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ABSTRACT

Assigning a physical interpretation to turbulent fluctuations beneath waves is complex because eddies are

advected by unsteady wave orbital motion. Here, the kinematic effects of wave orbital motion on turbulent

fluctuations at a fixed location were investigated using model turbulence spatial spectra (k spectra) together

with a general form of the frozen turbulence approximation. Model autospectra and cospectra included an

inertial subrange, a rolloff at energy-containing scales (L 5 2p/k0), and a dissipation range. Turbulence was

advected by a background flow composed of waves (rms orbital velocity sw, peak frequency vw, and spectral

width Dvw) propagating parallel to a current uc. Expressions were derived for turbulence frequency spectra

(v spectra), and parameters were varied across ranges typical in the coastal ocean. Except close to the wave

band, the v-spectrum shape collapses with two dimensionless parameters, a velocity ratio sw/uc, and a time-

scale ratio uck0/vw, which can be used to diagnose the effects of wave advection on turbulence spectra. As

sw/uc increases, less variance and covariance appear at low frequencies (v, uck0) and more appear at high

frequencies (v. uck0). If sw/uc. 2, wave advectionmust be taken into account when estimating turbulence

length scales and integral quantities (e.g., Reynolds stress) from the low-frequency portion of spectra. The

offset of the25/3 region due to waves is unaffected by the rolloff or dissipation range; therefore, previously

proposed methods for estimating dissipation rate from wave-affected 25/3 spectra are robust. Although

idealized, the results inform the interpretation of turbulence v spectra beneath waves and guide the esti-

mation of turbulence properties from those spectra.

1. Introduction

In coastal and estuarine systems, turbulent stress

gradients are leading order in momentum budgets

(Geyer et al. 2000; Lentz et al. 1999). In these systems,

wave orbital motion and turbulent bottom and surface

boundary layers can extend over most, or all, of the

water column (e.g., Feddersen et al. 2007; Jones and

Monismith 2008). To quantify turbulence properties and

develop and test models for mixing in these systems, it is

therefore important to understand the interactions that

occur between turbulence and surface waves.

Surface waves affect turbulence in a kinematical sense

as well as a dynamical sense. Turbulent eddies are

advected in an unsteady way by wave orbital motion;

therefore, assigning a physical interpretation to velocity

and scalar fluctuation at a fixed location is complex

(Lumley and Terray 1983). Additionally, a conceptual

problem arises when an Eulerian framework (fixed ref-

erence frame) is used for analyzing turbulence in the

presence of waves. It is therefore essential that the ef-

fects of the purely kinematic process of advection by

wave orbital motion are understood and differentiated

from dynamical interactions between waves and

turbulence.

Advection of turbulence by wave orbital motion is

particularly problematic when interpreting shallow-

water turbulence measurements. In shallow water,

sensors are typically mounted on moorings at fixed lo-

cations. Turbulent eddies are advected past the sensors

by the background flow and turbulence properties are

inferred from the resulting time series. Because time

scales for advection of turbulence past a point are short
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compared with time scales over which turbulence

evolves, the spatial structure of turbulence is inferred

from time series using a frozen turbulence approxima-

tion (Taylor 1938). Thus, the spatial structure of turbu-

lence is not observed directly but rather the distribution

of energy among turbulence length scales is inferred

from spectra in frequency space (v spectra). Dissipation

rates are typically estimated from 25/3 fits to the high-

frequency (inertial subrange) portion of v spectra.

Reynolds stresses can be estimated by integrating u0–w0

cospectra.

Waves introduce two distinct problems when esti-

mating turbulence statistics from this kind of data. First,

when turbulent eddies are advected past sensors by

wave orbital motion, the turbulence v spectrum is dif-

ficult to interpret as it can be quite different from the

corresponding spatial spectrum (k spectrum). As a

result, estimates of turbulence properties such as dis-

sipation rate from the v spectrum are affected dra-

matically by wave advection (Lumley and Terray 1983;

Trowbridge and Elgar 2001; Feddersen et al. 2007).

Second, the majority of the turbulence covariance is

associated with energy-containing eddies and often

overlaps in frequency space with the wave peak. Be-

cause wave orbital velocities can be two orders of

magnitude larger than turbulent velocity fluctuations,

correlations between horizontal and vertical wave or-

bital velocity components (wave biases) often dominate

stress estimates (Shaw and Trowbridge 2001; Rosman

et al. 2008). There has been considerable work on de-

veloping methods to isolate the turbulence spectrum by

removing parts of the velocity signal that are correlated

with surface elevation, pressure, or between velocities at

different locations (Benilov and Filyushkin 1970; Shaw

and Trowbridge 2001; Feddersen and Williams 2007).

While these methods can remove or reduce the wave

peak and often enable reasonable Reynolds stress esti-

mates, the effects of waves can never be removed from a

turbulence v spectrum because turbulent energy is re-

arranged in frequency space when eddies are advected

by wave orbital motion. To interpret observed v spectra

and evaluate estimates of turbulence properties, it is

therefore important to understand how advection of

turbulence by wave orbital motion affects turbulence

v spectra.

