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Abstract
This study presents observations of turbulence dynamics made during the low winds por-
tion of the Coupled Boundary Layers and Air-Sea Transfer experiment (CBLAST-Low).
Observations were made of turbulent fluxes, turbulent kinetic energy, and the length scales
of flux-carrying and energy-containing eddies in the ocean surface boundary layer. A new
technique was developed to separate wave and turbulent motions spectrally, using ideas for
turbulence spectra that were developed in the study of the bottom boundary layer of the
atmosphere.

The observations of turbulent fluxes allowed the closing of heat and momentum bud-
gets across the air-sea interface. The observations also show that flux-carrying eddies are
similar in size to those expected in rigid-boundary turbulence, but that energy-containing
eddies are smaller than those in rigid-boundary turbulence. This suggests that the relation-
ship between turbulent kinetic energy, depth, and turbulent diffusivity are different in the
ocean surface boundary layer than in rigid-boundary turbulence.

The observations confirm previous speculation that surface wave breaking provides a
surface source of turbulent kinetic energy that is transported to depth where it dissipates. A
model that includes the effects of shear production, wave breaking and dissipation is able
to reproduce the enhancement of turbulent kinetic energy near the wavy ocean surface.
However, because of the different length scale relations in the ocean surface boundary
layer, the empirical constants in the energy model are different from the values that are
used to model rigid-boundary turbulence.

The ocean surface boundary layer is observed to have small but finite temperature
gradients that are related to the boundary fluxes of heat and momentum, as assumed by
closure models. However, the turbulent diffusivity of heat in the surface boundary layer is
larger than predicted by rigid-boundary closure models. Including the combined effects of
wave breaking, stress, and buoyancy forcing allows a closure model to predict the turbulent
diffusivity for heat in the ocean surface boundary layer.

Thesis Supervisor: John H. Trowbridge
Title: Senior Scientist, Woods Hole Oceanographic Institution
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Chapter 1

Introduction

Much of the oceans’ physical, biological, and chemical dynamics are governed by the

nature of the coupling between the ocean and the atmosphere. The thickness of the ocean’s

surface boundary layer can vary from less than one meter to more than one thousand me-

ters, and within this boundary layer, turbulence stirs and redistributes physical properties,

such as heat and momentum, biological organisms, and chemicals, including biologically

important nutrients and gases such as carbon dioxide. In coastal regions in particular, the

surface (and bottom) boundary layer can occupy a substantial fraction of the water col-

umn, making boundary layer dynamics of first order importance to the entire fluid system.

Boundary layer turbulent processes occur on scales of centimeters to tens of meters, and it

is often impossible to include the detailed dynamics of small-scale turbulent motions while

examining regional oceanographic processes. Thus, the dynamics and effects of the turbu-

lence must be parameterized in terms of large scale fields and forcing, which requires some

understanding of the turbulence dynamics. This study was undertaken to examine observa-

tionally the dynamics and effects of surface boundary layer turbulence and to examine the

relationships between those dynamics, effects, and forcing conditions.

Turbulence quantities are difficult to measure in the ocean. Surface gravity wave

velocity fluctuations are often have one to two orders of magnitude larger than turbulent

velocity fluctuations, so they represent a large signal that must be separated from the less
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energetic turbulent signal in order to compute turbulent variances, covariances, and dis-

sipation rates. Spectral separation of waves and the inertial range of turbulence makes

observations of dissipation rate relatively straightforward (Lumley and Terray 1983; Anis

and Moum 1995; Terray et al. 1996) and such measurements have become somewhat rou-

tine in the past decade. Estimation of integrated quantities such as fluxes and TKE have

been much more difficult to make. Velocity signals have been separated using precise ob-

servations of sea surface displacement to identify velocities associated with surface waves,

allowing estimation of TKE in the surface boundary layer of a lake (Kitaigorodskii et al.

1983). Similarly, by making assumptions about the spatial coherence of wave motions,

Trowbridge (1998) and Shaw and Trowbridge (2001) developed filters that use velocity in-

formation at sensors separated by a few meters to distinguish wave motion from turbulent

motion. These filters allowed estimation of turbulent fluxes and length scales near the sea

bed (Trowbridge and Elgar 2001, 2003; Shaw et al. 2001). Only one study has attempted

to observed momentum fluxes in the surface boundary layer, and it was not able to separate

waves and turbulence sufficiently to measure momentum fluxes consistent with the wind

stress (Cavaleri and Zecchetto 1987). Observations of heat flux have been made in the

surface boundary layer using Lagrangian floats, which are much less sensitive to surface

waves than are Eulerian measurements (D’Asaro 2004).

Because of the difficulty in observing turbulence in the ocean, most surface boundary

layer theory comes from examination of turbulent flows over rigid boundaries, which have

been studied extensively for the past century in both laboratories and the bottom boundary

layer of the atmosphere (von Karman 1930; Taylor 1938; Grant 1958; Monin and Yaglom

1971). The models that have emerged for rigid-boundary turbulence include a relatively

simple region nearest the boundary called the wall layer. In this wall layer, the important

physical quantities are stress and buoyancy flux from the boundary, which, along with the

observation depth, set the velocity and length scales of turbulent fluctuations (Monin and

Yaglom 1971; Burchard and Bolding 2001). For example, in the simple case of a neutral
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wall layer, eddy viscosity,K, can be defined as (Monin and Yaglom 1971)

K = u∗κ|z|, (1.1)

whereu∗ =
√

τw/ρ0, τw is the wind stress,ρ0 is a reference density,|z| is the distance

from the boundary, andκ is von Karman’s constant. In the presence of boundary buoyancy

forcing the commonly used Monin-Obukhov similarity theory adjusts the relationship (1.1)

in terms of a stability function,φ(|z|/L), that combines the effects of stress and buoyancy

forcing through the quantity|z|/L (Monin and Yaglom 1971):

K =
u∗κ|z|

φ(|z|/L)
. (1.2)

The Monin-Obukhov length is defined asL = u3
∗/(κB), whereB is the buoyancy flux.

In the ocean surface boundary layer, surface gravity waves contribute additional forc-

ing to turbulence dynamics through wave breaking and generation of Langmuir turbulence.

This has been recognized for some time and has been studied observationally, (Kitaigorod-

skii et al. 1983; Anis and Moum 1995; Terray et al. 1996; Plueddemann and Weller 1999;

D’Asaro 2001), in lab studies (Veron and Melville 2001; Melville et al. 2002), and in large

eddy simulations (McWilliams et al. 1997; Li et al. 2005; Sullivan et al. 2007). These

studies have found dissipation rates, vertical velocity variance, and turbulent diffusivity in

the ocean surface boundary layer larger than would be expected for turbulence at a rigid-

boundary. Minor changes to turbulence closure models have been proposed to account for

these observations in ways that are dynamically consistent with wave breaking and Lang-

muir circulation through the addition of energy flux through the sea surface and turbulent

kinetic energy (TKE) production associated with Stoke drift shear (Craig and Banner 1994;

Kantha and Clayson 2004). The chief conceptual result of these studies is that the turbulent

kinetic energy balance in the ocean surface boundary layer is between dissipation, local

production, and transport from the sea surface. This is in contrast to the wall layer of

rigid-boundary turbulence in which dissipation is balanced by local production (Monin and

Yaglom 1971; Tennekes and Lumley 1972).
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Although this conceptual model is reasonably well-developed, much of it is based

on numerical and analytic models, and observations to test and refine it remain sparse.

Several outstanding questions remain. 1) Are the flux of TKE from wave breaking or

the local generation of TKE from Stokes drift shear production important in the ocean

surface boundary layer? 2) If TKE flux or Stokes production are important, does a model

using a production-dissipation-transport balance predict the vertical structure of TKE? 3)

Can direct flux measurements be made to show that turbulent diffusivity in ocean surface

boundary layer is enhanced over what would be expected in rigid boundary turbulence?

4) Can the diffusivity be modeled using the production-dissipation-transport balance for

TKE? 5) What are relative effects of Langmuir circulation and wave breaking on turbulence

dynamics and diffusivity?

To answer these questions several measurements must be made. These are the techni-

cal goals of this study. 1) To measure turbulent fluxes of heat and momentum for computing

turbulent diffusivities and TKE production terms. 2) To verify the accuracy of these mea-

surements with heat and momentum budgets. 3) To measure the turbulent kinetic energy

in the surface boundary layer. 4) To measure the length scales of flux-carrying and energy-

containing eddies. 5) To determine the extent to which classical views of rigid-boundary

turbulence describe turbulence structures, turbulent fluxes, TKE, and mean gradients in

the ocean surface boundary layer. 6) To test relations between surface waves, TKE, and

turbulent diffusivity. These objectives are accomplished by means of simultaneous mea-

surements on both sides of the air-sea interface made during the low winds portion of the

Coupled Boundary Layers and Air-Sea Transfer experiment (CBLAST-Low) during the

fall of 2003.

The thesis is in four chapters. This introduction is the first; the second and third chap-

ters were written to stand alone as independent studies of turbulent fluxes and energetics,

respectively. The content of chapter 2 is in press at the Journal of Physical Oceanography,

and the content of chapter 3 has been submitted to JPO. I apologize for redundancies in

these chapters. Chapter 4 discusses and summarizes the contributions of chapters 2 and 3.
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Chapter 2

Turbulent fluxes

Preface

This chapter is a reproduction of a paper that will soon appear in the Journal of Phys-

ical Oceanography with coauthors John Trowbridge, James Edson, Albert Plueddemann,

Eugene Terray, and Janet Fredericks. See the entry for Gerbi et al. (2008) in the bibliog-

raphy for the complete citation. The right to reuse this work was retained by the authors

when publication rights and nonexclusive copyright were granted to the American Meteo-

rological Society.

1. Introduction

The turbulence dynamics of the upper ocean affect dramatically the way that hori-

zontal momentum and heat are transported from the surface to depth. Indeed, the century-

old results of Ekman (1905) are quite sensitive to the choice and spatial structure of the

turbulent diffusivity of momentum (e. g.Madsen (1977); Lentz (1995)). Any attempt to

parameterize accurately the effects of turbulent mixing on momentum and heat flux must

account for the physical mechanisms responsible for generating turbulence.

In the ocean’s surface boundary layer (mixed layer), the physical mechanisms thought
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to be important in turbulence production include boundary stress, boundary buoyancy flux,

wave breaking, and Langmuir circulation. This study was undertaken in conditions con-

ducive to the formation of turbulence by all of these mechanisms, and we hope that it will

aid in our understanding of mixed layer turbulence dynamics and in our ability to param-

eterize such turbulence in closure models. Boundary stress and boundary buoyancy flux

form the basis for most closure models in use today, which assume that the mixed layer

behaves like a fluid flow past a rigid plate. These common models include Mellor-Yamada

(Mellor and Yamada 1982),k-ε (Hanjalic and Launder 1972; Jones and Launder 1972),k-ω

(Wilcox 1988), and Monin-Obukhov (MO) (Monin and Yaglom 1971), which is adapted

for the ocean as the K-profile parameterization (Large et al. 1994). In recent years, several

studies have adapted these closure models to account for the effects of wave breaking and

Langmuir circulation. However, the dynamics of these processes are not fully understood,

and improving parameterizations of these processes will require increased understanding

of how they affect mixed layer turbulence.

The effects of surface wave breaking on mixed layer turbulence have been examined

observationally by several authors beginning with Agrawal et al. (1992) and Terray et al.

(1996), and in models by Craig and Banner (1994) and Terray et al. (1999). Those authors

suggested that wave breaking could be incorporated into the Mellor-Yamada model by in-

troducing a source of turbulent kinetic energy at the ocean surface and by changing slightly

the model’s length scale equation. Breaking waves may also generate much larger-scale

coherent structures, as observed in the laboratory by Melville et al. (2002). Those authors

found that after a wave had broken, it left behind a coherent vortex reaching depths greater

than 20% of the wavelength. This effect is yet to be observed in the field or considered in

numeric models.

The effects of Langmuir circulation on mixed layer structure have also been studied

observationally, (Plueddemann and Weller 1999), in large eddy simulations (LES) (e.g.

McWilliams et al., 1997; Li et al., 2005), and through laboratory experiments (Veron and

Melville 2001). These studies have suggested that Langmuir circulation enhances effective
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diffusivity and decreases vertical gradients of temperature and velocity in the boundary

layer. LES models have also suggested that Langmuir circulation is quite common in the

ocean (Li et al. 2005), so that its effects must be considered in mixed layer models. An

attempt has been made by Kantha and Clayson (2004) to include Langmuir circulation in

turbulence closure models by adding a Stokes drift production term to the TKE equation.

Direct measurements of turbulent fluxes in the ocean have only recently become re-

liable. In an experiment similar to the one described here, momentum flux in the surface

boundary layer was measured by Cavaleri and Zecchetto (1987) as being 100 times larger

than the wind stress. This mismatch was explained by Santala (1991) to be at least partly

due to surface waves reflecting off the observation platform, leading to significant covari-

ances of wave velocities. More recently, small uncertainties in sensor orientation have

been identified as producing significant contamination of turbulent flux measurements by

surface gravity waves (Trowbridge 1998; Shaw and Trowbridge 2001). Trowbridge (1998)

and Shaw and Trowbridge (2001) also described and implemented two methods of sepa-

rating turbulence information from wave contamination that rely on the assumptions that

turbulent and wave velocities are uncorrelated and that the waves are coherent between

sensors. With these methods, Shaw et al. (2001) and Trowbridge and Elgar (2003) made

measurements of turbulent fluxes and other properties of turbulence close to the sea bed.

The present study has two principal objectives: 1) to close momentum and heat bal-

ances spanning the air-sea interface in the presence of surface waves using cospectral es-

timates of the turbulent fluxes, and 2) to determine the extent to which classical views of

rigid-boundary turbulence describe turbulence structures, turbulent fluxes, and mean gradi-

ents in the ocean surface boundary layer. These objectives are accomplished by means of

simultaneous measurements on both sides of the air-sea interface and interpretation of the

results in light of predictions based on theories from study of the bottom boundary layer

of the atmosphere. The following section describes the measurement and analysis proce-

dures. In section 3 we present the results of our observations. These results are discussed

in section 4, and finally, section 5 offers succinct conclusions of this study.
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2. Methods and analysis

a. Data Collection

The observations reported here were made using instruments deployed in the ocean

and atmosphere at the Martha’s Vineyard Coastal Observatory’s (MVCO’s) Air-Sea Inter-

action Tower, during the Coupled Boundary Layers and Air Sea Transfer low winds exper-

iment (CBLAST-Low) between 2 October, 2003 and 25 October, 2003 (see Edson et al.

(2007), for more details about the atmospheric measurements). The tower is located about

3 km to the south of Martha’s Vineyard in approximately 16 m of water (figure 3.2). The

shoreline and bathymetric contours near the tower are oriented roughly east-west. Currents

are dominated by semi-diurnal tides, which are dominantly shore-parallel, and the mean

wind direction is from the southwest.

Both oceanic and atmospheric instruments were deployed to be exposed to the dom-

inant atmospheric forcing direction, on the southwest side of the tower. Atmospheric mea-

surements were made at several heights between 5 and 22 m above the sea surface, and

oceanic turbulence measurements were made with instruments mounted on a submerged

beam spanning two legs of the tower at depths of 2.2 and 1.7 m (figure 3.3). Atmospheric

measurements include velocity, temperature, humidity, and upwelling and downwelling

short- and long-wave radiation. Both bulk formula (Fairall et al. 2003) and direct covari-

ance estimates of turbulent heat and momentum fluxes were made in the atmosphere, and

they agree well over most wind speeds (Edson et al. 2007). The bulk formula estimates

were used here to avoid data gaps in the direct covariance measurements.

