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The fields of number theory and of calculus are well defined, but by creating
a new number chain pattern, we find interesting conclusions. By rigorously
defining a series of numbers, patterns that exist in nature are analyzed through
algebra as well as through graphs and figures. We focus on finding loops and
divergences in the prime derivative numbers, as well as creating graphs and
patterns that could possibly be followed visually. In addition, our research
diverges towards parity issues Mersenne Primes. While it is very difficult to
draw definitive conclusions from such a tricky analysis, our research explores
the fundamental issues within this field.

1. Introduction

There are several very interesting number
chains that exist in pure mathematics that
are especially interesting to analyze. Per-
haps the most famous of them is the Collatz
Conjecture, which applies a ”simple” algo-
rithm to any integer. Afterwards, a graph
can be created of the ”flow” between dif-
ferent integers. Through this process, it is
hypothesized that every single integer can
eventually trace back to the number 1. How-
ever, this is a very challenging problem that
has not yet been proven.

In this exploration, we investigate a sim-
ilar number chain problem: The Prime
Derivative. This also applies a series of

algorithms to integers and traces how they
evolve over time. Although it is evident that
not every integer returns to the number 1,
it is clear that there are certain patterns
that could be understood through analysis.
We will begin by setting our definitions and
slowly building our knowledge from those
base cases.

2. Analysis

2.1. Definitions

The Prime Derivative operates on the fol-
lowing principles:

IF:

n “ 1
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then:
n1 “ 0

IF: n is prime, then

n1 “ 1

IF: n is composite of form

a ¨ b

then:
n1 “ a1b` b1a

IF: n is composite of form

a ¨ b ¨ c

then,

n1 “ a1 ¨ pb ¨ cq1 “ a1 ¨ b ¨ c` a ¨ b1 ¨ c` a ¨ b ¨ c1

As is evident, this creates a system that
seems to be very similar to regular deriva-
tives of functions. We can then impose
many different test scenarios onto these ba-
sic principles to test how prime derivatives
work.

2.2. Graphs

One of the first things that we did in in-
vestigating the Prime Derivative was to cre-
ate several graphs. This was the easiest
way that we had to visualize what a prime
derivative chain looks like, which is similar
to the Collatz Conjecture graphs. We see
immediately that there are clear differences
from the Collatz conjecture graph, namely
that there are some points that seem to
be ”fixed” and several chains that do not
lead to 1. Therefore, our next step is to
investigate those scenarios.

In Figure 2, we see a small slice of the
much larger graph. This graph was gener-
ated with number chains from 1 to 1000,
but as is evident, there does not seem to

Figure 1: The original, hand-drawn graph
for prime derivatives by Benny
Cheung
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Figure 2: A small, randomly selected, por-
tion of the graph

be any particular reason for links. Even
numbers, odd numbers, perfect numbers,
squares and cubes all lead haphazardly to
other numbers. It isn’t well defined how
many numbers should lead to 1 number,
nor is it even clear if a number would di-
verge or converge.

2.3. Patterns in Multiples

We continued our analysis through observ-
ing patterns in the prime derivatives of mul-
tiples of small integers. We quickly realized
that the number 4 loops to itself because
the sum of its prime factors is equal to the
number itself, and that multiples of 4 in-
crease infinitely. We investigated whether
numbers lead to 0 or to infinity, and found
no evident patterns in multiples of 5, 6, 7,
or 9 through 100. This led us to explore
different methods of understanding prime
derivatives, such as using loops and fixed
points.

2.4. Loops

Immediately, it is evident that the prime
derivative of some numbers is itself. We
first see this with the number 4, and then
with 27, 3125 and 823543. If we look at
these numbers, it appears that these num-

bers follow the pattern of being in the form:

n “ pp

If we try to apply our previous definition to
these numbers, we gain some clever insights.
For any number in this form, the derivative
would be:

n1 “ p1 ¨ pp´1 ` p1 ¨ pp´1....` p1 ¨ pp´1

n1 “ p1 ¨ p ¨ pn´1 “ p1 ¨ pp “ pp

Clearly, any derivative of a prime number
raised to the power of a prime number will
be itself. We can therefore set a definition
that all numbers of that form are essentially
fixed points in the universe.

At this point, we will establish another
term. For any number n, we can find the
ratio of

n1

n
“

1

f1
`

1

f2
` ...

1

fn

if we assume the form that n “ f1 ¨f2 ¨ ... ¨fn
If the ratio n1

n is equal to 1, we can say
that n1 will always be equal to n. This is
also evident that loops to the same number
are valid in these scenarios. This is easily
demonstrable as there are n fractions and
each fn is the same number. Therefore,

n1

n
“

1

p
`

1

p
` ...

1

p

n1

n
“

p

p
“ 1

2.5. Branches Diverging to Infinity

Now, let us consider if n1

n ą 1. We can
know with certainty that n1 ą n, obviously.
However, let’s consider the number:

n “ pp ¨ x, x P Z
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Figure 3: A small portion of the graph for
multiples of 4.

