
000844-0029 Ding 1 

 

Physics Internal Assessment: Experiment Report 

 

 

 

 

 

An Increasing Flow of Knowledge: 

Investigating Torricelli’s Law, or the Effect of Height on Flow Rate 

 

 

 

Candidate Name: Chunyang Ding 

Candidate Number: 000844-0029 

Subject: Physics HL 

Examination Session: May 2014 

Words: 4773 

Teacher: Ms. Dossett 



000844-0029 Ding 2 

 

If you sit in a bathtub while it is draining, you may notice that the water level seems to 

drop quickly initially, but then slows down as the height of the water decreases. Although you 

could attribute this time distortion to being impatient and wanting the bathtub clean, it is also 

possible that there is a physics explanation for this. This paper will investigate the correlation 

between the height of water and the flow rate of the water. Our hypothesis is that as the height of 

the water increases, the flow rate of the water will increase linearly. 

In order to perform this experiment, we will use a two liter bottle and drill a small hole in 

the side. We will fill the bottle with water and allow the water to drain from the bottle. The 

independent variable is the height of water above the hole in the two liter bottle, measured in 

meters. The dependent variable is the flow rate of water out of the bottle, measured in milliliters 

per second. However, these two variables are very difficult to measure directly with a high level 

of accuracy. Therefore, for practical purposes, we shall measure the amount of water poured into 

the two liter bottle as the independent variable, and the amount of water drained in the duration 

of 5.0 seconds as the dependent variable. We can easily convert these values to the units required 

for our lab. 

One important control for this lab is that the walls of the two liter bottle are very similar 

to a perfect cylinder. Otherwise, we could not convert the volume of water in the bottle to the 

height of water above the drilled hole. Therefore, instead of drilling the hole at the bottom of the 

two liter bottle, where there are irregular shapes created by the “feet” of the two liter bottle, we 

will drill the hole roughly 5 cm above the bottom of the two liter bottle, at a region where the 

two liter bottle approximates a perfect cylinder. 
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Another control for this lab is the temperature of the water used. Because temperature has 

an effect on the density of water, a factor that could potentially affect the experiment, we want to 

keep this variable as constant as possible. 

A very important control for this lab is the size of the hole drilled. For our experiment, 

we will only deal with a single hole of a constant diameter. Because we understand that a larger 

hole could potentially increase the flow rate, we choose to not change the diameter of the hole. In 

addition, having multiple holes could drain the water much faster than with a single hole, so we 

will only have one hole. 

Maintaining a constant pressure on top of the water bottle is very important. If we keep 

the cap on the two liter bottle, this pressure above the water would change as the water drains. 

However, if we leave the cap off the two liter bottle, the pressure on top of the water would be a 

constant of 1 atmosphere, or roughly 101325 pascals. In addition, the pressure of the 

environment outside of the room should also be kept at a constant of roughly 101325 pascals. 

The ranges of volumes of water we wish to fill the two liter bottle are chosen with care. 

The minimum value, of 500 mL, was chosen because below that amount, water does not flow 

properly from the hole. Rather than spewing out in a constant spray that could be collected by the 

beaker, the water would trickle down the side of the two liter bottle. This prevented us from 

collecting any data for volumes below 500 mL. The maximum amount of water we chose to fill 

the bottle with is 1700 mL because above that level of water, the two liter bottle’s shape begins 

to change. The top of a two liter bottle is curved to form a small opening on the top. Therefore, 

using more than 1700 mL of water would distort the true purpose of the lab: to investigate the 

correlation of height on the flow rate. 
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We choose to measure 100 mL differences for water volume differences in order to get a 

full range of values between 500 and 1700 mL. In addition, we determined that at 1700 mL, the 

flow rate allows for the water to drain nearly 100 mL over the 5 seconds. If we used a value that 

was less than 100 mL as the difference between successive conditions, we would find that one 

trial would “overlap” into another trial. This is a fundamental error in the lab, but it is 

unavoidable provided the equipment that we were given. More on this error will be discussed 

later. 

We choose use a period of 5.0 seconds for several reasons. Most importantly, this period 

allows us to collect a wide range of data for amount of drainage, between 27 and 96 mL. If we 

used a longer duration, such as 10.0 seconds, we would find that the amount of water drained 

would be roughly between 50 and 200 mL, which would overlap into the other trials far too 

much. The reason why we did not choose a value less than 5.0 seconds, such as 1.0 seconds, is 

because such a small value greatly amplifies the problem of human reaction time. Human 

reaction time is roughly 0.20 seconds, so using 1.0 seconds would result in a 20% error 

minimum. In addition, the values collected would fall between 5mL and 25 mL, which would be 

too small to be significant. 