In the water, measurements of turbulent velocities in the ocean were made with six

Sontek 5-MHz Ocean Probe acoustic Doppler velocimeters (ADVs) mounted on the fixed

beam on the tower (figure 3.3). The sample volumes of the ADVs were at three different

depths: 2.2 m, 1.7 m, and 3.2 m below the mean surface. The deepest ADV also contained

a fast-response pressure sensor. The ADVs sampled at a rate of 20 Hz in∼19 minute

bursts, with gaps of∼1 minute between bursts. All sensors were operational for the full
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FIG. 1. Maps showing measurement location of data used in this study (dot south of

Martha’s Vineyard). Contours show isobaths between 10 and 50 m. The inset map shows

the area in the immediate vicinity of the study site.

measurement period except for occasional times when one or more ADVs malfunctioned;

these times were easily identified because they corresponded to velocity measurements of

precisely zero. To minimize the effects of flow distortion through the tower, only those

flows towards compass directions less than 120◦ clockwise from north were analyzed (fig-

ure 3.3). To avoid velocities larger than permitted by the ADV sensitivity, analysis has been

limited to times when the standard deviation of vertical velocity was less than 0.16 m s−1,

corresponding to significant wave heights (Hs) less than∼1.4 m.
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FIG. 2. Photograph, looking north, and schematic drawing of the Air Sea Interaction Tower

at MVCO. The platform is 12 m above the sea surface. In the schematic diagram of the

instrument tower, ellipses represent the tilted tower legs (which join above the sea surface).

Small filled circles with three arms each represent ADVs and thermistors. The large filled

circle represents the mid-depth ADCP. Mean wind and wave directions are shown by bold

arrows, and the range of flow directions (0-120◦) used in this study is shown to the left.

Fast response thermistors (Thermo-metrics BR14KA302G) were located near each

ADV, but only two thermistors returned reliable data (ADV locations marked withu,v,w,T

in figure 3.3). The thermistors were located approximately 15 cm below the sample vol-

umes of the ADVs. Following Kristensen et al. (1997), this separation is expected to cause

measured heat fluxes to deviate from actual heat fluxes by a few percent. The thermis-
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tors measured turbulent temperature fluctuations and were operational between 11 October,

2003, and 25 October, 2003. An upward looking radiometer measured downwelling short-

wave radiation at 4 m depth, but significant biofouling allowed only limited use of these

data in the analysis presented here.

Salinity and temperature were measured at 8 depths (1.4, 2.2, 3.2, 4.9, 6, 7.9, 9.9,

and 11.9 m) using SeaBird Microcats sampling at 1 minute intervals. Velocity profiles

were measured with two upward-looking Nortek Aquadopp Profilers. One was mounted

on the bed and measured velocities in 0.5 m vertical bins. The second was mounted on

the submerged beam at 4 m depth and measured velocities in 0.2 m bins. Twenty minute

average pressure, for estimating tide height, was measured with a Paros pressure sensor at

the MVCO seafloor node, about 1 km onshore of the measurement tower, in 12 m of water.

Because the study focused on the fluxes of momentum and heat in the boundary layer,

we have analyzed flux measurements only when the ADVs were well within the mixed

layer. Mixed layer depth was computed as the minimum depth at which the burst-mean

temperature was more than 0.02◦C less than the burst-mean temperature at the uppermost

microcat (following Lentz, 1992). Results presented in this study are from times when the

mixed layer base was at least 3.2 m below the mean sea surface.

Velocities in each burst were rotated into downwind coordinates using the mean wind

direction for that burst so thatx andy are coordinates in the downwind and crosswind di-

rections, respectively, andz is the vertical coordinate, positive upwards, withz= 0 at the

burst-mean height of the sea surface, determined from pressure measurements. Instan-

taneous values of temperature or velocity in the(x,y,z) directions are denoted byT and

(u,v,w). Conceptually, velocity and temperature observations were decomposed into mean,

wave, and turbulent components, and although a specific definition is not necessary for the

analysis presented here, we define wave induced motions as those that are coherent with

displacements of the free surface (e.g.Thais and Magnaudet, 1996). The decomposition is

u = u+ ũ+u′ (2.1)

T = T + T̃ +T ′,
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with similar equations forv and w. Overbars represent a time mean over the length of

the burst,T̃ and(ũ, ṽ, w̃) denote wave induced perturbations, andT ′ and(u′,v′,w′) denote

turbulent perturbations. By definition, means of wave and turbulent quantities are zero. In

practice, the signals were decomposed in the time domain into mean parts and perturbation

parts. The perturbation parts of the signal were further separated in frequency space into

turbulent motions and wave motions.

The vertical Reynolds stress,τ, and sensible heat flux,Qs, are related to turbulent

velocity and temperature covariances in the following way:

τ
ρ0

= −u′w′, (2.2)

Qs

ρ0Cp
= T ′w′, (2.3)

whereρ0 is a reference density andCp is the specific heat of water.

b. Model prediction of cospectra

The principal analysis of this study involves the comparison of observed cospectra,

Coβw, (given by the real part of the cross-spectra ofβ andw, whereβ is u or T) with a

two-parameter model of the turbulent cospectra based on observations from the surface

boundary layer of the atmosphere. We first describe the model.

Studies in the bottom boundary layers of the atmosphere and ocean (Kaimal et al.

1972; Wyngaard and Coté 1972; Soulsby 1980; Trowbridge and Elgar 2003) have led

to a semi-theoretical prediction of one-dimensional turbulence cospectra as functions of

wavenumber,k, wherek = 2π/λ andλ is a turbulent length scale:

Coβw(k)

β′w′
= A

1/k0

1+
(

k
k0

)7/3
. (2.4)

For one-sided spectra,

A =
7
3π

sin

(

3π
7

)

.
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The “rolloff wavenumber”,k0, characterizes the inverse length scale of the dominant

flux-carrying eddies or, equivalently, the location of the peak of the variance-preserving

cospectrum. Spectra of this form are approximately constant at small wavenumber and roll

off ask−7/3 at high wavenumber (Kaimal et al. 1972; Wyngaard and Coté 1972; Soulsby

1980). The variable parameters in the model, which are defined by the turbulence condi-

tions, are the covariance,β′w′, and the rolloff wavenumberk0.

Previous studies of turbulence over rigid boundaries (Wyngaard and Coté 1972;

Kaimal et al. 1972; Trowbridge and Elgar 2003) have used Monin-Obukhov scaling to

relate the rolloff wavenumbers to fluxes of buoyancy and momentum such that

k0|z| = f (|z|/L),

where|z| is the magnitude of the depth and the Monin-Obukhov length is defined as

L =
ρ0(τ/ρ0)

3/2

κgρ′w′
.

Hereg is the acceleration due to gravity,ρ′ is the density perturbation, andκ is von Kar-

man’s constant, taken to be 0.4.

c. Observed cospectra

WAVE CONTAMINATION

Our array of sensors gives high resolution frequency cospectra that contain both wave

and turbulence contributions. By means of the frozen turbulence hypothesis (Taylor 1938),

the model wavenumber spectrum (2.4) can be transformed into a frequency spectrum for

comparison to our observations. Frequencies (inverse transit times of turbulent eddies) are

related to wavenumbers (inverse length scales of turbulent eddies) by

ω= kUd, (2.5)

whereUd is the steady drift speed (computed as 20-minute means), andω is radian fre-

quency. In this study surface waves occupy the band from roughly 0.07 to 0.6 Hz, and

turbulence spans frequency space below, within, and above this band.
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By definition, the covariance of two signals,β andw, is the integral of the cospec-

trum:

β′w′ =
Z ωmax

0
dωCoβw(ω), (2.6)

whereωmax is the Nyquist frequency. Unlike the theoretical prediction (2.4), the observed

Couw andCoTw have significant contributions in the waveband (figure 2.3). If the cospectra

are integrated over their entire frequency range, the resulting covariances are considerably

scattered, and are typically 1-2 orders of magnitude larger than the values expected from

the surface fluxes (see§3b for discussion of the expected fluxes). This contamination has

been observed in previous studies (Trowbridge and Elgar 2001; Shaw et al. 2001; Cava-

leri and Zecchetto 1987) and is likely caused by a combination of sensor misalignment

(Trowbridge 1998) and reflection of waves off the measurement platform (Santala 1991).

Because wave velocities are typically much larger than those associated with turbulent mo-

tions, even a small phase shift will lead to a significant bias in the estimates of momentum

and heat fluxes. In addition, the standing wave pattern due to the interference between the

incident waves and those reflected from the measurement tower has a non-vanishing covari-

ance between vertical and horizontal wave velocities, and thus contaminates the estimate

of turbulent stress (note that reflected waves do not make a similar contribution to the heat

flux). Following Santala (1991), we estimated the order of magnitude of this effect by com-

puting the wave field reflected from a single vertical cylinder (Mei 1989), and found that

it easily could account for the mismatch between the expected and observed momentum

fluxes.

Besides contaminating the frequency cospectra, energetic surface waves can have

an effect on the frozen turbulence hypothesis as addressed by Lumley and Terray (1983).

Because surface waves produce oscillatory advection, even “frozen” turbulence will not

have the simple relationship between wavenumber and frequency (2.5). Instead, some low-

wavenumber energy will be aliased into the waveband by the unsteady advection. Using

a one-dimensional advective model, we found that unsteady advection is likely to affect

our results significantly only in cases of relatively energetic waves or slow drift (see the
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appendix), so we have limited our observations to instances ofσU/Ud < 2, whereσU is the

root mean square wave velocity. Under this restriction, Taylor’s (1938) formulation based

on the mean flow speed is approximately valid, and we will use (2.5) to relate wavenumber

and frequency spectra for frequencies lying below the waveband.

SEPARATION OF WAVES AND TURBULENCE

Because the wave spectrum overlaps the turbulence close to the rolloff frequency

k0Ud, we would, ideally, separate the waves and turbulence across all of frequency space

and integrate the full turbulence cospectra to estimate the covariances of heat and momen-

tum, as was done by Trowbridge and Elgar (2001) and Shaw et al. (2001). Unfortunately,

the application of filtering schemes similar to theirs did not succeed in separating waves

and turbulence in our surface layer data. Instead, we isolated the low frequency (below-

waveband) components of the turbulent cospectra for use in computing fluxes and flux-

carrying length scales. Before describing the details of that analysis, we comment briefly

on the failure of the spatial filtering approach developed by Trowbridge (1998) and Shaw

and Trowbridge (2001).

Those authors were successful in applying their techniques to estimates of turbulent

fluxes in the bottom boundary layer. However, in the case of surface layer observations,

we found that because of the wave environment and the proximity of our instruments to the

tower, their approach was unsuccessful in separating waves and turbulence. Filtering our

observations reduced the scatter in the estimated covariances relative to unfiltered data, but

the variation was still an order of magnitude greater than the values expected based on the

surface fluxes. This may be due to the fact that the performance of the filter is degraded

when more than one wave direction is present at each frequency. Multi-directional waves

typically occur in surface layer measurements due to the presence of directionally spread

seas, and also occur in these measurements due to the wave reflection from the tower legs.

Not only does wave reflection contaminate the covariance estimates as discussed previ-

ously, it also complicates the separation of waves and turbulence by degrading the filters of
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Trowbridge (1998) and Shaw and Trowbridge (2001).

To separate velocities in the waveband from the below-waveband turbulent motions,

we determined a waveband cutoff,ωc, (see figure 2.3) for each burst. Below this cutoff,

motions are presumed to be dominated by turbulence, whereas above this cutoff motions

are caused by a combination of turbulence and the much more energetic surface waves. To

determine the cutoff frequency we compared vertical velocity spectra derived from velocity

measurements to vertical velocity spectra dervied from pressure measurements using the

assumption of linear surface waves (e.g.Mei, 1989):

S(p)
ww = Spp

k2

ρ2
0ω2

tanh2k(z+h), (2.7)

whereS(p)
ww is the vertical velocity spectrum derived from pressure measurements,Spp is

the pressure spectrum, andh is the water depth. At low frequencies, most of the vertical

velocity fluctuations are related to turbulent motions, soS(p)
ww is expected to be smaller than

Sww, the vertical velocity spectrum derived drectly from velocity measurements. In the

waveband, however the vertical velocity fluctuations are dominated by wave motions, so

S(p)
ww is expected to be approximately equal toSww. The waveband cutoff was chosen as the

frequency at whichS(p)
ww equalled 30% ofSww (see figure 2.3a) such that

S(p)
ww(ωc) = 0.3Sww(ωc).

The cutoff frequency represents the transit time past the sensors of the smallest eddies

resolved in the below-waveband flux estimates. By means of (2.5), the cutoff frequency

gives a cutoff wavenumber,kc, which, in turn, gives the minimum resolved length scale

of the below-waveband turbulence. These minimum resolved length scales are generally

less than twice the measurement depth (figure 2.4). Note that the cutoff wavenumber,kc,

is a property of the wave field, whereas the rolloff wavenumber,k0, is a property of the

turbulence.
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FIG. 3. a): Autospectra of vertical velocity fluctuations for a single burst. The dashed

line is the mean spectrum from the velocity records at four ADVs, and the solid line is

the spectrum from a single pressure sensor and assuming a linear wave transfer function

to determine the velocity spectrum (2.7). The pressure spectrum at frequencies above 2

rad s−1 is dominated by white noise, causing the lack of agreement between the spectra

at high frequency. The frequency band in which the two spectra overlie one another is the

waveband. The thick vertical line is the waveband cutoff,ωc, used for separating below-

waveband (turbulence) motions from waveband motions. b): Variance preserving cospectra

of vertical and horizontal velocity fluctuations. The solid line is an observation from a

single 20 minute burst on 12 October, 2003. The dashed line is from the model (2.4)

transformed by (2.5). The high-energy region of the data cospectrum between 0.4 and

1.5 rad s−1 is the part contaminated by surface waves. The low-frequency ends of the

cospectra are blown up on the right to aid comparison of the model and observations. The

thin vertical line is the rolloff frequency,ω0, for the model spectrum. The model fitting

procedure described in the text was only performed using information from frequencies

lower than the waveband cutoff.
27



λ (m)

6.9   3.5      2.3       1.7       1.4        1.2  1.0

0 2 4 6 8 10 12 14
0

10

20

30

40

50

60

70

80

k
c
|z|

n
u
m

b
e
r 

o
f 
o
c
c
u
rr

e
n
c
e
s

FIG. 4. Histogram of nondimensional cutoff wavenumber,kc|z|, the scale of the small-

est turbulent eddies measured by the below-waveband cospectral method, normalized by

depth. A second x-axis scale gives the equivalent cutoff length scales,λ = 2π/kc, at a

nominal depth of 2.2 m.

d. Cospectral estimates of turbulent fluxes and rolloff wavenumbers

Estimates of covariance explained by turbulent motions,u′w′ andT ′w′, and rolloff

wavenumbers,k0uw andk0Tw were computed by fitting the model cospectrum (2.4) to the
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observed below-waveband cospectra. Our hypothesis in this fitting is that momentum and

heat are transported in the upper ocean by turbulence with scales similar to those predicted

based on studies in the bottom boundary layers of the ocean and atmosphere. If that hy-

pothesis is correct, then the results of this fitting procedure should give reliable estimates of

the turbulent properties,u′w′,T ′w′,k0uw, andk0Tw, which will be tested as described in§3b

and§3e. Although the model was developed for turbulence in the atmospheric boundary

layer, we believe that it is adequate for describing the low-wavenumber cospectra that are

expected from turbulent fluctuations in the mixed layer. The model cospectrum describes

turbulence created at a large length scale,λ0 = 2π/k0, that cascades to smaller scales in an

inertial range with a logarithmic spectral slope of−7/3. The principal difference that we

might expect in the mixed layer is a different spectral slope; because the fitting is done only

for low wavenumbers, the model fitting procedure is relatively insensitive to the value of

that spectral slope.