We can tell that n1 would therefore be:

n1 “ pp1 ¨ x` pp ¨ x1

Because we know that pp1 “ pp, we un-
derstand that

n1 “ pp ¨ x` pp ¨ x1q

such that n’ is always greater than n.
However, this also implies that the deriva-
tive of n would simply be

n1 “ pp ¨ x1

and because we can apply this recursively,
our only result is that this derivative di-
verges to infinity! We can express this as:

lim
xÑ8

ppp ¨ nqpxq Ñ8

where x is not a power, but the number
of prime derivatives that have been taken.
In plain words, for any number of the form
pp ¨ n, as you take more prime derivatives,
that number diverges to infinity. See Figure
3 for and example of this using numbers
with a factor of 4.

2.6. Loops, Part 2

At this point, we will ask: Are numbers
of the form pp the only fixed points in the

prime derivative scenario? In order to an-
alyze this question, we take the following
definition and ideas:

n “ p1
b ¨ p2

d

We realize that the following ratio is true:

n1

n
“

b

p1
`

d

p2

Given that formula, we will realize that
this ratio will never be equal to 1. If the de-
nominators are prime numbers, as we have
defined, the sum of fractions can never be
equivalent to one. Therefore, any number
that is not of the form pp cannot be a fixed
number.

2.7. Geometric Series

We now attempt to analyze regular se-
quences using our prime derivatives, in the
hope that consistent series can hold some
sort of pattern when derived. The most
obvious of these patterns would be to use a
geometric series, of the form

a
ź

n“0

fn ¨ x

Where a is any integer and f is some prime
factor. For our first case, allow x to only be
some other prime number.

Therefore, we can find that the derivative
of these geometric series is of the form:

Sn
1p ¨ n ¨ an´1 ` an

If we find this for the next series, we will
notice that it would be

Sn`1
1p ¨ n` 1 ¨ an ` an`1

While this is somewhat useful, there is no
clear pattern between derivatives of this
form. We recognize the addition enclosed
in this pattern, and realize that there is no
way to derive properly.
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2.8. Parity

Exploring the parity of these prime deriva-
tives can prove to be quite interesting. First,
let us redefine our numbers using factors.
Here, we will use the sample case of having
4 factors.

n “ f1 ¨ f2 ¨ f3 ¨ f4

n1 “ f1
1 ¨ pf2f3f4q ` f2

1 ¨ pf1f3f4q

`f3
1 ¨ pf1f2f4q ` f4

1 ¨ pf1f2f3q

Now, let us assume that each fn is a prime
number. Further, let is first assume that
fn ‰ 2 for this first case.

Because all prime numbers (other than 2)
are odd, and because the product of two odd
numbers is also odd, each of the individual
addition parts must also be odd. We know
from basic addition principles that the sum
of an even number of odd numbers will be
even, while the sum of an odd number of
odd numbers must be odd.

Therefore, we conclude that if there are
m factors in n and m is odd, n1 must be an
odd number. In addition, if m is even, n1

must also be even. This is a useful tool for
analysis and checking sums.

Next, we will extend our analysis to in-
clude the prime factor of 2, but also such
that n%4 ‰ 0 We establish the second con-
dition because if there was a factor of 4 in
n, we know that the derivative of n will
be divisible by 4 and repeated derivatives
will tend towards infinity and constantly be
growing.

Using this condition, we understand it is
very similar to our previously established
cases. The only difference is that the parity
is different by 1. Therefore, we know that
if there are m factors in n and m is odd, n1

must be an even number. In addition, if m
is even, n1 must also be odd.

Ultimately, these ideas prove that prime
derivatives are very hard. In order to even
know the parity of a prime derivative, one
must know the factorization of that number.
This makes algorithms for double deriva-
tives almost impossible. There is no in-
tuitive form for factoring the sum of two
numbers, and therefore, there is not a way
of understanding the properties of double
derivatives.

2.9. Calculus Connections

After making so many calculations here, we
realize that the prime derivative is certainly
named appropriately. If we model a number
of prime factors, the prime derivative would
look really similar as if you were conducting
the derivative of an algebraic expression.
Some examples of this was explored earlier,
in what appears to be the equivalence of
the chain rule. That is, if

n “ xm

then
n1 “ m ¨ x1 ¨ xm´1

This is very similar to the chain rule that is
taught in calculus. However, it is difficult to
speak to the significance of this idea, other
than it makes calculations simpler.

3. Extensions

At this point, we have exhausted all of the
”low hanging fruit” that is available in this
problem. We have examined the common ra-
tios and eventual patterns within the prime
derivative system. The next big problem
would be to define the second derivative of
any number. However, this can be a much
trickier problem than our original problem.