Finally, we chose to use 6 trials for each condition, primarily because we were concerned 

with the errors associated with liquids. As it is possible for a couple of droplets of water to spill 

here and there, disrupting the accuracy, we use more trials so that there is more ability to gather 

uncertainty data. Using 6 trials would exceed the 5 trial minimum required for statistically 

significant data.  
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Materials: 

 Drill 

 Drill bit with diameter of 
 

  
     (      ) 

 Two Liter Bottle 

 100     mL Graduated Cylinder  

 Large bucket (Capacity greater than 2000 mL) 

 250 mL Beaker 

 Water 

 Timer App for iPhone 4 (Big Stopwatch by Yuri Yasoshima) 

 String 

 Scissors 

 Ruler (          ) 

Procedure:  

1) Prepare the drill with the drill bit of diameter 
 

  
     (      ) 

2) Drill a hole in the two liter bottle roughly 10 cm from the bottom of the bottle. There 

should be a thin line at the location, and the plastic should be relatively straight above the 

line. 

3) Fill the two liter bottle with water such that the water level is right at the hole. Measure 

how much water is currently in the bottle by using the 100 mL graduated cylinder. 

Record this number. 

4) Wrap string around the circumference of the two liter bottle. Use the scissors to cut off 

this piece of string. 
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5) Measure the length of the string with the ruler and record the length as the circumference 

of the two liter bottle. 

6) Using the graduated cylinder, measure 500 mL water and pour into the large bucket. 

7) Pour the water from the large bucket into the two liter bottle from the top by unscrewing 

the cap, making sure to seal the drilled hole with finger to prevent loss of water.  

8) Unscrew the cap on the two liter bottle. 

9) Drain the water from the two liter bottle into the 250 mL bottle. Use the timer app such 

that you unseal (remove finger from hole) the bottle at 0.00 seconds and reseal (place 

finger on hole) the bottle at 5.00 seconds. 

10) Replace the cap on the two liter bottle and invert the bottle such that no water escapes. 

11) Measure the amount of water drained by using the 100 mL graduated cylinder. Record 

value. 

12) Unscrew the cap on the two liter bottle and replace water that was drained. 

13) Repeat steps 8-12 five more times. 

14) Repeat steps 6-13 thirteen more times, using increments of 100 mL for the amount of 

water poured by the 100 mL graduated cylinder. 
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Illustration: 

 

Fig 1: Experimental Setup 

 

Fig 2: Schematic of Two Liter Bottle 
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Data Collection and Processing: 

 
Volume Lost over 5 seconds( ± 1mL) 

Volume of 
Water (mL) Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 

Error in Measuring 
Volume of Water (mL) 

 500 25 26 27 27 27 27 5 

600 36 37 36 35 37 38 6 

700 45 45 44 47 43 43 7 

800 52 53 51 50 54 50 8 

900 56 58 61 59 57 57 9 

1000 66 63 62 62 65 61 10 

1100 69 67 68 67 66 67 11 

1200 72 72 69 71 72 72 12 

1300 74 73 75 73 72 77 13 

1400 77 80 81 80 79 78 14 

1500 86 84 84 83 80 83 15 

1600 86 90 87 88 88 89 16 

1700 89 90 90 91 89 93 17 

1800 95 95 96 94 92 92 18 

 

Volume of 
Water 
Below 
Hole (mL) 

Error in 
Volume 
Below 
(mL) 

Circumference 
of Two Liter 
Bottle (cm) 

Error in 
Circumference 
of Bottle (cm) 

382 4 34.4 0.4 

 

An explanation for the large error in the circumference of the bottle: The string that was 

used to determine the circumference of the two liter bottle was found to be rather elastic. 

Therefore, the maximum that the string could be stretched was by an additional 0.4 cm. 

Therefore, the error in the circumference of the bottle was determined to be 0.4 cm, rather than 

the 0.1 cm that the measurement error of using the ruler would be.  
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The error in measuring the volume above is determined by the number of times the 100 

mL graduated cylinder is used to pour water. We assume that because the graduated cylinder has 

a measurement error of       , each time we use this measurement, the error becomes 

compounded. Therefore, measuring 500 mL of water requires using the graduated cylinder five 

times, which would result in an error of       . 