Because the instrument array had four ADVs at 2.2 m depth, the four velocity cospec-

tra at that depth were averaged together before the fitting was performed. In all other cases

(Couw at 1.7 m, andCoTw at 2.2 and 1.7 m) cospectra from a single ADV or ADV-thermistor

pair were used in the fitting. Sensitivity analyses showed that forkc < 2k0, the fitting proce-

dure does not return reliable estimates of covariance or rolloff wavenumber, so fitting was

limited to times when the waveband cutoff,kc, was at least twice the model prediction of

the rolloff wavenumber,k0. Approximately 15% of the observed spectra that met the crite-

rion of kc being at least twice the predictedk0 could not be fit by the model with physically

reasonable parameters. Criteria of distinguishing poor fits were results that deviated by a

factor of 10 or more from values expected from full water column estimates or standard

boundary layer theory. It is uncertain why these spectra were not well represented by the

model, but they are excluded from further analysis.
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3. Results

a. Quality of parameter estimates

We have applied two tests to ensure that the model cospectrum is an accurate rep-

resentation of the observed below-waveband cospectra. First, we examine the nondimen-

sional cospectra to ensure that they collapse to the form predicted by (2.4). The cospectral

powers were normalized by the covariance estimates,u′w′ or T ′w′, and the wavenumbers

are normalized by the rolloff wavenumber estimates,k0uw andk0Tw. With these normaliza-

tions, the observed cospectra collapse very close to the model prediction (figure 2.5).

Second, we compare the velocity covariance estimates from the model fit,u′w′, to

covariance estimates computed by integrating the below-waveband part of the cospectrum,

u′w′
int , where

u′w′
int =

Z kc

0
dkCouw(k). (2.8)

The model predicts that in the conditions studied here, at least 80% of the turbulent covari-

ance is explained by below-waveband motions. The remaining 20% is explained by mo-

tions with wavenumbers within or above the waveband. Therefore,u′w′ should be nearly

the same as, but slightly larger than,u′w′
int . Comparison of these two covariance esti-

mates (figure 2.6) indicates that the fitting procedure estimates fluxes larger than the direct

integration estimates by about 20%, consistent with expectations.

Both of these tests suggest that the estimates ofu′w′, T ′w′, k0uw, andk0Tw, derived

from the fit of (2.4) to the observations, are accurate measures of the below-waveband parts

of the cospectra.

b. Momentum and heat budgets

The method described above is a new technique for making cospectral estimates of

turbulent covariances in the ocean. It is useful, therefore, to compare the fluxes derived

from these covariance estimates with independent estimates of turbulent heat and momen-

tum fluxes. This comparison is made by closing momentum and heat budgets across the
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FIG. 5. Normalized variance preserving cospectra,kCouw/u′w′ (top) andkCoT ′w′/T ′w′

(bottom) vs normalized wavenumber,k/k0. Dots are bin averages of observations, with

vertical error bars showing two standard errors of the distributions, and horizontal error

bars showing the range ofk/k0 in each bin. The dashed lines show the model prediction

(2.4).

air-sea interface. We show the development of the momentum budget for the Reynolds

averaged momentum equation in the downwind direction. The heat budget follows a sim-

ilar development, and only the resulting budget will be shown. The starting momentum

equation is

∂u
∂t

+u · ∇ u− f v = −
1
ρ0

∂p
∂x

+
1
ρ0

∂τ
∂z

(2.9)
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FIG. 6. Comparison of stress estimates from the two-parameter model fit (y-axis) and

those from the integral of below-waveband cospectra (x-axis). Stresses are shown here,

rather than covariance, to aid comparison with later figures.

wheret is time, ∂u/∂t is the evolution of the 20-minute mean velocity,u is the three di-

mensional velocity vector,f is the coriolis frequency, andp is pressure. Horizontal stress

divergence has been neglected.

Terms in the heat and momentum budgets not measured in this study were the barotropic

and baroclinic pressure gradients, and the advective transports of heat and momentum.

There was an array of moorings around the measurement tower, but their separations from

the tower (1 km to 10 km) are larger than the tidal excursion, and the array is therefore un-
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able to measure the horizontal gradients at sufficient resolution for estimates of these terms.

Instead, we rewrite the momentum budget (2.9) as deviations from its depth-averaged form:

∂
∂t

(u−< u>)+u· ∇ u−< u· ∇ u>− f (v−< v>)=−
1
ρ0

∂
∂x

(p−< p>)+
1
ρ0

∂τ
∂z

−
1

ρ0h
(τw−τb),

(2.10)

where

< u >=
1
h

Z 0

−h
dzu

is the vertically averaged velocity, andτw andτb are wind and bottom stress, respectively.

This still leaves unmeasured the baroclinic pressure gradient and the depth-varying parts of

the advective fields. In the relatively well mixed conditions studied here, those terms are

expected to be small and are neglected in these budgets.

In the momentum budget we also neglect the wave growth term and the Coriolis–

Stokes drift term (discussed by Hasselmann (1970), McWilliams and Restrepo (1999),

Mellor (2003), and Polton et al. (2005)). Estimates of the maximum possible sizes of these

terms showed them to be much smaller than the other terms in the momentum budget.

We are interested in the budget between the measurement depth and the surface, so

we integrate (2.10) from the measurement depth,z, to the surface. Neglecting the depth-

varying parts of the advective term and the pressure gradient we get

ρ0

Z 0

z
dz

∂
∂t

(u− < u >)−ρ0 f
Z 0

z
dz(v− < v >) = τw + τw

z
h
− τb

z
h
− τ(z). (2.11)

The last term on the right hand side is the turbulent momentum flux and is the term that will

be compared to the cospectral stress estimate. Rearranging terms, this equation becomes

τ(z) = τw(1+
z
h
)− τb

z
h
−ρ0

Z 0

z
dz

∂
∂t

(u− < u >)+ρ0 f
Z 0

z
dz(v− < v >). (2.12)

All of the terms on the right hand side of (2.12) were evaluated from observations.

The wind stress was determined from atmospheric observations, the velocity integrals were

approximated using the discrete measurements of the ADCPs, and the bottom stress was

estimated from the velocity of the bottom ADCP bin using a quadratic drag law:

τb = Cdu
√

u2 +v2,
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whereCd = 2.0×10−3 (based on unpublished direct covariance estimates of bottom stress

obtained from a near-bottom array).

The heat budget is developed in an analogous way. By assuming that the heat flux

through the bed is negligible and that the horizontal advective terms are vertically uniform,

one obtains for the sensible heat flux,Qs,

Qs(z) = Q0(1+
z
h
)−Qr(z)+ρ0Cp

Z 0

z
dz

∂
∂t

(T− < T >), (2.13)

whereQ0 is the total surface heat flux (including sensible, latent, and radiative fluxes)

andQr(z) is the radiative heat flux in the ocean past the measurement depth.Qr was com-

puted assuming that the incoming solar radiation followed a double exponential decay pro-

file for Jerlov type III water (Paulson and Simpson 1977; Jerlov 1968). These exponential

estimates of penetrating radiation are nearly identical to the measurements of thein situ

radiometer before it became significantly biofouled.

We have computed momentum and heat budgets for both measurement depths: 1.7 m

and 2.2 m (figure 2.7). As shown by the clustering ofτw(1+ z
h) andQ0(1+ z

h) near the 1:1

lines, the surface flux terms are usually the largest terms in the balances. Other terms be-

come important when surface fluxes are small and during times of downward (stabilizing)

heat flux, when the penetrating radiation term (sunlight passing through the surface layer)

is about half the magnitude ofQ0. All the terms except the time derivative terms are 20

minute average quantities. The time derivatives were subject to significant measurement

noise over time scales less than two hours and were therefore computed as averages over 2

hour periods.

c. Comparison of flux estimates

When we compare the cospectral estimates of turbulent momentum and heat fluxes

with the budget estimates described above, we find that the two estimates are consistent

(figure 2.8). Results are shown for sensors at 2.2 m and 1.7 m depth, for all times when

mixed layers were deeper than 3.2 m. The cospectral estimates of the fluxes are scattered
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FIG. 7. Terms in the independent estimates of momentum and heat fluxes, based on budgets

spanning the water between the sensor depth (nominally 2.2 m and 1.7 m) and the surface.

The x-axes of panels (a) and (b) are the left-hand sides of (2.12) and (2.13), respectively,

and the y-axes show the terms on the right-hand sides. The diagonal lines are 1:1. Positive

heat fluxes denote heat leaving the ocean, and negative heat fluxes denote heat entering the

ocean.

about the expected (budget) values. A large portion of the scatter in individual burst mea-

surements of the fluxes is consistent with the statistical variability of the spectral estimates

due to the finite length of the bursts (e. g. Soulsby, 1980; Bendat and Piersol, 2000).

The agreement of these two methods of measuring momentum and heat fluxes is

35



encouraging and prompts further analysis of the turbulence dynamics.
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FIG. 8. Cospectral estimates of momentum flux (top) and heat flux (bottom) vs independent

estimates from budgets. Dots are individual burst measurements. Data from both 1.7 and

2.2 m are shown here. A preliminary version of this figure appeared in Edson et al. (2007).

d. Rolloff wavenumbers and turbulent length scales

In addition to fluxes, rolloff wavenumbers,k0, were also estimated by fitting the

model cospectrum to the observations of the turbulent cospectra. From these rolloff wavenum-
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bers, length scales of the dominant flux-carrying eddies,λ0, were computed as

λ0 =
2π
k0

. (2.14)

In this study,k0 andλ0 were estimated in the direction of the mean current, which is domi-

nated by tidal forcing. The wind direction, however, is important for turbulence dynamics

because it determines the direction of the surface stress vector. Previous measurements of

turbulent length scales have been made in directions both parallel and perpendicular to the

wind or surface stress vector (Grant 1958; Wyngaard and Coté 1972; Wilczak and Tillman

1980). Grant (1958) found that under neutral conditions, turbulent eddies were coherent

over much longer length scales in the stress-parallel direction than in the cross-stress direc-

tion. In marginally unstable conditions, Wilczak and Tillman (1980) also found convective

plumes to be elongated in the downwind direction, although as the buoyancy forcing in-

creased relative to the stress, they found that the crosswind scales increased relative to the

downwind scales.

Wyngaard and Coté (1972) use theoretical fits to atmospheric observations to esti-

mate the turbulent length scales,λ0, in the downwind direction, whereλ0/|z| is a function

of |z|/L. In their figure 5, they show for momentum:

λ0uw

|z|
= 8.3,

|z|
L

< 0 (2.15)

λ0uw

|z|
= 8.3

(

1+4.9
|z|
L

)−1

, 0≤
|z|
L

< 0.4

and for heat:

λ0Tw

|z|
= 4.4,

|z|
L

< 0 (2.16)

λ0Tw

|z|
= 4.4

(

1+3.8
|z|
L

)−1

, 0≤
|z|
L

< 0.4

These estimates of turbulent length scales from the Kansas experiment have three

important properties: 1) they are constant for|z|/L < 0 (unstable buoyancy forcing), 2)
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they decrease dramatically for|z|/L > 0 (stable buoyancy forcing), and 3) length scales are

smaller forCoTw than forCouw. 1) suggests that during unstable conditions, the only impor-

tant length scale in setting the size of flux carrying eddies is the distance to the boundary.

2) suggests that under stabilizing buoyancy flux a shorter length scale is imposed by the

stratification. Finally, 3) suggests that heat and momentum are transported by slightly dif-

ferent families of eddies, which may suggest that different dynamics govern the turbulent

transports of heat and momentum.

To compare our estimates ofλ0/|z| with the Wygaard and Coté (1972) length scales,

we estimated|z|/L using the Monin-Obukhov scale,L, derived from the local estimates

of momentum and heat flux. The density flux was computed from the heat flux asρ′w′ =

αT ′w′, whereα was estimated from a linear regression of five minute averages of tempera-

ture and density over each 20 minute burst. More than 85% of our observations ofλ0uw and

more than 90% of our observations ofλ0Tw were made during times of moderate buoyancy

forcing, when−1 < |z|/L < 0.4.

We have separated observations ofλ0/|z| for times when the mean current (drift) was

approximately aligned with the wind or across the wind. Drift and wind were considered

aligned when their directions were within 45◦ of being either parallel or anti-parallel. Drift

was considered crosswind when the wind and drift directions were separated by between

45◦ and 135◦. Several features are evident in our estimates ofλ0/|z| (figure 2.9). First,

the downwind length scales are larger than the crosswind scales (compare left panels to

right panels). This is consistent with prior observations and with what is expected from

Langmuir circulation. Second, for momentum, in unstable conditions (|z|/L < 0) the ob-

servedλ0uw/|z| are roughly constant; that is, there is little evidence for change in length

scale with decreasing|z|/L (figure 2.9 a and b). We do not have enough observations to

say conclusively thatλ0Tw/|z| also is constant with|z|/L, but given the few observations

that we have and the other similarities betweenλ0Tw andλ0uw, we expect that it is. Third,

λ0Tw/|z| is generally the same asλ0uw/|z|, in both downwind or crosswind directions (com-

pare top panels to bottom panels). This suggests that much of the turbulent heat transport
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FIG. 9. λ0/|z| vs |z|/L. Dots are bin medians of observations, formed from a constant

number of observations per bin, the dashed lines are the momentum results of Wyngaard

and Cot́e (1972) (this study’s (2.15)), and the dash-dot lines in the lower panels are the

temperature results of Wyngaard and Coté (1972) (this study’s (2.16)). Vertical error bars

show two standard errors of the distribution of observations within each bin, and horizontal

bars show the range of|z|/L in each bin. Left panels, (a) and (c), showλ0/|z| when the

wind was aligned with the drift, and right panels, (b) and (d), showλ0/|z| when the wind

was across the drift. Upper panels, (a) and (b), showλ0uw/|z|, and lower panels, (c) and

(d), showλ0Tw/|z|. At a nominal depth of 2.2 m, the dominant length scales shown in this

figure range between∼10 and 20 m. This size range is consistent with the horizontal scales

attributed to Langmuir circulations based on observations of surface convergence velocities

at the site.
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in the ocean surface boundary layer is accomplished by the same eddies that transport mo-

mentum, which is consistent with the turbulent Prandtl number being approximately 1.

Fourth, in the downwind measurements bothλ0uw andλ0Tw decrease slightly for|z|/L > 0,

consistent with the notion that stratification reduces the turbulent length scale.

e. Comparison of length scale measurements

The turbulent length scales presented above were estimated from cospectra using the

frozen turbulence hypothesis, and they can be compared to measurements made using the

spatial array of sensors. We make this comparison by examining the decay of the cross-

covariance function across the ADV array. The array had four ADVs at 2.2 m depth, from

which six unique sensor spacings can be made. This enables us to estimateE(r), the even

part of the cross-covariance function ofu′ andw′, at six values of sensor separation,r. E(r)

is defined as:

E(r) =
1
2

(

u′(x)w′(x+ r)+u′(x+ r)w′(x)
)

. (2.17)

Position isx, the vector separation between sensors isr , andr = |r |. By definition,E(0) =

u′w′.

A prediction of the even part of the cross-covariance function comes from the Fourier

transform of model cospectrum (2.4) (Trowbridge and Elgar 2003):

E(r)

u′w′
=

A
2

Z +∞

−∞
dξ

cos(2πξr
λ0

)

1+ |ξ|7/3
, (2.18)

whereξ is a dummy variable of integration andA is the same as in (2.4).

Cross-covariance estimates from the spatial array are contaminated by surface waves

in the manner discussed in§2c and§2d, so analogous to (2.8) we computedE(r) by inte-

grating only the below-waveband parts of the spatially lagged cospectra:

u′(x)w′(x+ r) =
Z kc

0
dkCou(x)w(x+r)(k), (2.19)

whereu andw were each measured at different ADVs. This allows examination of the

spatial coherence of motions with wavenumbers smaller than the waveband cutoff,kc (fig-
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ure 2.4). Using only the below-waveband part of the spectrum should not inhibit this anal-

ysis because, as discussed in§2d, these scales capture most of the energy of the cospectra.

In addition, we are examining not the magnitude ofE(r), but the ratioE(r)/E(0), and

the model prediction of that ratio does not change significantly if we use only the below-

waveband portion of the spectrum rather than the complete spectrum.