For one thing, any double derivative
would require factoring the sum of two or
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more numbers. There are not clearly de-
fined rules for what possible factors can
result from sums of numbers; they are very
unpredictable. If it was easy to do this,
we would be able to very simply conduct
prime factorizations of any number, a prob-
lem which is obviously not easy. Many of
the most difficult GIMPS searches are using
extremely complicated analysis algorithms
to conduct such research, most of which
are choosing to focus on Mersenne primes.
We can analyze a similar class of numbers,
and see the eventual end results of these
”Mersenne Prime Derivatives.

3.1. Mersenne Prime Derivatives

First, let us define any number to be a
Mersenne Number if it is of the form

n “ 2a ´ 1

Unfortunately, upon further analysis of
these series, there are no clear patterns.
Just like geometric, arithmetic, and har-
monic sequences, and even like Fibonacci
and perfect numbers, there are no patterns
for the end behavior of Mersenne Primes.
Instead, they seem to ”randomly” diverge
or converge, with no predictability. Simple
experimentation shows that these numbers
do not come up with a verifiable pattern.

3.2. Strings of Infinite Divergence

One additional question that we can pose
here may not be extremely useful for un-
derstanding the entire system, but is an
interesting computational problem that is
good for visualization. We will examine
how many ”strings” of numbers that can
diverge to infinity, including the maximum
”string” number that we can find. We have
conducted some simple experiments on this,

Figure 4: A graph of the number of con-
secutive numbers that diverge to
infinity. The higher the bar, the
longer the chain.

using the code found in Appendix A. This
generates the graph found in Figure 4.

Through this analysis, we have seen seem-
ingly random scattered chunks of data
throughout the entire spectrum. It does
not seem that these strings markedly de-
crease over time. Instead, it might even
be hypothesized that these strings can pos-
sibly infinite in length, given that we are
operating within the infinitely long list of
integers.

3.3. Rings

After all of this analysis, we begin to realize
that our ”prime derivative” is rather unique.
There does not seem to have many clear
patterns about numbers in general, but we
can see that the product rule holds, that is
for any prime derivation,

Dpabq “ pDaqb` apDbq

We now recognize the existence of algebraic
items called rings. A ring is an algebraic
structure that has a generalized function of
arithmetic and multiplication. Obviously,
the integers fall into this category, in fact,
they belong to a commutative ring. How-
ever, rings can be specialized. For example,
a differentiable ring is any ring that obeys
the sum rule (commutability) as well as the
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product rule listead above. When we ana-
lyze our prime derivative, we realize that
the new function satisfies the product rule.
In fact, it is defined to be satisfying that
rule. However, it fails for the sum rule. For
example,

p5`7q1 “ 121 “ 16, 51`71 “ 1`1 “ 2, 2 ‰ 16

This makes the prime derivative as an odd
algebraic structure, one that cannot be eas-
ily categorized.

4. Conclusions

Through our analysis of this very interesting
number chain problem, we have uncovered
several connections to the derivative func-
tion in algebra as well as prime numbers
in number theory. Therefore, the Prime
Derivative is actually a fascinating man-
ner of connecting two seemingly separate
branches of mathematics in search of some-
thing new. On top of that, there seems to be
something that looks like fixed points and
chaos theory in this system, where we can
trace changes that diverge and converge.

Further investigation of this problem
would go to the next level of computational
analysis. We would like to use better algo-
rithms for generating the graphs found in
Section 2.2 This might be able to provide
better visuals, and allow us to see patterns
that we may have missed in our smaller di-
agrams. In addition, an extension might be
to find the opposite of the prime derivative
- the prime integral? If we applied the op-
posite algorithm to our numbers and attach
a condition for isolating a single prime in-
tegral for each number, what would that
graph look like? The prime derivative cer-
tainly has many extensions that will prove
to be fascinating in the future.

A. Code for Prime Derivative

Attached is the source code that we used
in calculating the prime derivative of any
number. This was done through java and
printed to a text file. Afterwards, the data
was analyzed through Microsoft Excel and
Graphviz for generating graphs.

public class Research {

/**

* @param args

*/

public static void main(String[]

args) {

int largeCount = 10000000;

int count = 1000;

int[] num = new int[largeCount];

int[] der = new int[largeCount];

for(int i = 0; i < largeCount;

i++)

{

num[i] = i+1;

if(num[i] == 1) der[i] = 0;

else if(factor(num[i]) == 1)

der[i] = 1;

else der[i] =

(num[i]/factor(num[i]))

*der[factor(num[i])-1]

+ factor(num[i])*der[

(num[i]/factor(num[i]))-1];

}

System.out.println("num[i]

der[i]");

for(int i = 0; i < count; i++)

{

System.out.print(num[i] + " "

+ der[i]);

//prints sequence

int j = 0;

int temp = der[i];

while(temp-1 >= 0 && j < 20

&& temp < largeCount)

{

System.out.print(" " +

der[temp-1]);
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temp = der[temp-1];

j++;

}

if(temp > largeCount)

System.out.print(" MAX");

System.out.println();

}

}

public static int factor(int n) {

for(int i = 2; i < n-1; i++)

if(n$\%$i == 0) return i;

return 1;

}

}
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