Next, the total volume of water is converted into the amount of water that is above the 

hole. This is done by subtracting the amount of water that was poured into the bottle (recorded in 

the data table) from the amount of water that is below the hole (recorded in step 3 to be 382 mL). 

Therefore, as in the 500 mL case, 

             (  )               (  )               (  )                

             (  )         

The error in this reading is determined by the larger error between measuring the total 

volume and the volume below. Because the error in the volume below is set at     , the error 

for the total volume is always greater, and therefore, should be used. 

In order to create useful data, we will first convert the volume loss into flow rate. This 

will be done by  

          
           

             
 

Therefore, the flow rate for Trial 1 of the 500 mL trial is 

          
     

           
    

  

   
 

However, we also need to calculate the errors for this calculation. When dividing two 

numbers that both have measurement errors, we should add the percent errors and multiply by 

the final result. Our measurement error for volume lost is 1 mL due to the uncertainty in the 
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graduated cylinder. The measurement error for the time for loss is equivalent to human reaction 

time, or roughly 0.2 seconds. Therefore for the same case as above, 

                   (                         )            

 (
           

           
 

(    )

     
)     

  

      
     

  

      
 

Therefore, the following data tables are created:  

 

  Flow Rate (mL/sec) 

Volume 
Above 
(mL) Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 

Error in 
measuring 
Volume Above 
(mL) 

118 5.0 5.2 5.4 5.4 5.4 5.4 5 

218 7.2 7.4 7.2 7.0 7.4 7.6 6 

318 9.0 9.0 8.8 9.4 8.6 8.6 7 

418 10.4 10.6 10.2 10.0 10.8 10.0 8 

518 11.2 11.6 12.2 11.8 11.4 11.4 9 

618 13.2 12.6 12.4 12.4 13.0 12.2 10 

718 13.8 13.4 13.6 13.4 13.2 13.4 11 

818 14.4 14.4 13.8 14.2 14.4 14.4 12 

918 14.8 14.6 15.0 14.6 14.4 15.4 13 

1018 15.4 16.0 16.2 16.0 15.8 15.6 14 

1118 17.2 16.8 16.8 16.6 16.0 16.6 15 

1218 17.2 18.0 17.4 17.6 17.6 17.8 16 

1318 17.8 18.0 18.0 18.2 17.8 18.6 17 

1418 19.0 19.0 19.2 18.8 18.4 18.4 18 

 

 

 

 

 

 



000844-0029 Ding 11 

 

 

 

 

 

 
Error in Flow Rate (mL/sec) 

Volume 
Above 
(mL) 

Error Trial 
1 

Error Trial 
2 

Error Trial 
3 

Error Trial 
4 

Error Trial 
5 

Error Trial 
6 

118 0.40 0.41 0.42 0.42 0.42 0.42 

218 0.49 0.50 0.49 0.48 0.50 0.50 

318 0.56 0.56 0.55 0.58 0.54 0.54 

418 0.62 0.62 0.61 0.60 0.63 0.60 

518 0.65 0.66 0.69 0.67 0.66 0.66 

618 0.73 0.70 0.70 0.70 0.72 0.69 

718 0.75 0.74 0.74 0.74 0.73 0.74 

818 0.78 0.78 0.75 0.77 0.78 0.78 

918 0.79 0.78 0.80 0.78 0.78 0.82 

1018 0.82 0.84 0.85 0.84 0.83 0.82 

1118 0.89 0.87 0.87 0.86 0.84 0.86 

1218 0.89 0.92 0.90 0.90 0.90 0.91 

1318 0.91 0.92 0.92 0.93 0.91 0.94 

1418 0.96 0.96 0.97 0.95 0.94 0.94 

 

As we study this data, we realize that the error from measurements is greater than the 

standard deviation of the measured flow rates. IB guidelines recommend for the maximum error 

in measurement to be used rather than using the standard deviation of the flow rate data. 