Like the length scales estimated from cospectra, the observations from the spatial

array show that the turbulence is coherent over much larger distances in the downwind

direction than in the crosswind direction. Measurements ofE(r) vs E(0) from the spa-

tial array show that in the downwind direction the turbulence decays over spatial scales

similar to, but slightly larger than, those predicted by (2.18) using the length scales from

the cospectral estimates (figure 2.10). In the crosswind direction,E(r)/E(0) decays more

quickly in measurements from the spatial array than is predicted from (2.18) (figure 2.11).

The predictions ofE(r)/E(0), shown as dashed lines, were based on the medianλ0 for a

depth bin between 2.3 and 2.9 meters during unstable conditions (|z|/L < 0), whenλ0/|z|

is roughly constant. The integral in (2.18) was evaluated numerically using values ofλ0

determined by the cospectral fitting procedure. Using a least squares fit of the observed

E(r)/E(0) to the model covariance function (2.18), we were able to determine average

values forλ0/|z| from the measurement array during unstable periods. In the downwind

direction, the estimate from the spatial array isλ0/|z| = 11.5, similar to, but slightly larger

than, the Wyngaard and Coté prediction (figure 2.9 and (2.15)). In the crosswind direction

(using only the three shortest sensor separations in the average),λ0/|z| = 5.

4. Discussion

We have estimated turbulent fluxes of momentum and heat and the length scales of

the dominant flux carrying eddies. The downwind length scales are in agreement with at-

mospheric observations (Wyngaard and Coté 1972), and the difference between downwind

and crosswind scales is consistent with classical laboratory measurements of turbulence
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FIG. 10. −ρ0E(r) vs −ρ0E(0) in the downwind direction for the six ADV separations

in this study. The results shown here are limited to depths of−2.9 m < z < −2.3 m.

Dots are bin medians of observations, formed from a constant number of observations per

bin. Vertical error bars show two standard errors of the distribution of observations within

each bin, and horizontal bars show the range ofE(0) in each bin. The black line is 1:1. The

dashed line is the expected relationship from (2.18), using the median value of the observed

downwindλ0.

driven by boundary stress (Grant 1958). Taken alone, these measurements do not address

the question of whether mixed layer turbulence is affected by the presence of surface waves

through Langmuir circulation and wave breaking. However, measurements of the fluxes
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FIG. 11. −ρ0E(r) vs −ρ0E(0) in the crosswind direction for the six ADV separations

in this study. These point are limited to depths of−2.9 m < z < −2.3 m. Symbols are

the same as in figure 2.10, and the dashed lines were made using the median value of the

observed crosswindλ0.

and mean temperature gradients can be used to test a simple turbulence closure model that

does not include these surface wave effects. A more detailed analysis of the range of exist-

ing closure models is beyond the scope of this paper and is reserved for future research.

We test the ability of the Monin-Obukhov closure model (MO) to predict the mean

temperature gradient, and we use the same set of equations to estimate the stability function

for heat,φh. We compare our estimates to theφh given by Large et al. (1994) in their
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equation B1. This comparison is made for boundary layer thicknesses greater than 6 m

so that our observations are usually in the upper third of the boundary layer. Given their

complexity and uncertainty, we do not include either the shape function or the nonlocal

term of Large et al. (1994).

As in other turbulence closure models, MO theory predicts

∂T
∂z

= −
T ′w′

Kh
. (2.20)

Kh is a turbulent diffusivity that in MO theory is defined as

Kh =
u∗κ|z|

φh
(2.21)

whereu∗ =
√

τ/ρ0. The null hypothesis in this comparison is that Langmuir circulation and

wave breaking have no effect on mixed layer structure, and that the temperature gradient

predictions of (2.20) will agree with the obeserved gradients. If the surface wave process

do play a role in homogenizing the mixed layer, we expect that the temperature gradients

from (2.20) will be larger than the measured values.

The observations and model were compared by computing a temperature difference,

∆T, between 1.4 m and 3.2 m, which are the depths of the temperature sensors above

and below the ADV/thermistor array. For the model prediction, the depth,z in (2.20) was

taken as 2.3 m. The comparison shows that the temperature gradient in the mixed layer is

about half as large as the gradient predicted by MO over most of the range of expected∆T

(figure 2.12). At large predicted∆T, however, the modest number of observations are more

substantially smaller than the MO predictions. These observations show that the ocean

mixed layer is much more effectively mixed than is predicted by standard boundary layer

theories.

The stability function was estimated as

φh =
∆T
∆z

u∗κ|z|
T ′w′

, (2.22)

using the same sensor separation as above. In stable, near-neutral, and weakly unstable

conditions (−0.3< |z|/L) the estimates ofφh from our observations are usually smaller than
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FIG. 12. Observed and predicted temperature difference between microcats at 1.4 and 3.2

m depth. Negative values of∆T are statically unstable, and positive values are statically

stable. Predictions were made using Monin-Obukhov length scales derived from the budget

estimates of heat and momentum fluxes. Solid line is 1:1. Dashed line is best fit to data

over the domain shown by the horizontal extent of the line.

the values given by Large et al. (1994), which is consistent with the observed temperature

gradient being smaller than predicted (figure 2.13). In more strongly unstable conditions

(|z|/L < −0.3) the observedφh are similar to those given by Large et al (1994).

The enhanced mixing in the mixed layer is likely a consequence of turbulence gen-

eration by wave breaking and Langmuir circulation, which are included neither in MO nor

in classic forms of most closure models. The enhanced mixing is consistent with expecta-
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study.

tions from previous studies of those processes. Langmuir circulation has been predicted by

LES models to produce much gentler temperature gradients than rigid boundary processes

alone (McWilliams et al. 1997; Li et al. 2005), and our observations were also made in a

depth range predicted by Terray et al. (1996) to have enhanced turbulent dissipation rates

associated with wave breaking. Either, or both, of these processes could be responsible for

the small observed temperature gradients.
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5. Conclusions

Cospectra ofuw andTw were measured for fluctuations in the ocean surface bound-

ary layer. A two parameter model cospectrum developed for the bottom boundary layer of

the atmosphere fits the below-waveband portion of the observed spectra, suggesting simi-

lar spectral shapes for both atmospheric boundary layer and ocean surface boundary layer

turbulence.

By fitting this model cospectrum to observed cospectra, a new method was developed

to estimate turbulent fluxes of heat and momentum. These cospectral turbulent fluxes were

used to close momentum and heat budgets across the air-sea interface. To our knowledge,

these are the first direct measurements of turbulent fluxes in the mixed layer to do this

successfully.

Length scales of the dominant flux carrying eddies were also estimated from the

fits of the model spectrum. Consistent with laboratory and atmospheric measurements,

the downwind length scales were larger than the crosswind length scales, and the down-

wind scales were smaller under stabilizing buoyancy forcing than under unstable buoyancy

forcing. The cospectral estimates of length scale were consistent with estimates made by

examining the decay of the cross-covariance function along the array of ADVs.

The flux estimates were used to compare measured temperature gradients with tem-

perature gradients computed using Monin-Obukhov similarity theory, and to compare ob-

servations ofφh with those predicted by Large et al (1994). The observed temperature

gradients and stability functions were smaller than the predictions. This homogenization

of the mixed layer is likely to be caused by the presence of turbulence generated by mech-

anisms not accounted for in MO theory: Langmuir circulation and wave breaking.
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APPENDIX A

Effects of unsteady advection

In the steadily advected frozen turbulence hypothesis (Taylor 1938), the frequency

response to turbulent motions at a fixed location is determined by the size of the turbulent

eddies and the rate at which they move past the sensor. In the presence of surface waves,

however, turbulent eddies move in much more complicated patterns as they are carried

by the wave orbits, and the simple relationship (2.5) no longer holds. Lumley and Ter-

ray (1983) discussed the consequences of this unsteady advection for the case of isotropic

turbulence, and Trowbridge and Elgar (2001) extended and compared their predictions to

observations in the bottom boundary layer. The qualitative effect of the unsteady advec-

tion on frequency spectra is to shift energy from where it would have been expected in

steadily advected spectra. In particular, some energy that would have appeared at frequen-

cies lower thanthe waveband, if advection were steady, is foundin the waveband in the

case of unsteady advection.

We have developed a model to test the effects of unsteady advection on the frequency

domain representation of turbulence whose spatial structure is described by (2.4). In this

simplified model, wave and drift motion are restricted to a single horizontal direction,x.

This restricted form of wave advection was chosen largely because of the lack of a model

of the three-dimension spatial structure of the turbulence. It is expected that the qualitative

effects of fully three-dimensional motions will be similar.

Combining equations 2.2, 2.6, and 2.17 of Lumley and Terray (1983) and (2.4) one

can predict the frequency domain cospectrum,Koβw(ω), expected in the presence of this
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1-D unsteady advection:

Koβw(ω)

β′w′
=

1
2π

Z +∞

−∞
dT

Z +∞

−∞
dk

Coβw(k)

2
eiT (kUd−ω)ek2[c(T )−c(0)], (A1)

The temporal autocorrelation function of the wave displacements,c(T ), can be estimated

from observed horizontal velocity spectra as:

c(T ) =
1
2π

Z +ωmax

−ωmax

dωeiωT Suu(ω)+Svv(ω)

ω2 , (A2)

whereSuu andSvv are two-sided autospectra of the horizontal velocities. To examine the

effects of increasingly large waves, we computed the transformation for several values of

σU/Ud, whereσU is the standard deviation of wave velocities andUd is the steady drift

speed. The results of (A1) are shown in figure 2.14.

Compared to the frequency cospectrum in the case of steadily advected frozen tur-

bulence, the frequency cospectrum of unsteadily advected frozen turbulence has somewhat

less energy below the waveband and correspondingly more energy in the wave band (fig-

ure 2.14). The magnitude of the distortion is a function ofσU/Ud and the proximity of

the cutoff wavenumber to the rolloff wavenumber,kc/k0. The location of the peak of the

variance preserving spectrum, approximatelyω0, is decreased by this change in energy dis-

tribution. At larger relative wave energies (largerσU/Ud), and in spectra when the rolloff

is closer to the cutoff (smallerkc/k0), errors in estimating the covariance and the rolloff

frequency are larger (figure 2.15). To investigate the magnitude of the estimation error we

fit the spectra described by (A1) (figure 2.14) in the same way as described in§2d. Fig-

ure 2.15 compares the resulting estimates of covariance andω0 to the values expected in

the case of steady advection.

For σU/Ud ≤ 2 andkc/k0 > 2, this 1-D model suggests that the estimates of rolloff

frequency and covariance should be within 15% of the values expected by assuming frozen

turbulence advected with a constant velocity,Ud. We therefore limit our observations to

times whenσU/Ud ≤ 2 and use the steadily advected form of frozen turbulence (2.5) to

transform our frequency observations into wavenumber observations.
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is shown by the vertical line at≈0.38 s−1. As the wave energy increases, the effects of

the unsteady advection shift more energy from below-waveband frequencies to waveband

frequencies and decrease the apparent rolloff frequency.

APPENDIX B

Effects of waves reflecting off a vertical cylinder

Surface gravity waves reflecting off the measurement platform can lead to nonzero

values of the cospectrum of ˜u andw̃ in the wave band. The covariances associated with
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FIG. 15. Ratios of covariance and rolloff frequency estimated under unsteady advection

to those expected under steady advection. Relative to the estimates under steady advec-

tion, the quality of the estimates ofβ′w′ and ω0 under unsteady advection decreases in

the presence of increased relative wave energy (largerσU/Ud) and higher relative rolloff

wavenumber (smallerkc/k0).

these standing wave motions are likely balanced by pressure gradients associated with

slopes in the mean sea surface. The Air-Sea Interaction Tower has three legs, each with

1 m diameters, that are tilted from vertical. To assess whether wave reflections could be

responsible for a significant fraction of the observed covariances, the cospectra that would

be expected for unidirectional, broadband, waves reflecting off a single, vertical cylinder
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were computed.

The velocity potential for the incident wave is

φI = ℜ
[

−iω
k

cosh(k(z+h))

sinhkh
Ake

ikxe−iωt
]

,

whereAk is the spectral amplitude of the wave at each wavenumber,k. Following Mei

(1989) and Dean and Dalrymple (1984) This potential can be rewritten in polar coordinates

as

φI = ℜ

[

−iω
k

cosh(k(z+h))

sinhkh
Ake

−iωt
∞

∑
m=0

εmimJm(kr)cos(mθ)

]

.

The location,x has been replaced by its polar representation,r cosθ, the coordinates are

chosen so that waves propagate towardsθ = 0, εm = 1 for m= 0 andεm = 2 for all other

values ofm, andJm is the Bessel function of the first kind, of orderm. The potential

associated with the reflected component is (Mei 1989; Dean and Dalrymple 1984)

φR = ℜ

[

−iω
k

cosh(k(z+h))

sinhkh
Ake

−iωt
∞

∑
m=0

εmim(−Hm(kr))
J′m(kd)

H ′
m(kd)

cos(mθ)

]

,

whereHm = Jm+ iYm is the Hankel function of the first kind andYm is the Bessel function

of the second kind, the primes represent differentiation with respect to the argument, andd

is the cylinder diameter. The full velocity potential is the sum of the incident and reflected

potentials:

φ= ℜ

[

−iω
k

cosh(k(z+h))

sinhkh
Ake

−iωt
∞

∑
m=0

εmimcos(mθ)

[

Jm−Hm(kr)
J′m(kd)

H ′
m(kd)

]

]

.

By taking the spatial gradient of the velocity potential, one can compute the Fourier

transforms of the wave velocities:

ûr = Ak(−iω)
cosh(k(z+h))

sinhkh

∞

∑
m=0

εmimcos(mθ)

[

J′m−H ′
m(kr)

J′m(kd)

H ′
m(kd)

]

ûθ = Ak
iω
kr

cosh(k(z+h))

sinhkh

∞

∑
m=0

εmimsin(mθ)

[

Jm−Hm(kr)
J′m(kd)

H ′
m(kd)

]

ŵ = Ak(−iω)
sinh(k(z+h))

sinhkh

∞

∑
m=0

εmimcos(mθ)

[

Jm−Hm(kr)
J′m(kd)

H ′
m(kd)

]

,
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whereûr is the transform of the radial velocity and ˆuθ is the transform of the azimuthal

velocity. From these transforms, one can compute the cospectra of horizontal and ver-

tical velocities. To examine the expected cospectra from waves reflecting off a single,

vertical cylinder, an observed vertical velocity spectrum was used to compute a sea sur-

face displacement spectrum, which was used to form velocity spectra for unidirectional

waves. Because the reflected wave field varies in distance and angle around the cylinder,

the cospectra vary with location. Simulations were carried out for a range of positions rel-

ative to the tower leg, and presented here are the results of two simulations that represent

positions similar to those of some of the sensors relative to the tower legs in CBLAST.

Because linear waves were used in this simulation, the cospectra of incident waves are

identically zero. The cospectra of the reflected horizontal velocities with the reflected ver-

tical velocities are nonzero, but are smaller than the mixed cospectra of reflected velocities

with incident velocities (figure 2.16).

The covariances associated with the reflected wave motions simulated for relection

off a single vertical tower leg are of similar magnitude to the observed covariances asso-

ciated with turbulent motions. The simulated covariances are smaller than the observed

covariances explained by wave band motions by an order of magnitude or less, but a more

thorough simulation using the full geometry of the Air-Sea Interaction Tower would be

expected to capture a larger fraction of the observed covariance explained by wave band

motions. The results presented here show that in the presence of such a large measure-

ment tower, the waves reflected off the tower can contribute significant covariance to the

observations and must be separated from turbulent motions in order to measure fluxes.
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FIG. 16. Waves in the simulations are incident fromθ = 0, and spectra are shown for

two positions:(r,θ) = (5m,π) (solid lines), and(r,θ) = (4m,1.24) (dashed lines). (a) Au-

tospectra of incident waves and reflected waves at each position (solid and dashed lines).

