on 
pronunciation planning. Rather, different types of neighbors are ex-
pected to have different effects on different dimensions of pronuncia-
tion. In particular, neighbors are predicted to inhibit dimensions that 
differentiate them from the target and excite dimensions on which they 
overlap with the target. The aggregate of these effects from all neighbors 
will ultimately derive the pronunciation targets of a particular utter-
ance, and the time it takes to plan these targets. Crucially, the simple 
number of neighbors should be a weak predictor of target values and 
target planning times. For instance, a word with many more neighbors 
that differ in initial consonant voicing than neighbors that share initial 
consonant voicing is likely to have a hyperarticulated VOT, compared to 
a word with more neighbors that share voicing than that differ in voi-
cing—even if both words have the same neighborhood density. The 
complexity of the influences of phonological neighborhoods on speech 
production points to the utility of a computational modeling approach 
like the one pursued here. A mathematical formalization of the processes 
of pronunciation planning and their coupling to lexical planning allows 
the generation of precise quantitative predictions in cases where such 
predictions could not possibly be intuited based on a verbally articulated 
theory alone. We believe this is a promising direction for future work 
and may lead to new empirical predictions linking the temporal dy-
namics of speech planning to the phonetic details of pronunciation. 

Conclusion 

We investigated the real-time mechanisms contributing to contras-
tive hyperarticulation (CH) during the planning of individual utter-
ances. We demonstrated—using a model of pronunciation planning 
based on Dynamic Field Theory (DFT)—that CH is derivable from 
inhibitory projections from the minimal pair lexical representation to 
phonological levels of planning. We also showed that the magnitude of 
inhibitory projection correlates with the magnitude of CH, and that the 
magnitude of excitatory projection correlates with the magnitude of the 
phonetic trace effect in speech errors. We thus derived the observed 
range of CH and trace effect magnitudes by scaling a single model 
parameter, competitor strength, offering a unified explanation of an 
apparently disparate set of phenomena. We tested some predictions of 
the model with a novel experiment, very similar to Experiment 2 in 
Baese-Berk & Goldrick (2009) but with pseudoword stimuli. Pseudo-
words demonstrated CH effects, consistent with a contribution of real- 
time mechanisms to CH. However, the scope and magnitude of CH in 
pseudowords was reduced compared to CH in real words, consistent 
with a role for interactive activation between lexical and phonological 
representations. We outlined directions for future work which are sug-
gested by the present study. 
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Appendix A. Stimuli 

See Table A1, Table A2 and Table A3. 

Appendix B. Instructions 

Welcome to the experiment! Please leave your camera off but your 
microphone on (unmuted). The experimenter will randomly change one 
of your Zoom names to “speaker”, and the other to “listener”. “Speaker”: 
you will receive a pdf in the Zoom chat. Please open this pdf to the first 
page, and arrange your computer screen so that you can see both the pdf 
and the shared Zoom screen at the same time. 

Your goal is to communicate successfully by working together. 
(Please say “ok” when you’ve finished reading the slide). 

Each trial in the experiment will go like this: Three words will appear 
on the screen. Some of the words will be real words of English, and 
others will be made up words. 

Listener: After the words appear on the screen, say “ready”. Then, the 
speaker will say the target word for you. If you think the target is the 
word on the left side of the screen, type “1” into the Zoom chat. If you 
think it is the word in the center, type “2”. If you think it is the word on 
the right, type “3”. 

Listener: It is your task to listen closely to make sure you select the 
correct target word. During the experiment, please do not say anything 
except “ready”. 

Speaker: In the pdf you received, the target word for each trial is 
bolded and underlined. Before each trial, make sure the three words on 
the pdf match the three words on the shared Zoom screen. 

Speaker: After the listener says “ready”, say the target word in the 
phrase “type the___number”, for example “type the sample number”. If 
the target is not a real word of English, just pronounce it in the way that 
seems most natural. It is your task to make sure the listener chooses the 
correct word. 

Speaker: Please do not speak slowly or pause between words. Rather, 
speak at a fluent, conversational pace. During the experiment, please do 
not say anything except the target word in the phrase “type 
the___number”. 

After each trial, you will hear a bell sound if you are correct, or a buzz 
sound if you are incorrect. If you finish the experiment with an overall 
accuracy of 95% or more, you will each receive a bonus $5. Let’s do a 
little practice before we start. 
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