Next, we want to process our data to find the average flow rate. Using the 118 mL data: 

             
                 

 
 

 
                       

 
    

  

       
 

Our data tables are of the following: 
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Volume vs. Flow Rate 

Volume 
Above 
(mL) 

Error in 
Volume 
Above (mL) 

Average 
Flow Rate 
(mL / sec) 

Max Error 
in Flow Rate 
(mL / sec) 

118 5 5.3 0.42 

218 6 7.3 0.50 

318 7 8.9 0.58 

418 8 10.3 0.63 

518 9 11.6 0.69 

618 10 12.6 0.73 

718 11 13.5 0.75 

818 12 14.3 0.78 

918 13 14.8 0.82 

1018 14 15.8 0.85 

1118 15 16.7 0.89 

1218 16 17.6 0.92 

1318 17 18.1 0.94 

1418 18 18.8 0.97 

However, the goal of this report is to not determine the relationship between the volume 

of water above the hole with the flow rate; rather, we wish to determine the relationship between 

the height of the water with the fluid rate. Therefore, we shall convert the volume of water above 

the hole into height of the water. 

Because we know the volume of water in milliliters, we are able to convert this value to 

cubic meters. Afterwards, we shall assume that our two liter bottle is a perfect cylinder. 

Therefore, the volume is equivalent to the cross sectional area multiplied by the height. Dividing 

the volume by the cross sectional area would therefore give the height that we desire. 

We first convert milliliters to cubic meters by the following:  

              
   

       
 
     

   
 (

    

        
)  
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Using this conversion factor, we calculate that 

       
    

         
             

We determine the cross sectional area of the two liter bottle using the value for the 

bottle’s circumference that we determined in step 5 (34.4 cm). From this, we know that 

                (
                 

  
)
 

 
                 

 

  
 

(       ) 

  
          

However, we also understand that          
        

        
. Therefore, converting from 

square centimeters to square meters: 

                     
(    )

         
           

To determine the height of the water, we calculate for the 118 mL condition: 

       
           

         
              

To determine the error in this calculation, we would take the percent error for the area 

and for the volume, add them together, and multiply by the final pressure.  

However, the error for the area is a result of squaring the circumference value, which 

changes the percent error. Therefore, this error is evaluated to be 

        
       

             
      

   
       

      
                       

Therefore, the total error in height is calculated by: 

            (
           

         
 

          

           
)                              

This produces the following data table: 
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Height vs. Flow Rate 

Height 
(m) 

Error in 
height (m) 

Flow 
Rate 
(mL/sec) 

Error in 
Flow Rate 
(mL/sec)  

0.013 0.00082 5.30 0.42 

0.023 0.00117 7.30 0.50 

0.034 0.00153 8.90 0.58 

0.044 0.00188 10.33 0.63 

0.055 0.00223 11.60 0.69 

0.066 0.00258 12.63 0.73 

0.076 0.00294 13.47 0.75 

0.087 0.00329 14.27 0.78 

0.097 0.00364 14.80 0.82 

0.108 0.00399 15.83 0.85 

0.119 0.00435 16.67 0.89 

0.129 0.00470 17.60 0.92 

0.140 0.00505 18.07 0.94 

0.151 0.00540 18.80 0.97 

 

Therefore, the following graph is produced:
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We can tell that our data seems to fit a square root curve very nicely. Our x axis is the 

height as measured in meters, while the y axis is the flow rate of the water out of the drilled hole 

as measured in milliliters per second. The x and y intercepts are at (0, 0), which implies that 

when there is no water above the hole, the flow rate will be zero milliliters per second. This 

makes a lot of sense, as if there is no water to drain out of the two liter bottle, the flow rate would 

be zero. 

We also notice that the square root function has a domain of         . This makes 

sense, as if the height of the water is below the height of the hole, the flow rate would always be 

zero. Although the “undefined” portion is questionable, it is not sufficient to ignore the trend.  

The next step is to linearize the data. We will use the variable   to represent this 

linearized value. Our current regression indicates a square root relationship between the height of 

the water and the flow rate of the water. Therefore, we can linearize the data by taking the square 

root of the pressure (x-variable) as follows: 

               √       

Using the 0.013 meter experiment, we have 

  √                  √      

Evaluating the error of this linearized data is done by 

       
 

 
 
              

            
      √                   

Therefore, our data table is: 
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Linearized Height vs. Flow Rate 

Linearized 

Height (√ ) Error in Height (√ ) 

Flow 
Rate 
(mL/sec) 

Error in 
Flow Rate 
(mL/sec) 

0.112 0.0037 5.30 0.42 

0.152 0.0039 7.30 0.50 

0.184 0.0042 8.90 0.58 

0.211 0.0045 10.33 0.63 

0.235 0.0048 11.60 0.69 

0.256 0.0050 12.63 0.73 

0.276 0.0053 13.47 0.75 

0.295 0.0056 14.27 0.78 

0.312 0.0058 14.80 0.82 

0.329 0.0061 15.83 0.85 

0.345 0.0063 16.67 0.89 

0.360 0.0065 17.60 0.92 

0.374 0.0068 18.07 0.94 

0.388 0.0070 18.80 0.97 

 