(b) Observed cospectrum of downwind horizontal and vertical velocities at ADV 1. This

has been included for comparison to the following four sets of cospectra. (c) Cospectra of

incident horizontal velocity and reflected vertical velocity. As in (a), the solid and dashed

lines are for spectra at two different positions relative to the cylinder. (d) Cospectra of

reflected horizontal velocity and incident vertical velocity. (e) Cospectra of reflected hori-

zontal velocity and reflected vertical velocity. (f) Cospectra of all components of horizontal

and vertical velocities. 54



Chapter 3

Turbulent kinetic energy

Preface

This chapter is a reproduction of a paper that has been submitted for publication in

the Journal of Physical Oceanography with coauthors John Trowbridge, Eugene Terray,

Albert Plueddemann, and Tobias Kukulka. The right to reuse this work was retained by the

authors when publication rights and nonexclusive copyright were granted to the American

Meteorological Society.

1. Introduction

Turbulence in the ocean surface boundary layer results both from shear and convec-

tive instabilities similar to those found near rigid boundaries and from instabilities related

to surface gravity waves, wave breaking and Langmuir turbulence. While rigid-boundary

turbulence has been extensively studied for nearly a century, turbulence driven by surface

waves has been addressed in detail only in the past two decades. In particular, the relation-

ships of turbulent fluxes and energies to wave breaking and Langmuir turbulence continue

to be uncertain. Observations (Santala 1991; Plueddemann and Weller 1999; Terray et al.

1999b; Gerbi et al. 2008), lab experiments (Veron and Melville 2001) and large eddy sim-
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ulations (LES) (Skylingstad and Denbo 1995; McWilliams et al. 1997; Noh et al. 2004; Li

et al. 2005; Sullivan et al. 2007) have found that vertical mixing is more efficient in wave-

driven turbulence than in rigid-boundary turbulence alone. That is, given the same fluxes of

momentum and buoyancy at the boundary, vertical gradients in the surface boundary layer

are smaller, and turbulent viscosities and diffusivities are larger, than would be expected in

a similarly forced flow beneath a rigid boundary. However, the relationship between the

diffusivities and the forcing has not been established.

The energetics of turbulence provide important diagnostic and predictive tools and

form the basis for most common turbulence closure models (Jones and Launder 1972; Mel-

lor and Yamada 1982; Wilcox 1988). Because of the difficulty of measuring turbulent fluxes

and kinetic energy in a wavy environment, observations of the energetics of ocean surface

boundary layer turbulence have generally been confined to dissipation rates of turbulent ki-

netic energy (TKE) and the vertical velocity variance. Most studies have found dissipation

rates of TKE that were enhanced over those expected beneath rigid boundaries (Agrawal

et al. 1992; Anis and Moum 1995; Terray et al. 1996; Drennan et al. 1996; Greenan et al.

2001; Soloviev and Lukas 2003; Gemmrich and Farmer 2004; Stips et al. 2005). These

studies have successfully related the enhanced dissipation rates to fluxes of energy from

the wave field, and have suggested that in the depth range where wave-breaking induced

turbulence is dominant, the vertical integral of TKE dissipation rate is equal to the amount

of energy that the waves have lost to breaking. Turbulence closure models have dealt with

the increased dissipation by assuming that breaking waves inject TKE at the sea surface and

that that TKE is dissipated as it is transported downwards by turbulence and pressure work

(Craig and Banner 1994; Craig 1996; Terray et al. 1999b; Burchard 2001; Umlauf et al.

2003; Kantha and Clayson 2004). These models, in turn, predict that in the presence of

breaking waves, the magnitude of TKE increases substantially within several wave heights

of the surface relative to purely rigid-boundary turbulence. This prediction of enhanced

TKE is consistent with the observations of D’Asaro (2001) and Tseng and D’Asaro (2004)

who made measurements of the vertical component of TKE with Lagrangian floats and
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found it to be enhanced relative to expectations from rigid boundary scaling.

A simple conceptual model has emerged from previous studies of dissipation rates

in the ocean surface boundary layer (figure 3.1). Nearest the surface, in what we refer to

as the wave breaking layer, is the part of the boundary layer in which waves break and

form turbulence. Below that, in what Stips et al. (2005) called the wave-affected surface

layer (WASL), the boundary layer is affected by turbulence that is transported downward

from the surface, but wave breaking does not inject turbulence directly. The WASL scaling

relations developed by Terray et al. (1996) assume that the dissipation profile in the wave

breaking layer is vertically uniform, an assumption that has been shown by Gemmrich

and Farmer (2004) to break down very near the sea surface. In the WASL, near its upper

boundary, the TKE balance is thought to be between dissipation and transport; at deeper

depths, the relative importance of transport of TKE from the surface diminishes and the

TKE dynamics approach a production-dissipation balance, similar to that expected in rigid-

boundary turbulence.

The present study of turbulence energetics was undertaken as a companion to a study

of turbulent fluxes in the surface boundary layer (Gerbi et al. 2008) and was designed to

address the following outstanding questions: closure of the TKE budget, understanding the

relationship between TKE and dissipation, and determining the role of wave breaking in

setting the turbulent diffusivity in the boundary layer. In the process, an analytical model

of the vertical structure of TKE (Craig 1996; Burchard 2001) is tested. In the following,

section 2 describes the observations, and section 3 shows the results of those observations.

Section 4 analyzes the results in comparison to other observations and numerical studies,

and section 5 offers conclusions. An appendix describes our method of estimating dissipa-

tion rate of TKE using Eulerian measurements of turbulence in the presence of unsteady

advection due to surface gravity waves.
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FIG. 1. Schematic description of boundary layer structure, including wave breaking layer,

above trough level, and wave-affected surface layer, which is thought to approach rigid-

boundary scaling at sufficient depths. The cartoon of normalized dissipation profiles shows

a constant region in the wave breaking layer, dissipation dominated by transport of TKE

at the top of the wave-affected surface layer, and a transition to rigid-boundary scaling

at deeper depths. Here,z is the vertical coordinate,Hs is significant wave height,ε is

dissipation rate,τw is the wind stress, andF0 is the wind energy input to the waves.
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2. Methods

a. Data Collection

The observations reported here were made using instruments deployed in the ocean

and atmosphere at the Martha’s Vineyard Coastal Observatory’s (MVCO’s) Air-Sea In-

teraction Tower, during the Coupled Boundary Layers and Air Sea Transfer low winds

experiment (CBLAST-Low) in the fall of 2003. The tower is located about 3 km south of

Martha’s Vineyard in approximately 16 m of water (figure 3.2). Currents are dominated by

semi-diurnal tides and are dominantly shore-parallel (east-west), and the mean wind direc-

tion is from the southwest. Velocity measurements were made by six Sontek 5-MHz Ocean

Probe acoustic Doppler velocimeters (ADVs) deployed at 1.7, 2.2, and 3.2 m below the

mean sea surface (figure 3.3). The 3.2 m sensor also contained a pressure sensor and was

only used compute wave statistics, not turbulence statistics. High frequency temperature

measurements were made with fast-response thermistors located within the ADV sample

volumes, and mean temperature and density were measured with Seabird MicroCATs at

1.4, 2.2, 3.2, 4.9, 6, 7.9, 9.9, and 11.9 m depth. The measurements were described in detail

by Gerbi et al. (2008).

Velocities in each 20-minute burst were rotated into drift coordinates using the mean

drift direction for that burst. In this system,x andy are coordinates in the downdrift and

crossdrift directions, respectively, andz is the vertical coordinate, positive upwards, with

z = 0 at the burst-mean height of the sea surface, which was determined from pressure

measurements. Instantaneous values of velocity in the(x,y,z) directions are denoted by

(u,v,w). Conceptually, velocity observations were decomposed into mean, wave, and tur-

bulent components as

u = u+ ũ+u′, (3.1)

where the bold type denotes a vector quantity,u = (u,v,w). Overbars represent a time mean

over the length of the burst,(ũ, ṽ, w̃) denote wave induced perturbations, and(u′,v′,w′) de-

note turbulent perturbations. By definition, means of wave and turbulent quantities are
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FIG. 2. Maps showing the location of the Martha’s Vineyard Coastal Observtory (MVCO).

Contours show isobaths between 10 and 50 m. The inset map shows the area in the imme-

diate vicinity of the study site. This figure is reprinted from Gerbi et al. (2008).

zero. Conceptually, the turbulent velocity component includes all unsteady motions not

correlated with surface wave motions, including, potentially, Langmuir turbulence and the

coherent vortices that have been observed to persist after waves have broken in lab experi-

ments (Melville et al. 2002). In practice, the signals were decomposed in the time domain

into mean parts and perturbation parts. The perturbation parts of the signal were further

separated in frequency space into turbulent motions and wave motions.
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FIG. 3. Photograph, looking north, and schematic plan-view drawing of the Air Sea In-

teraction Tower at MVCO. In the photograph, the platform is 12 m above the sea surface.

In the schematic diagram of the instrument tower, ellipses represent the tilted tower legs

(which join at the platform). Small filled circles with three arms each represent ADVs and

thermistors. The large filled circle represents the mid-depth ADCP. Mean wind and wave

directions are shown by bold arrows, and the range of flow directions (0-120◦) used in this

study is shown to the left. This figure is reprinted from Gerbi et al. (2008).

Because of measurement sensitivity, estimates of dissipation rate and TKE were lim-

ited to a subset of environmental conditions. We used several criteria to choose acceptable

data to include in the analysis. As stated by Gerbi et al. (2008), the instruments were
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mounted on the west side of the Air-Sea Interaction Tower, so to eliminate distortion from

flow through the tower, we analyzed data only for flows from the west. Because this study

focuses on boundary layer processes, we analyzed data only when the bottom of the surface

boundary layer (defined as the depth at which the temperature difference from the shallow-

est MicroCAT exceeded 0.02◦C (Lentz 1992)) was at least 3.2 m below mean sea level.

The ADVs have finite sensitivity and as a criterion for eliminating large wave orbital veloc-

ities we only took bursts for which the vertical velocity variance was less than 0.025m2s−2.

The oscillating motions due to surface waves caused the wakes of the ADVs to be advected

into the sample volumes of the instruments at times when the mean current was not strong

enough to sweep the wakes from the ADVs before the waves carried them back to the sen-

sor volume. Therefore, bursts were rejected when the wakes were likely to be advected

back into the sensor volume for even a small fraction of the time. In practice, for estimates

of dissipation rate and TKE we requiredUd/σUd > 3, whereUd is the drift speed andσUd

is the velocity variance in the drift direction. This restriction left times when the signifi-

cant height of the wind waves was less than 1 m (figure 3.8). Finally there are times when

white noise dominates the measurements at frequencies above the wave band. Noise levels

were estimated with dissipation rates using (3.5) as explained in section 2b. Bursts were

only used in the analysis if the noise contributed less than half of the energy to the verti-

cal velocity spectrum at the frequency 2π rad s−1, which is the minimum above-waveband

frequency used in computing dissipation rate and TKE.

The measurement period lasted about 34 days, with about 2500 bursts. The restriction

on flow direction eliminated about 60% of those bursts. Of the remaining bursts, about

35% were eliminated by the vertical velocity variance threshold, and an additional 20%

were eliminated by the boundary layer thickness criterion. Finally, theUd/σUd threshold

and the noise limit eliminated about 90% of the remaining observations. Thus, the energy

and dissipation estimates shown in this study account for about 6% of the times when the

mean flow was in a direction favorable to making turbulence measurements, and the bulk

of that restriction was due to wave velocities being large enough that turbulent wakes from
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the ADVs were advected through the measurement volumes.

b. Terms in the TKE budget

We estimated or placed bounds on most of the terms in a horizontally homogeneous

turbulent kinetic energy budget:

∂q2

∂t
=

~τ
ρ0

·

[

∂u
∂z

+
∂us

∂z

]

+
g
ρ0

ρ′w′− ε−
∂
∂z

[

p′w′

ρ0
+

1
2

u′ ·u′w′

]

. (3.2)

The burst-mean turbulent kinetic energy isq2 = 1
2(u′2+v′2+w′2), t is time,~τ =−ρ0(u′w′,v′w′,0)

is the Reynolds shear stress vector,ρ0 is a reference density,ρ′ is the density perturbation,

us = (us,vs,0) is the vector Stokes drift of the surface gravity waves,g is acceleration due

to gravity,ε is the dissipation rate of TKE, andp is pressure. This TKE equation assumes

horizontal homogeneity, no mean vertical flow, and that waves and turbulence are inco-

herent. In the wave-affected surface layer this is likely to be a good assumption, in part

because the turnover times of eddies, which scale withq/z (Tennekes and Lumley 1972),

are much longer than a wave period.

In this TKE balance, the left-hand side is the rate of change of TKE. The first term

on the right side is the production of turbulent kinetic energy by extraction of energy from

the mean shear and the wave field via Stokes drift shear. The second term is production or

dampening of TKE by buoyancy forcing. The last term on the right gives the transport of

TKE by pressure work and turbulent motions. We were able to estimate∂q2/∂t, (~τ/ρ0) ·

(∂us/∂z), (g/ρ0)ρ′w′, ε, and place an upper bound on(~τ/ρ0) · (∂u/∂z). For transport of

TKE by turbulence, we were able to separate wave motions from turbulent motions for

computation of triple-correlation terms only at frequencies below the wave band. The

pressure work is notoriously difficult to estimate with conventional instrumentation, and

we did not attempt to compute this term. Methods for computing the other terms in the

TKE budget are described below.

The rate of change of turbulent kinetic energy was estimated from one-sided finite

differences between 20-minute bursts when we had successive estimates ofq2. A detailed
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discussion of how we computed TKE is found in section 2c.

The shear production terms were estimated using local stresses computed from cospec-

tra as described by Gerbi et al. (2008). We estimated Stokes drift shear from directional

wave spectra (described in section 2e). Stokes drift shear in each direction is

∂us

∂z
=

Z 2π

0
dθ cosθ

Z ωmax

0
dωDηηωkF′

s (3.3)

∂vs

∂z
=

Z 2π

0
dθ sinθ

Z ωmax

0
dωDηηωkF′

s,

where

F ′
s =

2ksinh(2k(z+h))

sinh2(kh)
,

h is the water depth,ω is the radian frequency,k is the radian wavenumber,θ is direction,

and Dηη(ω,θ) is the directional wave spectrum of sea surface displacement. We were

unable to estimate the mean shear production term because we did not have sufficiently

precise estimates of shear. Previous work (Gerbi et al. 2008) suggests that the shear in the

surface boundary layer is smaller than that predicted by Monin-Obukhov similarity theory,

so we use Monin-Obukhov theory to estimate an upper bound on the shear in the wind

direction and assume that cross-wind shears are negligible. Multiplying the mean shear

upper bound by momentum flux gives an upper bound on the production of TKE by mean

shear instabilities, and multiplying Stokes drift shear by momentum flux gives an estimate

of local production by Stokes shear instabilities.

Buoyancy production was estimated from temperature flux measurements using a

burst-mean correlation between temperature and density fluctuations so that density flux is

estimated as

ρ′w′ = αTT ′w′. (3.4)

Here,T is temperature, andαT = ∂ρ/∂T was estimated from the linear regression of 1-

minute averages ofρ andT. Using a constant value,αT = −0.3 kgm−3 ◦C−1 changes the

results by only a small amount and does not affect the conclusions. There were a limited

number of times when estimates of bothε andT ′w′ could be made from spectra, so for this
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TKE budget, estimates ofT ′w′ were determined from a heat budget as described by Gerbi

et al. (2008).

To estimate the dissipation rate of turbulent kinetic energy we used inertial range

scaling (Tennekes and Lumley 1972), and included the effects of unsteady advection on the

spectra. Feddersen et al. (2007) have extended the kinematic model of Lumley and Terray

(1983) for estimating dissipation rates at frequencies above the wave band. We followed

their methods but used a slightly different numerical scheme to perform the calculation.

For clarity, indicial notation is used here. The standard deviations of the wave velocities

areσ1,σ2, andσ3; the 3-direction is vertical, and the 1- and 2-directions are in the principal

horizontal axes of the wave motions. In the inertial range, at frequencies sufficiently far

above the wave band, the frequency spectrum,S33(ω), and dissipation rate,ε, are related

as (similar to Feddersen et al. (2007))

S33(ω) = J33αε2/3ω−5/3 +n, (3.5)

whereω is the radian frequency,α is the Kolmogorov constant, taken here to be 1.5, and

n is noise, taken to be constant. In steadily advected turbulence with no wave effects, for

two-sided spectra

J33 =
12
55

1

U2/3
d

, (3.6)

returning the well-known relation for vertical velocity spectra (Kolmogorov 1941a,b; Batch-

elor 1982), whereUd is the steady drift speed. In turbulence advected by unsteady wave

motions, The magnitude of the inertial range is a function of the standard deviations of the

wave velocity and the drift velocity:

J33 = J33(σ1,σ2,σ3,u1,u2), (3.7)

Details for calculatingJ33 are in the appendix. Dissipation rates were estimated by finding

the least squares fit of (3.5) toS33 between frequencies ofω = 2π rad s−1 andω = 10π

rad s−1, which are above the waveband but below the range usually dominated by noise.

The spectra of horizontal velocities were too contaminated by noise at high frequencies to

allow estimation of dissipation rates fromS11 andS22.
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The last term in the TKE balance,q2w′, transport of TKE by turbulence, was only

estimated for the part of the flux explained by low wavenumber motions. To separate wave

motions from turbulent motions we first identified the low frequency limit of the waveband

by determining when pressure measurements, using linear wave theory, explained at least

30% of the energy in the vertical velocity spectrum (Gerbi et al. 2008). We used a low pass

Butterworth filter with a passband frequency of 2/3 times this waveband cutoff frequency

and a stopband frequency of 4/3 times the waveband cutoff frequency. Using these cutoff

frequencies, we were limited to structures with spatial scales roughly 2-3 m and larger.

We were unable to include higher frequency information in these flux estimates because of

contamination due to surface gravity waves. When the transport,q2w′, was computed using

the full spectrum of motions, including the wave band, it was usually of opposite sign, and

was often of similar magnitude, to the wind energy input,F0.

c. Turbulent Kinetic Energy Estimates

Estimating TKE in the presence of surface waves is difficult, and we employed a

spectral approach to separate turbulent motions from wave motions. In brief, we ignored

velocity fluctuations in the waveband and accounted for unsteady advection effects below

and above the waveband to estimate the frequency spectrum that would have been observed

under steady advection. We transformed this spectrum to wavenumber space by assuming

the turbulence field was frozen, and used a model turbulence spectrum to interpolate be-

tween the high and low frequency portions of the observed spectrum (figure 3.4). Finally,

fitting this model to the spectrum allowed us to estimate the variance explained by turbulent

velocity fluctuations. The reader not interested in the details of this calculation can proceed

to sectiond.

As was discussed regarding dissipation rates, the high frequency part of the turbu-

lence spectrum is elevated by unsteady advection due to surface waves. We usedJ33 from

(3.7) and (A13) to estimate and remove the effects of the wave advection from the inertial

ranges. At these frequencies (2π - 10π rad s−1) the vertical velocity frequency spectrum
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observed during unsteady advection was adjusted to a “steady” form according to

S(steady)
ww =

S(unsteady)
ww

J33

(

12
55

1

U2/3
d

)

. (3.8)

This transformation lowered the height of the observed above waveband spectra by 5-10%.
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The above-waveband portions ofSuu andSvv were more problematic because they

were dominated by measurement noise and inertial ranges (withS ∝ ω −5/3) could not be

identified. To account for this, we constructed artificial tails for the high frequencies of

the horizontal velocity spectra. These tails were constructed using the dissipation estimates

from Sww, such that in the inertial range the following isotropic relationships hold (e. g.

Tennekes and Lumley (1972)):

Suu =
9
55

α

U2/3
d

ε2/3ω−5/3 (3.9)

Svv =
12
55

α

U2/3
d

ε2/3ω−5/3 (3.10)

whereu is in the down-drift direction andv is in the cross-drift direction. Previous obser-

vations of dissipation rate in the wavy surface layer (Terray et al. 1996) have shown that

the relationship betweenSuu andSww is robust.

In addition to elevating the high frequency part of the spectra, unsteady advection

also affects the the turbulence spectra at frequencies immediately below the waveband by

drawing them down relative to what is expected in steady advection. At sufficiently low

frequencies, however, the unsteady effect is minimal (Lumley and Terray 1983) and the

spectrum observed in unsteady motion approaches the steady form. To avoid as much of the

unsteady effect as possible below the waveband, we included in our analysis only motions

with periods greater than about 3.5 minutes, using only the five lowest frequencies in the

below-waveband part of our fits. Following Lumley and Terray (1983) (their equations 4.9

- 4.10) we used a two-dimensional model of unsteady advection, which indicates that at

these long periods, unsteady advection has minimal impact on the frequency spectrum of

the turbulence.

After the waveband and some of the below-waveband portions of the spectra were

removed, the remaining frequency spectra consist of the observed spectra at frequencies

0.005 - 0.03 rad s−1 and the adjusted (or constructed) spectra at frequencies 2π - 10π rad

s−1. For comparison to the model spectrum, we transformed the frequency spectra into
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wavenumber spectra using Taylor’s hypothesis (Taylor 1938):

k =
ω
Ud

. (3.11)

The model that was fit to the observed spectra is similar to that used by Gerbi et al.

(2008) to estimate turbulent covariances. The one-dimensional wavenumber spectrum of

turbulence is described by a simple model similar to turbulence spectra observed in the

laboratory (Hannoun et al. 1988) and in the atmosphere (Kaimal et al. 1972) and one that

can be obtained by integrating the von Karman spectrum in two dimensions (Fung et al.

1992):

Pγγ(k) = σ2
γA

1/k0γ

1+(k/k0γ)5/3
. (3.12)

For two-sided spectra,

A =
5
6π

sin

(

3π
5

)

,

the subscriptγ is u, v, or w, andk0γ is the spectral rolloff wavenumber for theγ-component

of velocity. Making a two-parameter least-squares fit of this model spectrum to observa-

tions allows estimation ofσ2
γ andk0γ, which describe the variance and the spatial scale of

the energy containing eddies, respectively. To give all parts of the model fit equal weight,

the fitting was performed in log-log space (figure 3.4). As was the study of turbulent fluxes

(Gerbi et al. 2008), about 17% of the spectra that we attempted to fit with the model could

not be fit with a geophysically reasonable range of parameters. These spectra are excluded

from analysis.

This method of estimating TKE is tested in two ways. First, to determine whether the

below-waveband parts of the spectrum have a strong adverse effect on the best-fit model,

dissipation rates obtained from the full model fit are compared to those obtained from

fitting only the above-waveband parts of the spectra. Second, to determine whether these

energy estimates are consistent with previous energy estimates using different methods, the

estimates of vertical velocity variance are compared to estimates made by D’Asaro (2001)

and Tseng and D’Asaro (2004). By taking the high wavenumber limit of (3.12), equating it

to (3.9), and assuming frozen turbulence, The variance and rolloff wavenumber estimates
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can be combined to give an estimate of the dissipation rate

ε = k0u

(

55
9

σ2
uA
α

)3/2

, (3.13)

with similar equations forv andw. The dissipation estimates from the full model fit are in

good agreement with the estimates from the inertial range, biased low by an average of only

10% (figure 3.5). The spectral estimates of vertical velocity variance are consistent with

those made by D’Asaro (2001) and Tseng and D’Asaro (2004) using autonomous floats

(figure 3.6). These two comparisons suggest that our spectral fitting method gives reliable

estimates of the turbulent kinetic energy in the surface boundary layer.

d. Langmuir turbulence detection

The strength of Langmuir turbulence, as reflected by the root mean square (RMS)

amplitude of surface velocity convergence, was estimated using a special purpose acoustic

Doppler current profiler (ADCP). This “fanbeam” ADCP (Plueddemann et al. 2001) was

mounted on the seafloor about 50 m offshore of the Air-Sea Interaction Tower (figure 3.3).

The instrument uses conventional ADCP electronics, but has a modified transducer head

that creates four narrow-azimuth beams (3 deg) spaced 30 deg apart in the horizontal plane.

These beams are broad in elevation (24 deg), intersect the sea surface at a shallow angle,

and have an intensity-weighted return that is dominated by scattering in the upper 1-3 m

when bubbles injected by breaking waves are sufficiently strong (Crawford and Farmer

1987; Smith 1992). Standard range gating produces successive sampling cells along the

sea surface with dimensions of about 2.5 m (along-beam) by 5 m (cross-beam). The along-

beam aperture of the measurements varies with wind and wave conditions (Plueddemann

et al. 2001). For this study, a conservative, fixed aperture of 90 m was used. The ADCP

ping rate was 1 Hz, with 56-ping ensembles recorded every minute.

Each beam was processed separately to produce a velocity anomaly for 20 min time

intervals and resolved spatial scales (5-90 m along beam). A temporal high-pass filter

with a half-power point at 40 min was applied first. This removed the tidal variability that

70



10
−6

10
−5

10
−6

10
−5

ε from fit to inertial range of spectrum (m2s−3)

ε 
fr

om
 m

od
el

 fi
t t

o 
fu

ll 
sp

ec
tr

um
 (

m
2 s−

3 )
ε

w

ε
u

ε
v

FIG. 5. Comparison of estimates of dissipation rate as a test of internal consistency of two-

parameter fits of the model spectrum to observed spectra. Vertical axis: estimates derived

from fitting model to the full spectrum (3.13); horizontal axis: estimates derived using only

the inertial range of the spectrum (3.5). Line is 1:1.

dominated the raw velocities. The high-passed velocities were then de-trended in time and

range within contiguous 20 min processing windows, after which wavenumber spectra were

computed for each time step. The mean spectrum for the 20 min window was integrated

over spatial scales from 40 m to 5 m, giving a velocity variance. The square root of this

quantity, denotedVrms, was recorded for each beam.
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FIG. 6. Comparison of vertical distribution of vertical velocity variances measured in this

study and those measured by autonomous floats by D’Asaro (2001) and Tseng and D’Asaro

(2004).

WhenVrms was above the estimated noise level of 1.2 cm s−1, the velocity anomaly

often showed coherent structures (subparallel lines of convergence and divergence on a

time-range plot and a broadly peaked wavenumber specrtrum) characteristic of Langmuir

turbulence being advected past the sensor (Smith 1992; Plueddemann et al. 1996, 2001).

A detailed investigation of Langmuir turbulence is beyond the scope of this paper. Instead,

Vrms was used as an indicator of whether Langmuir turbulence was present during time
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periods when terms in the TKE budget could be estimated. A threshold ofVrms > 1.8

cm s−1 was found to be a robust indicator of coherent structures in the fanbeam ADCP

data, and in the results that follow is used as the threshold for declaring that Langmuir

turbulence was clearly detectable in the surface velocity field. Smaller scale or weaker

Langmuir turbulence could have been present at times when thisVrms threshold was not

exceeded.

e. Directional wave spectra and wind sea

To estimate Stokes drift, wind energy input to the wave field, and the characteristics

of the wind sea, we used directional wave spectra derived from observations made with a

1200 kHz RDI Workhorse ADCP located at the 12 m isobath, about 1 km shoreward of

the Air Sea Interaction Tower. The directional spectra were computed from contiguous 20

min segments of 2-Hz ADCP data using the RDI WavesMon software package. WavesMon

uses a maximum liklihood estimator and linear wave theory to estimate the directional wave

spectrum from individual beam velocities (Terray et al. 1999a; Strong et al. 2000; Krogstad

et al. 1988). Comparison of ADCP-derived frequency spectra to those of a laser altimeter

mounted on the tower (Churchill et al. 2006) showed that the ADCP was influenced by

noise at high frequencies. A cutoff of 2.5 rad s−1 was applied for the spectra used in this

study.

The study region is influenced both by locally generated wind waves and by remotely

generated swell. Wind wave development at the site depends on wind direction due to the

proximity to Martha’s Vineyard, while the regional geography limits the swell to be pred-

iminantly from the south. During periods of weak wind forcing, the surface wave spectrum

is often dominated by swell. In order to isolate the locally generated wind sea from swell

components, the method of Hanson and Phillips (2001) was applied by Churchill et al.

(2006) using the APL-Waves software package. Spectral partitioning included the isola-

tion of all peaks above a pre-defined threshold, identification of the wind-sea peak using

the observed wind speed and direction, and the coalescence of adjacent swell peaks when
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FIG. 7. Directional wave spectrum from a 20-minute burst on 8 October, 2003, showing

distinct peaks due to swell and wind waves. The line at 54 degrees from north shows the

wind direction. In this burst, as is common during the study, the swell propagates towards

the north-northwest and the wind waves propagate towards the northeast.

certain criteria were met (Hanson and Phillips 2001). The output of the analysis includes

the height, period and direction of the wind sea and one or more swell systems, as well as
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traditional measures of significant wave height and spectral peak period. During times of

weak wind forcing, or when the expected wind sea peak was at frequencies greater than

2.5 rad s−1, no wind sea was identified. Unless otherwise noted, all subsequent analyses

use wind sea significant heightHs and wind sea wave agecp/u∗a, wherecp is the phase

speed of the peak of the wind wave spectrum,u∗a =
√

τw/ρa is the friction velocity in the

air, τw is the wind stress, andρa is the density of the air. Times when no wind sea could be

identified are excluded from analysis at times when wave height is required.

f. Wind energy input

For turbulence generated by the wave breaking, the amount of energy transferred

from the wave field to the turbulence has been suggested to play a role in setting dissipation

rates, total TKE, and TKE flux (Terray et al. 1996; Drennan et al. 1996; Craig and Banner

1994; Craig 1996; Burchard 2001). Following Terray et al. (1996), we assume most of

the energy transferred from the wind to the waves is rapidly transferred from the waves

to the water column, and that the wave field grows slowly compared to the energy input

from the wind. Thus, estimating the energy input from the wind to the waves is a proxy

for estimating the energy input from the waves to the turbulence. To estimate the wind

energy input, previous studies have used the directional wave spectrum and a growth rate

formulation (Plant 1982; Donelan and Pierson 1987; Donelan 1999; Donelan et al. 2006).

Unfortunately, this wave growth estimate is sensitive to frequencies above the 2.5 rad s−1

resolution of our directional spectra, so we are unable to make accurate estimates of the

wind energy input by integrating the spectra.

Instead we follow a simpler approach. Craig and Banner (1994) and Terray et al.

(1996) have related energy input to wave age via

F0 = −u3
∗Gt , (3.14)

whereu∗ =
√

τw/ρ0 is the water-side friction velocity andGt is an empirical function of the

wave age. Values forGt are not well constrained. For all but extremely young seas (when
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waves have just begun growing towards equilibrium with the wind), Terray et al. (1996)

found values between about 90 and 250. Other observational studies have found an even

wider range of values, including Jones and Monismith (2008) (Gt = 60) and Feddersen

et al. (2007) (Gt = 250). Because our observations are in a wave-age range in which Terray

et al. (1996) foundGt to be roughly constant, we use a single value for all our observations.

We find thatGt = 168 gives the best fit of observations to the dissipation rate scaling of

Terray et al. (1996).

3. Results

a. Conditions of observation

The standard deviation of the tidal displacement of the sea surface was 0.35 m, so

measurement depths were between about 1.35 and 2.55 m. Wind speeds during the study

period were between 1 and 11 ms−1, with a mean of about 6.7 ms−1. The wind waves in

our study were relatively mature, with agescp/u∗a between 18 and 44 (figure 3.8). Previ-

ous studies (McWilliams et al. 1997; Li et al. 2005) have shown that Langmuir turbulence

usualy occurs at turbulent Langmuir numbers,Lat =
√

u∗/us0 < 0.7, whereus0 is the down-

wind component of the Stokes drift at the surface andu∗ =
√

τw/ρ0. The computation of

Lat is sensitive to the maximum frequency resolved by the directional wave spectra, and

the observed spectra at frequencies below 2.5 rad s−1 leads to values ofLat that are usually

between 0.5 and 1.5, with few values less than 0.7. However, it is likely that wind wave en-

ergy extends to higher frequencies than 2.5 rad s−1 and that the true values ofLat are more

often near or below 0.7. As will be seen later, given the weak forcing in which we could

measure TKE, few of our observations were made at times when Langmuir turbulence was

detected.