Next, we determine the lines of maximum and minimum slope. The maximum slope is 

determined from the maximum uncertainty values of the highest and lowest points, so that the 

two points responsible for this calculation would be: 

(                       ) and (                       ). Using our data, these 

two points would be (0.112+0.0037, 5.30-0.42) and (0.288-0.0070, 18.80+0.97), giving us the 

points (0.116, 4.88) and (0.381, 19.77). As the equation for slope is   
     

     
, we can process 

by 
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       √     
 

The minimum slope is similarly calculated, but with reversed signs in regards to adding 

or subtracting the uncertainty. Therefore, the points should be (                 

      ) and (                       ), or (0.112-0.0037, 5.30+0.42) and 

(0.388+0.0070, 18.80-0.97), giving us the points (0.108, 5.72) and (0.395, 17.83). Again, 

calculating for slope by  

  
     

     
 

  
          

           
 

  
     

     
 

        
  

       √     
 

Putting all of this information together, the following graph is produced: 
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 For this graph, we notice that the z variable is the linearized height, as shown in the SI 

units of √      , while the y variable is the flow rate as measured in milliliters per second. We 

see that our linearization is a very close fit. The correlation factor is 0.999, but more importantly, 

the best fit line nearly passes through every single data point and the error regions associated 

with those data points. In addition, the lines of maximum and minimum slopes are well within 

the error regions. The large number of data points used for this experiment provides further 

confidence in the validity of our data. For this data, it is not possible that the error regions alone 

could have caused the trend that we see. Instead, the values clearly show a positive increase, 

from (0.112, 5.30) to (0.388, 18.80). There is a constant increase between every data point which 

supports the high correlation value of this graph. Finally, the minimum and maximum slopes are 

both positive and are very close to the slope of the best fit line.  

 The slope in this graph is interpreted to mean how rapidly the flow rate increases as the 

square root of the height increases. If the linearized height increases by 0.300 √      , the 

increase in flow rate would be predicted to an increase of 14.52
  

      
. These values correspond 

with our data, as the increase between the minimum and maximum points for linearized 

height,       √      , corresponds to the flow rate increasing by 13.5 
  

      
.  

 Our best fit regression line has the equation of                . The reason for the 

apparent mismatch of precision is because in our scenario, the number of significant figures is 

more important that the actual precision of the number. All of these numbers are calculated 

values, not directly measured values. Therefore, it is valid to use a constant three significant 

figures in all of these equations.  
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In this graph, the z intercept is at (0, 0.0173) while the y intercept is at (-.000357, 0). The 

expected z and y intercept would be at (0, 0), because when the pressure is zero, we expect the 

flow rate to also be 0. We will attribute this to small measurement errors in this experiment. 

However, the relationship of        √          is confirmed to be true with the 

linearized graph. Using the data from both the linearized graph as well as the data from the 

regular graph, we realize that the correlation is very high and indicates a very accurate 

experiment.  

Conclusion: 

Before we dive into the results of our lab, let us return to an old equation: The law of 

conservation of energy
1
. This states that 

        

However, we can also express work done by a fluid by using the definition of pressure 

and work to determine that 

                 

For a liquid, we understand that           so that 

       

If we calculate for the work done by the liquid at some other point with different 

pressures and areas, we find that done by the liquid at some other point with different pressures 

and areas, we find that  

        

Solving for the net work would give: 

           (     )  

                                                 
1
 Serway, Raymond A., and John W. Jewett. Physics for Scientists and Engineers. 5th ed. Pacific Grove, CA: 

Brooks/Cole, 2000. Print. 
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If we relate this to the kinetic and potential energies, which can be defined as 

   
 

 
 (  )

  
 

 
 (  )

  

             

Therefore, combining all of these terms gives: 

(     )   
 

 
 (  )

  
 

 
 (  )

             

Dividing by V and recalling that   
 

 
, we find that 

  
 

 
 (  )

         
 

 
 (  )

       

In physics, this is a very useful equation for fluid dynamics known as Bernoulli’s 

equation. Essentially, it is the same as the law of conservation of energy. However, it allows us 

to solve for velocities for liquids with different heights or pressures.  