The Monin-Obukhov paramter,|z|/L, was used to characterize the influence of buoy-
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ancy forcing during the study. The quantity|z|/L is defined as

|z|
L

=
gρ′w′κz

ρ0(τ/ρ0)3/2
, (3.15)

where|z| is the absolute value of the distance from the sea surface, and the Monin-Obukhov

length isL = ρ0(τ/ρ0)
3/2/(κgρ′w′). Positive values ofL denote stable buoyancy forcing

and negative values denote unstable buoyancy forcing. Surface values of buoyancy flux

and stress were used to computeL, and buoyancy flux was calculated from heat fluxes

measured in the atmosphere, including sensible, latent, upwelling and downwelling long

wave radiation, and incident and reflected short wave radiation. Most of our observations

were made during times of weak buoyancy forcing, with|z/L| < 1. Stratification was also

used to characterize the influence of buoyancy. Nearly all of the measurements were made

in weak stratification, with density differences between MicroCATs at 1.4 and 3.2 m depth

less than 0.01 kg m−3 for 90% of the observations. The remaining 10% were made when

density differences were less than 0.03 kg m−3 (see Thomson and Fine (2003)).

b. Dissipation

Observations of the dissipation rate of TKE show enhancement over those expected

in turbulence near a rigid boundary. With significant wave heights less than 1 m and mea-

surement depths between 1.35 and 2.55 m, according to the scaling of Terray et al. (1996),

our measurements were confined to the wave-affected surface layer (figure 3.1) and did not

reach into the breaking layer abovez= zb = 0.6Hs. As found by previous researchers ex-

amining this part of the water column (Agrawal et al. 1992; Anis and Moum 1995; Terray

et al. 1996; Drennan et al. 1996; Greenan et al. 2001; Soloviev and Lukas 2003; Stips et al.

2005; Feddersen et al. 2007; Jones and Monismith 2008), the observed dissipation rate of

turbulent kinetic energy is larger than what would be expected for rigid boundary turbu-

lence (figure 3.9). The dissipation rates follow the scaling of Terray et al. (1996), which

assumes that turbulent kinetic energy is extracted from the surface waves via breaking and

dissipates as it is transported downwards (Thompson and Turner 1975; Craig and Banner
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FIG. 8. Environmental conditions during times of dissipation and TKE observations.

(a)Significant height of the wind waves. (b) Wind speed at 10 m height. (c) Age of wind

waves. (d) Monin-Obukhov parameter at lower (2.2 m) ADV computed from surface fluxes.

Four points with values between -6 and 10 have been omitted from the histogram of|z|/L.

1994). The scaling in the WASL is

ε = 0.3
−F0Hs

z2 = 0.3
Gtu3

∗Hs

z2 . (3.16)
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In the context of the TKE equation, (3.2), this scaling ignores the growth and production

terms and balances dissipation with the divergence of the flux of TKE.

In the complex seas in this study, the significant wave height could be that associated

with the full spectrum (dominated by swell) or that computed from the energy in the wave

field driven by the local wind (wind waves). The choice of significant wave height in

(3.16) affects the agreement of the observations with the scaling (figure 3.9). For the data

to collapse to the scaling, the significant wave height of the wind waves must be used,

rather than that of the full spectrum. It has also been suggested that the wavelength of

the dominant wind wave can be used as a depth scale (Drennan et al. 1996). Because the

wavelength and significant height of the wind waves are correlated, our results are also

consistent with this suggestion.

c. TKE balance

Although the enhanced dissipation rate has been observed many times in the surface

boundary layer, the association of enhanced dissipation with flux of TKE from a nonlo-

cal source has remained an attractive, but, to our knowledge, untested, suggestion. By

estimating (or bounding, in the case of shear production) terms in the TKE equation, we

find that local production of TKE is not sufficient to balance the observed dissipation rates

(figure 3.10). The buoyancy production and Stokes shear production terms both are consis-

tently small compared to dissipation. We were unable to measure the storage term for all

bursts because we did not always have sequential estimates of TKE, but when measurable,

the storage term is also small compared to dissipation. Only the upper bound on shear pro-

duction occasionally approaches the magnitude of the dissipation rate at some times of low

dissipation rates, suggesting that a local balance could hold. For most of the observations,

the dissipation rate greatly exceeds even that upper bound on shear production.

Equation (3.16) can be integrated vertically to give a prediction of TKE flux past

each depth. By assuming a balance between dissipation and transport of TKE, ignoring

contributions from local production, and assuming that the TKE diminishes to zero at depth,
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Depth is normalized by (a) the significant wave height associated with the wind waves

and (b) the significant wave height computed from the full spectrum (usually dominated

by swell). The thick lines are the expected dissipation rates using neutral rigid-boundary

scaling, the thin lines show the scaling of Terray et al. (1996), and the dashed lines show the

model prediction of Burchard (2001) and Craig (1996), withco
µ = 0.2 (explained in section

4a). The symbols indicate different stability regimes, charcterized by the Monin-Obukhov

parameter,|z|/L: |z/L|< 0.2 is near-neutral,|z|/L > 0.2 is slightly stable, and|z|/L <−0.2

is slightly unstable. 80



0 1 2 3 4 5

x 10
−6

−1

0

1

2

3

4

5
x 10

−6

dissipation rate (m2 s−3)

P
ro

du
ct

io
n 

an
d 

st
or

ag
e 

te
rm

s 
(m

2  s
−

3 )

<u’w’>∂u/∂z
<u’w’>∂u

s
/∂z

<ρ’w’>g/ρ
0

∂q2/∂t
Langmuir present

FIG. 10. Estimates or upper bounds (on shear production only) on production, growth, and

dissipation terms in the turbulent kinetic energy budget. The dissipation term is usually

larger than the sum of the other terms, suggesting that the terms not included here–the

transport terms–are important in the TKE balance. Boxes show times when Langmuir

turbulence was detected.

one gets
Z z

−∞
dz′ ε =

Z z

−∞
dz′

∂F
∂z′

= F(z) =
−0.3F0Hs

z
. (3.17)

Our estimates of the TKE transport explained by low frequency motions are much smaller
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than (3.17), suggesting that pressure work is important or that most of the TKE transport

involves either above-wave band motions alone or above-wave band motions interacting

with below-wave band motions.

d. Scaling of TKE and dissipation rate

The relationship between dissipation rate, energy, and a turbulent length scale is a

cornerstone of turbulence closure models (e. g.Tennekes and Lumley (1972)) and can be

written

ε = co
µ

(3/4) q3

ℓ
, (3.18)

whereℓ is a turbulent length scale andco
µ is an empirical parameter. The notation used here

comes from Burchard (2001) and is commonly used in thek-ε turbulence closure model.

More recent papers (Umlauf et al. 2003; Umlauf and Burchard 2003), use a different nota-

tion, but these symbols are chosen for ease of comparison to Burchard (2001). In neutral

conditions in rigid-boundary turbulence, the length scale is proportional to the depth:

ℓ = κ|z|, (3.19)

whereκ is von Karman’s constant. The length scale,ℓ can be related to the rolloff wavenum-

bers of the autospectra of turbulent velocity fluctuations through (3.12) and (3.13) and is

related to the sizes of the eddies that contain the largest fraction of the TKE. The con-

stants in (3.18) and (3.19) are well-constrained for flows at rigid-boundary, withco
µ = 0.09

(Burchard 2001) andκ = 0.4, but these expressions have not been evaluated in the surface

boundary layer. We find that in the surface boundary layerℓ scales approximately with

depth, but thatℓ/(co
µ

(3/4)) is a smaller multiple of|z| than in rigid-boundary turbulence

(figure 3.11). That is, the observed ratioκ/(co
µ

(3/4)), which represents a turbulent length

scale, is smaller than the standard value of 0.4/0.093/4. In the context of (3.13), this means

that the length scale of the energy containing eddies,λ0 = 2π/k0 is smaller in the ocean

surface boundary layer than would be expected based on knowledge of rigid-boundary tur-

bulence.
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4. Discussion

a. Vertical structure of TKE

Section 3c showed that the dissipation rate of TKE is not balanced by local produc-

tion or growth, so that it must be balanced by the divergence of the flux of TKE. Here we

test an analytic model developed by Craig (1996) and Burchard (2001) that predicts the ver-

tical structure of TKE by solving the TKE equation and assuming a balance of dissipation,

shear production and transport of TKE, which is parameterized with a vertical turbulent

diffusivity. This solution has been shown to be consistent with numerical solutions using

the full k-ε model (Burchard 2001). Unlike Burchard (2001), but following Craig (1996),

we retain the distinction betweencµ andco
µ in the solution. The relationship between eddy

viscosity, TKE, and dissipation definescµ through the relationship

Km = cµ
q4

ε
. (3.20)

Defining eddy diffusivity of TKE as

Kq =
cµ

σk

q4

ε
, (3.21)

whereσk is the Schmidt number for TKE, Craig (1996) and Burchard (2001) find

q3

u3
∗

=
1

c3/4
µ

+Gb

(

3σk

2cµ

)1/2(

|z|
z0

)−m

, (3.22)

where

m=

√

3
2

co
µ

(3/4)σ1/2
k

κc1/2
µ

. (3.23)

Here,Gbu3
∗ is the energy flux into the model domain via breaking waves andz0 is a rough-

ness length that we take equal to 0.6Hs, consistent with Terray et al. (1996) and Soloviev

and Lukas (2003). Burchard used a similar value ofz0 = 0.5Hs. The first term on the right-

hand-side of (3.22) is the shear production term, and the second term is that associated with

wave breaking.
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Two comments should be made regarding the upper boundary in this model. As

discussed by Terray et al. (1996) and Gemmrich and Farmer (2004), very near the sea

surface, turbulent kinetic energy is injected directly by breaking waves, so the dissipation-

transport-production balance is only likely to hold at depths that are below the wave troughs

(the wave-affected surface layer). Therefore, the model solved by (3.22) is not valid above

trough level. Accordingly, Burchard (2001) defined the origin of his model domain as being

one roughness length below the mean sea surface. We continue to define the origin of our

domain as the mean sea surface, a transformation that has been accounted for in (3.22).

Assuming that dissipation is constant in the wave breaking layer the scaling of Terray et al.

(1996) suggests that the upper boundary of the WASL is atz= zb = −0.6Hs, and that one

half of the wind energy input is dissipated in the wave breaking layer, and the other half

is exported to the WASL. The total turbulent kinetic energy injected via wave breaking is

F0 = −Gtu3
∗. If only half of this TKE reaches the WASL, the upper boundary condition

leading to (3.22) must beF(z= zb) = F0/2 = −Gbu3
∗, whereGb = Gt/2. The ratioGb/Gt

is uncertain and is sensitive to the dissipation structure of the wave breaking layer.

Equation (3.22) withcµ = co
µ andσk = 1, as suggested by Burchard, does a reason-

able job of reproducing the observations, particularly in reproducing the increase in energy

at depths shallower than five times the significant wave height. However, the details of the

agreement are sensitive to the choice of model constants (figure 3.12). The standard values

of cµ, c0
µ, andκ are defined from relationships between stress, stratification, shear, depth,

TKE, and dissipation rate in rigid-boundary turbulence, and the different set of turbulent

processes acting in the ocean surface boundary layer requires the use of different values for

the model constants that are not well constrained (Umlauf et al. 2003; Umlauf and Burchard

2003). Jones and Monismith (2008) showed that usingκ = 0.25 gave good agreement be-

tween modeled and observed dissipation rate. In this presentation, we have variedcµ, co
µ,

andκ, but variation ofσk or of cµ independantly ofco
µ will also affect the agreement. As

suggested for other constants in closure models (Burchard 2001), the best values forcµ, co
µ,

κ, andσk may be functions of the relative importance of local TKE production and flux
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divergence in the TKE balance. Combining (3.16), (3.18), (3.19), and (3.22) and ignoring

the shear production term in (3.22), one finds that the scaling of Terray et al. (1996) corre-

sponds tom= 1 (Craig 1996). In contrast, the parameters used in figure 3.12 give values

of m between 1.7 and 3. Even though the model slope used in (3.22) is different from the

scaling value in (3.16), the predicted energy and dissipation profiles have some influence

of the shear production term at depths as shallow as twice the significant wave height, so

the logarithmic slope,m, is approached only for very shallow observations, of which we

have few. In fact, our observations of dissipation rates are in the transition region of the

model, where both production and transport of TKE seem to be important. Even given

its curved shape at the depths of observations, the model solution fits observed dissipation

estimates almost as well as the scaling of Terray et al. (1996) (figure 3.9), suggesting that

these increased values ofm are consistent with observations of dissipation rate.

For TKE and dissipation rate, the presence of stabilizing (|z|/L > 0.2) or destabilizing

(|z|/L < 0.2) buoyancy forcing did not lead to substantial changes in the results. Observa-

tions that might have been expected to be affected by buoyancy forcing are distributed with

those that have minimal buoyancy forcing (figures 3.9, 3.11, and 3.12).

b. Effect of wave breaking on turbulent diffusivity

Gerbi et al. (2008) showed thatKh is greater in the ocean surface boundary layer than

would be expected using Monin-Obukhov theory (MO), which predicts turbulent diffusivity

using buoyancy and momentum fluxes through a rigid boundary. Here we examine whether

the inclusion of wave breaking effects can account for the discrepancy. The sensible heat

flux, Qs, and the associated diffusivity,Kh, are defined by

Qs = ρ0CpT ′w′ = −Kh
∂T
∂z

, (3.24)

whereCp is the specific heat of water. Monin-Obukhov theory determines the turbulent

diffusivity as

KhMO =
u∗κ|z|

φh(|z|/L)
, (3.25)
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FIG. 12. Comparison of observed energy profile (symbols) with that expected from analytic

solutions to the TKE equation by Craig (1996) and Burchard (2001), (3.22), (lines). These

solutions were evaluated withcµ = co
µ, σk = 1, z0 = 0.6Hs, andGb = 84. Each solution uses

different values forκ or each ofcµ andco
µ. The thin solid line shows the rigid-boundary

scaling used in thek-ε model (Burchard 2001).

whereφh is the stability function for heat and is a function of buoyancy flux and stress. The

stability function,φh, is less than one for unstable buoyancy forcing and greater than one for

stable buoyancy forcing. Here we use the definition ofφh as given by Large et al. (1994),

which is similar to Beljaars and Holtslag (1991). To calculate|z|/L we use the surface
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fluxes of heat and momentum, but local application of MO, using local observations of the

fluxes (Gerbi et al. 2008), gives nearly identical results. The heat flux predicted by MO is

smaller, by a factor of about 2, than the heat flux observed from cospectra (figure 3.13a).

To examine whether wave breaking can explain the difference between the modeled

and observed heat fluxes, a term was added to the MO diffusivity. Assuming thatKh = Km

and ignoring the shear production term in (3.22), one can combine (3.18), (3.20), and

(3.22). Adding this result to (3.25) gives

Kh = u∗κ|z|
1
φh

+
1

c3/4
µ

[

Gbc5/2
m

(

3σq

2

)1/2(

z0

|z|

)m
]1/3

. (3.26)

Although not strictly justified from first principles, this addition attempts to incorporates the

effects of shear, buoyancy, and wave breaking in a simple way. The heat fluxes computed

using (3.26) agree with observations much better than those computed using MO alone,

suggesting that wave breaking can account for differences between observed diffusivity

and diffusivity predicted from rigid boundary theories (figure 3.13b). The constants used

in this model werecµ = co
µ = 0.2, κ = 0.4, andσk = 1. Usingco

µ = 0.09 had negligible

effects on the results.

5. Conclusions

This study estimated selected terms in the turbulent kinetic energy budget of the

ocean surface boundary layer: growth of TKE, shear production Stokes shear production,

buoyancy production, and dissipation (figure 3.10). Consistent with previous speculation,

the local production terms do not balance dissipation. In the absence of a local balance, it

is likely that the enhanced dissipation rates are balanced by divergence of TKE flux, which

we were unable to measure.

Observations of dissipation rate are explained well by the scaling of Terray et al.

(1996) that relates dissipation rate to the energy input from the wind to the waves (fig-

ure 3.9). Energy input proportional tou3
∗ gives good agreement between our observations
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FIG. 13. Vertical heat flux, from cospectral observations (Gerbi et al. 2008) and mod-

els. The turbulent diffusivities used in modeling the temperature flux are explained in the

text. The Monin-Obukhov model underpredicts the temperature fluxes. The composite

model accounting for shear instability, buoyancy flux, and wave breaking gives much bet-

ter agreement with the observations. Boxes show times when Langmuir turbulence was

detected at the surface.
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and previous observations. The significant wave height used in the scaling must be that of

the wind waves, rather than that of the full spectrum.

As assumed in simplified turbulence closure models, TKE and dissipation in the

ocean surface boundary layer rate are related through a length scale proportional to the

distance to the sea surface. However, a proportionality constant smaller by a factor of two

to three than that in rigid-boundary turbulence relates depth and length scale in the ocean

surface boundary layer (figure 3.11).

With an adjusted length scale proportionality, the vertical distribution of TKE is rea-

sonably well-explained by a one-dimensional model that incorporates the effects of surface

gravity waves and shear instabilities (figure 3.12).

Similarly, the vertical turbulent heat flux is predicted well by a one-equation closure

model that includes the effects of wave breaking, buoyancy forcing, and shear instability

(figure 3.13).

Our estimates of boundary layer turbulence properties were restricted to times of

weak to moderate surface forcing. As a result, there were few times when robust Langmuir

turbulence was detected concurrently with turbulence energtics. Highlighting the times

when Langmuir turbulence was detected did not indicate that it played a distinct role in

energetics or diffusivity. Times when Langmuir turbulence was present did not stand out

from the overall distributions when examining the TKE balance or comparing observed and

modeled heat flux (figures 3.10 and 3.13). Questions of whether, at what depths, and under

what forcing conditions, Langmuir turbulence plays a significant role in surface boundary

layer energetics are topics for future research.
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APPENDIX A

Computing dissipation rate in unsteady advection in three

directions

At frequencies above the wave band, unsteady advection due to surface waves has

predictable effects on turbulence autospectra (Lumley and Terray 1983; Trowbridge and

Elgar 2001; Bryan et al. 2003; Feddersen et al. 2007). Methods of evaluating these effects

presented by Trowbridge and Elgar (2001), Bryan et al. (2003), and Feddersen et al. (2007)

were derived for unidirectional waves. In the presence of multidirectional waves, the equa-

tions quantifying the effects of unsteady advection can be written in terms of bounded

integrals and a Gaussian, which allows simpler numerical integration than the equations of

Feddersen et al. (2007). Equations (A4) and (A5) of Feddersen et al. (2007) are

Slm(ω) =
αε2/3

2(2π)3/2
Mlm(ω), (A1)

where

Mlm(ω) =
Z ∞

−∞

Z ∞

−∞

Z ∞

−∞
dk1 dk2 dk3

k−11/3
(

δlm− kl km
k2

)

√

σ2
i k2

i

exp

[

−
(k1u1 +k2u2−ω)2

2σ2
i k2

i

]

.

(A2)

The coordinate system is defined such that thex3 direction is vertical, andx1 andx2 are

the principle axes of the wave motion. The scalar wavenumber magnitude isk2 = k2
1 +

k2
2 +k2

3, δlm is the Kronecker delta function,σ2
i is the variance of the wave velocities, and

the covariances of the wave velocity in this coordinate system are zero. The following

substitutions are made:

k = (k1,k2,k3) = ωr

(

sinθcosφ
σ1

,
sinθsinφ

σ2
,
cosθ
σ3

)

. (A3)

Note that these substitutions differ slightly from those made by Feddersen et al. (2007) and

that the normalization fails if any of (σ1,σ2,σ3) is zero. Under this transformation,

σ2
i k2

i = ω2r2 (A4)
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dk1 dk2 dk3 =
ω

σ1σ2σ3
r2sinθdρdθdφ. (A5)

Herer is defined in the interval between 0 and∞, φbetween 0 and 2π, andθ between 0 and

π. The following functions are defined:

R =
1
r

(A6)

G2 = sin2θ
(

cos2φ
σ2

1

+
sin2φ

σ2
2

)

+
cos2θ

σ2
3

(A7)

Plm = δlm−
kl km

k2 . (A8)

With these definitions

k2 =
ω2G2

R2 . (A9)

Like G, the phase function,P, is a function only ofθ andφ. For example, in the vertical

direction,

P33 =
sin2θ
G2

(

cos2φ
σ2

1

+
sin2φ

σ2
2

)

(A10)

Making the appropriate substitutions and continuing with algebra, one finds

Mlm =
1

ω5/3

1
σ1σ2σ3

Z π

0
dθ

Z 2π

0
dφG−11/3sinθPlm

Z ∞

0
dR R2/3exp

[

−
(R0−R)2

2

]

,

(A11)

where

R0 =
u1

σ1
sinθcosφ+

u2

σ2
sinθsinφ. (A12)

Finally, define

Jlm = Mlm
ω5/3

2(2π)3/2
=

1

2(2π)3/2

1
σ1σ2σ3

Z π

0
dθ

Z 2π

0
dφG−11/3sinθPlm

Z ∞

0
dRR2/3exp

[

−
(R0−R)2

2

]

(A13)

and substitute into (A1) to get

Slm(ω) =
αε2/3

ω5/3
Jlm(ω). (A14)

Equation (A13) was integrated numerically, and we tested our integration scheme in

two ways. First, although no simpler computationally, theR integral can also be written in
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terms of parabolic cylinder functions. Evaluation ofJlm using our integration method and

using parabolic cylinder functions showed no discernible difference. Second, in the no-

current limit withσ1 = σ2 = σ3 = σ0 there is an analytic solution for the fully contracted

form Mll = M11+M22+M33,

Mll =
σ2/3

0

ω5/3
Γ

(

5
6

)

217/6π, (A15)

that we also were able to match with our numerical integration.

APPENDIX B

Scaling the relative importance of Stokes production and

wave breaking on integrated energetics

This appendix presents a scaling argument that suggests that when there is an actively

growing and breaking wind sea, the vertically integrated production of turbulent kinetic

energy by Stokes drift shear instabilities is significantly smaller than the energy input to

turbulence from wave breaking. Although Stokes drift shear production is a source for

turbulent kinetic energy in the form of Langmuir turbulence, this analysis is not suggesting

that Langmuir turbulence plays a minimal role in boundary layer turbulence. Teixeira and

Belcher (2002) have shown that deformation of preexisting turbulence by surface waves

can lead to Langmuir-like structures, so that even if the Stokes production term is small

compared to energy input from wave breaking, the total energy associated with Langmuir

turbulence may not be small.

Using deep water wave kinematics for purely wind-driven sea with no directional

spreading, we compare the vertically integrated TKE production by Stokes drift shear pro-

duction to the energy input from the wind to the waves. In turn, we continue with the

assumption that the energy input from the wind to the waves is transferred with minimal

losses (to wave growth or mean currents) to turbulence. This transfer could happen through
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wave breaking or through extracting via Stokes shear production. The ratio of the vertically

integrated Stokes production to the total energy input from the waves to turbulence gives

a measure of the relative importance of wave breaking to Stokes shear production. The

vertically integrated Stokes production is

I =
Z 0

−∞
dz

τ
ρ0

∂us

∂z
,

and its maximum value will occur if the stress maintains its surface value over the whole

water column. Equivalently,τ(z)/ρ0 ≤ u2
∗, so substitution ofτ/ρ0 with u2

∗ will give a

maximum value for the momentum flux in the production term. Knowing that the Stokes

drift decays to zero at depth, we get

Imax= u2
∗

Z 0

−∞
dz

∂us

∂z
= u2

∗us0, (B1)

The surface value of the Stokes drift,us0, is (Mei 1989)

us0 = 2
Z ωmax

−ωmax

dω ωkSηη =
2
g

Z ωmax

−ωmax

dω ω3Sηη , (B2)

and combining (B1) and (B2) gives

Imax=
2u2

∗

g

Z ωmax

−ωmax

dω ω3Sηη . (B3)

The wind energy input to the wave field is often parameterized by the integral of a

product of the wave height spectrum and a frequency-dependent growth rate:

|F0| =
ρa

ρw
g

Z ∞

0
dω γωSηη . (B4)

We use the growth rate formulation of Plant (1982) because it leads to easy comparison of

|F0| to Imax:

γ= 0.04

(

ρw

ρa

u∗
c

)2

= 0.04

(

ρw

ρa

u∗ω
g

)2

(B5)

Substituting (B5) into (B4) gives the wind energy input to the wave field as:

|F0| = 0.04
ρw

ρa

u2
∗

g

Z ∞

0
dω ω3Sηη . (B6)
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Because they have the same dependence on the spectrum, (B6) and (B3) allow computation

of the ratio of the wind energy input to the integrated Stokes production as

|F0|

Imax
= 0.02

ρw

ρa
≈ 20. (B7)

Thus, the maximum value of the vertically integrated Stokes shear production of turbulent

kinetic energy is a small fraction of the amount of energy being input by the wind to actively

growing waves. If most of this wind-input energy is transferred to turbulence, that transfer

must happen through another process. Given the lack of alternatives, that process is likely

to be wave breaking.
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Chapter 4

Summary

By fitting spectral models to observations, we were able to make new estimates of

turbulent fluxes of heat and momentum, turbulent kinetic energy, and the dominant length

scales of flux-carrying and energy-containing motions in the ocean surface boundary layer.

These observations allowed us to test scaling, analytical, and numerical predictions of the

effects of surface waves on surface boundary layer turbulence. The conditions in which we

were able to make measurements were restricted such that although we did make observa-

tions during times of wave breaking, we were forced to exclude most times when Langmuir

circulation was well-developed, so we have only limited insight into their effects.

The principal contributions of this work can be summarized as

1) Closing heat and momentum budgets across the air-sea interface with measure-

ments of turbulent fluxes

2) Finding the length scales of flux-carrying turbulence to be indistinguishable

from those in rigid-boundary turbulence.

3) Finding the length scales of energy-containing turbulence to be slightly smaller

than those in rigid-boundary turbulence.

4) Demonstrating that transport of turbulent kinetic energy is important in surface

boundary layer turbulence dynamics.

5) Showing that the vertical structure of turbulent kinetic energy can be explained
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by a simplified model that includes only shear production, transport, and

dissipation

6) Showing that the temperature gradient in the ocean surface boundary layer is

small but measureable

7) Showing that vertical heat flux in the ocean surface boundary layer can be

explained by a gradient-transport model that includes the effects of wave

breaking, buoyancy forcing, and shear production.

On dimensional grounds, turbulence closure models assume that turbulent diffusivity is the

product of a velocity scale and a length scale (Monin and Yaglom 1971; Jones and Launder

1972; Mellor and Yamada 1982; Wilcox 1988). These models often assume that all turbu-

lent length scales in a given setting (flux-carrying and energy containing scales, for exam-

ple) are proportional to some master length scale. Further, adaptations of rigid-boundary

closures for use in the wavy surface layer have made limited progress in adjusting the length

scale relationships to account for the different types of turbulent instabilities present in the

ocean surface boundary layer (Craig 1996; Burchard 2001; Umlauf et al. 2003; Umlauf

and Burchard 2003). We have found that although the sizes of the flux-carrying eddies are

similar in both wavy-surface and rigid-boundary turbulence, the energy-containing eddies

are larger in rigid-boundary turbulence than in wavy-surface turbulence. That suggests that

in order for closure models to make the most accurate predictions of turbulent fluxes and

diffusivities, the relationships between the length scales in those models must be adjusted

according to the magnitude of the influence of wave-induced turbulence. Unfortunately,

because these models have such a large number of empirical parameters, our data are not

sufficient to recommend the best changes to those parameters. In particular, the scatter in

our estimates of TKE makes precisely estimating model constants difficult.

Our observations confirm previous suggestions that one important effect of wave

breaking on surface boundary layer turbulence is to make the transport of turbulent kinetic

energy an important component of the TKE balance. This is in contrast to rigid-boundary

turbulence in which the local production of TKE balances the local dissipation. This effect
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of wave breaking is accommodated in energy-based closure models by allowing a flux of

TKE from the sea surface. Even with the uncertainty of the empirical model constants,

these energy-based models do reproduce the important features of the observed vertical

structure of TKE (Craig 1996; Burchard 2001), particularly the enhancement of TKE at

depths less than about five significant wave heights.

In addition to being important dynamical quantities in their own rights, turbulent

length scales and kinetic energy are important diagnostic and predictive tools for assessing

the abilities of closure models to predict observations of turbulent diffusivity and turbulent

viscosity. By making the measurements of turbulent fluxes we have tested whether the

closure models give good predictions of turbulent fluxes and diffusivities. We showed that a

closure model combining the effects of shear-driven, buoyancy-driven, and wave-breaking

turbulence can predict the vertical flux of heat in the ocean surface boundary layer.

Although this study has examined many aspects of turbulence in the surface bound-

ary layer, it has also left unexplored many parts of parameter space. In particular, future

studies need to include more observations in two forcing regimes: 1) times when Langmuir

circulation is likely to be present, and 2) times of moderate and strong stabilizing buoy-

ancy forcing. We were limited in our ability to make observations during those times, in

part because of limitations in our ability to separate wave motions from turbulence motions

and because of the technical challenge of measuring the dissipation rate in the presence

of moderate and large waves. Ongoing improvements in measurement and filtering tech-

niques should allow future turbulence observations to be made in a wider range of wave

climates than those presented here. I wish future investigators good luck in such attempts.
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Appendix A

Tables of observations

The tables on the following pages show turbulence quantities and environmental vari-

ables observed in this study. The first table (p. 103) gives information for the times when

heat flux and significant wave height were observed and the boundary layer was deeper

than about 7 m. These are the times shown in figure 3.13. The second set of tables (pp.

104-109) gives information about times when dissipation rates were observed. Symbols

are the same as in the text, and all units are MKS. Length is in meters, time is in seconds,

dissipation is in W kg−1, velocity is in m s−1, density is in kg m−3, stress is in N m−2,

heat flux is in W m−2, and temperature is in◦C. The yearday is defined such that day 1.5

is noon GMT on 1 January, 2003. For quantities listed in two columns, the first column

is for the upper ADV/thermistor (1.7 m below mean sea level), and the second column is

for the lower ADV/thermistor (2.2 m below mean sea level). Instantaneous depths of the

ADVs/thermistors are in the second and third columns on pages 104 and 105. Downwind

momentum flux and heat flux appear in two pairs of columns. The first pairs of columns

give cospectral estimates and the second pairs give budget estimates. Surface heat flux,Q0,

includes sensible and latent fluxes, up- and down-welling long wave radiation, and short

wave radiation. The termQR is the short wave radiation through the sea surface. Tempera-

ture gradient,∂T/∂z, was estimated from the temperature difference between MicroCATs

at 1.4 m and 3.2 m below mean sea level, andzT is the depth to the midpoint between those

101



MicroCATs. The Stokes drift,us0, is the downwind component at the sea surface. When

us0 is negative, the wind is going in the direction opposite to the projection of the Stokes

drift into wind coordinates. The Stokes drift shear,∂us/∂z is the downwind component at

the ADV depths. Significant heights and periods of wind waves and swell areHs wind,

Hs swell, WW Per, and S Per, respectively. Depths on pages 108 and 109 are the full water

depth.
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This table contains information used to produce figure 3.13.
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This table contains information for times when dissipation rates were measured.
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