In our situation, we have the following diagram: 

 

There are several things to observe here. Primarily,         for the height of the 

water,      for large openings,   is constant for the water, and that      . Using these 

conditions, we simplify Bernoulli’s equation to be 
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(  )

          

Rearranging terms provides: 

(  )
      

   √    

This statement is also called Torricelli’s Law. Therefore, our data corresponds and 

verifies this law of fluid dynamics because we found that           √ . We understand that 

flow rate is directly correlated with the velocity of a liquid, so that Torricelli’s law is satisfied. 

We can verify this relationship by using some sample points. Because we can rearrange 

our relationship to be 
         

√      
         , if we select several of our data points, they should 

result in the same constant. 

Flow Rate 
(mL/sec) 

√       

 (√     ) 

         

√      
 

5.30 0.013 46.48 

8.90 0.034 48.27 

11.60 0.055 49.46 

13.47 0.076 48.86 

14.80 0.097 47.52 

16.67 0.119 48.32 

18.07 0.140 48.29 

 

As we can see from these selected trials, by dividing the flow rate by the square root of 

the height, we get roughly a constant value of 48.The variation in the constant are normal and 

attributable to measurement errors.  

One oddity about this equation is that Torricelli’s equation clearly shows that the constant 

is determined by   √  . However, √        . What does this mean for our experiment? 
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For one, we measured the flow rate, not the velocity of the liquid. The reason that we did not 

choose to measure the velocity of the liquid is because of the uncertainty of the size of the hole.  

In order to determine the velocity that the water exits the two liter bottle, we must use 

          (
  

      
)  

 

    
(

 

  
)           (

 

 
) 

However, our method of creating the hole is by using a drill of minimal precision into a 

plastic bottle. We are not able to guarantee that the hole drilled has a diameter of exactly 0.0048 

meters, as reported above. In addition, we are not even able to claim that the “hole” is perfectly 

circular. There were small jagged edges around the edge of the opening that were a result of the 

non-perfect drill. Therefore, the velocity of the liquid is too difficult to determine accurately for 

this experiment, and therefore this aspect of Torricelli’s equation should be ignored. 

There is not too much to evaluate for error in this experiment. Given the precision and 

accuracy of our data, there is not too much to improve upon this lab. However, there are minor 

details that could assist in creating even more accurate data. 

The largest error in this lab is that we wished to find the instantaneous flow rate of the 

liquid given a height. However, our procedure only permits for an average flow rate to be found. 

Therefore, an average flow rate should also require using the average height, or         

                         . This could potentially provide more accurate data, especially as the 

height increases. In addition, because the height drop for the 1700 mL trial was nearly 100 mL, 

we cannot be absolutely certain about the values collected there. This error causes a systematic 

increasing of error, skewed downwards, for the flow rate as the height increased.  

The most convenient way to fix this error would be to decrease the amount of time that 

the water drains. However, as discussed earlier in this paper, we are unable to decrease this value, 

as it would begin interfering with the human reaction time, a random human error. Therefore, we 
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cannot decrease time too far. This becomes a balancing problem between human reaction time 

errors with average height errors. For this experiment, we determined that using a time period of 

5.0 seconds would be the best average between the two errors. 

Another potential source of error was that every time the hole was sealed or unsealed, a 

drop or two of water would be electrostatically attracted to the finger that plugged the hole. 

Although this would most likely result in an increase in error of          , which seems 

extremely insignificant when we are dealing with volumes of excess 100 mL at the very 

minimum, and that our reported uncertainty for the volume is already in excess of 5 mL.  

One potential solution to this systematic error is to use some sort of non-charged material 

to block the hole, such as a small piece of wood or metal. However, there is not too much to be 

gained from this, as a disadvantage of using such materials may cause inadequate blocking of the 

small hole.  

In general, most of the major errors have already been corrected for in the design of the 

lab. Potential errors included maintaining a perfect cylinder for the two liter bottle, which we 

achieved by only using the flat portions of the bottle and preserving the same pressure above the 

water, achieved by leaving the cap off. These potential errors have already been accounted for in 

the lab design, which contributed to the high precision of the data.  

In conclusion, this lab has thoroughly explored fluid dynamics, designing and conducting 

an experiment around Torricelli’s law for fluids. We have seen how water obeys the laws for 

flow rate changes through different heights. A greater understanding of fluid mechanics has been 

gained as a result of this lab. In general, this experiment is a great success, given the extremely 

high levels of accuracy that the data models, and the correct interpretation of the data. 