In this paper, we do not consider the problem of biases

in estimates of integral quantities (e.g., Reynolds stress)

caused by wave orbital velocities themselves. Rather,

our goal is to elucidate the kinematic effects of wave

advection on turbulence v spectra. In steady currents uc,

the frequency v of turbulent fluctuations observed at a

fixed location can be converted to the effective wave-

number k sampled using a simple form of Taylor’s

frozen turbulence approximation: k 5 v/uc. When

eddies are advected by wave orbital motion, the situa-

tion is more complex as the energy corresponding to a

single-turbulence wavenumber is distributed over a

range of frequencies. The effect of unsteady wave ad-

vection on the turbulence v spectra can be investigated

using a more general form of the frozen turbulence ap-

proximation. If turbulence with a known k spectrum is

advected past a fixed location by known wave and cur-

rent velocities, the v spectrum that would be observed

can be calculated using a transformation between the

measurement time and the effective position in the

‘‘frozen’’ turbulence field sampled. Using this approach,

Lumley and Terray (1983) solved for the v spectrum

that would be observed if inertial subrange isotropic

turbulence (Kolmogorov25/3 law) was advected past a

point by waves propagating parallel to a uniform

current.

Lumley and Terray’s (1983) results illustrate that in

the presence of waves more of the turbulent energy

appears at frequencies higher than the wave frequency

than if the same turbulence is advected by a current

alone. Therefore, dissipation rate estimates from 25/3

fits to the inertial subrange of v spectra are biased

(overestimated) if waves are not taken into account in

the analysis. The method introduced by Lumley and

Terray (1983) is commonly used to estimate dissipation

rates from measured v-spectra-containing waves and

has been extended to cases in which waves propagate at

an angle to the current (Trowbridge and Elgar 2001),

elliptical wave orbital motion (Feddersen et al. 2007),

and directionally spread waves (Gerbi et al. 2009).

Thesemethods appear to provide robust dissipation rate

estimates even when wave advection is very large, as in

the surfzone (Feddersen 2010, 2012).

The transformation from space (x, k) to time (t, v)

introduced by Lumley and Terray (1983) is general and

can be used to convert any spectral shape from wave-

number to frequency space using known wave and

current velocities. Gerbi et al. (2008) applied this

transformation to turbulence u0–w0 cospectra and illus-

trated that the distribution of turbulence covariance

(Reynolds stress) in frequency space is relatively un-

affected by waves if rms wave orbital velocities are less

than twice the current (sw/uc , 2), but the rearrange-

ment of turbulence covariance in frequency space is

significant for sw/uc . 2. In that work, semitheoretical

curves representing the k-spectrum shape were fit to the

low-frequency portion of turbulence cospectra, below

the wave peak. These fits were extrapolated across the

wave peak and higher frequencies and integrated to

estimate Reynolds stresses. However, the method was

limited to cases where sw/uc , 2, for which the
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distribution of covariance in frequency space is not sig-

nificantly affected by wave orbital motion.

Here, we extend previous work that investigated the

effects of wave advection on the inertial subrange part of

turbulence spectra (Lumley and Terray 1983; Trowbridge

and Elgar 2001; Feddersen et al. 2007) by considering a

more realistic turbulence spectrum that includes a rolloff

at energy-containing scales. The general frozen turbulence

approach is used to transform model turbulence k spectra

to v spectra observed at a point when the turbulence is

advected by waves and current. We systematically vary

the current, wave properties, and turbulence properties

across a wide parameter space that spans conditions in the

coastal ocean, extending the work of Gerbi et al. (2008) to

cases forwhichwave orbitalmotion is large comparedwith

the current. We then investigate how key properties of

v spectra vary across this parameter space. The results of

our analyses inform the interpretation of turbulence

v spectra from a fixed location and can be used to guide

the estimation of turbulence properties from those spectra.

2. Analysis framework

a. Transformation of spectra fromwavenumber space
to frequency space

Physically, we imagine a three-dimensional spatial

field of turbulence that does not change in time. This

frozen spatial field of turbulent velocity fluctuations

u0(r) is advected past a sensor at position r0 by the cur-

rent uc and wave orbital velocities uw. The turbulent

velocity fluctuation measured by the sensor at each time

t is the turbulent velocity fluctuation at position r(t)1 r0
in the spatial turbulence field, where

r(t)52

ðt
0

u
c
1 u

w
(t) dt . (1)

Conceptually, this relationship can be used to convert

the three-dimensional spatial field of turbulent velocity

fluctuations to the time series of velocity fluctuations

observed by a sensor at a point. Because turbulence is a

stochastic process, the spatial field of turbulent velocity

fluctuations is not known. However, semitheoretical

models exist for turbulence spatial spectra that describe

the distribution of the energy and covariance among

turbulent length scales.

We begin with a turbulence spectrum in wave-

number space that is specified. The spectral tensor,

denoted Fij(k), quantifies the covariance between

velocity components in directions i and j per unit

volume in wavenumber space dk5 (dk1, dk2, dk3) at a

given wavenumber k 5 (k1, k2, k3). The correlation

function Rij(r), representing the correlation between

velocity components i and j at points in space sepa-

rated by position vector r, is by definition the inverse

Fourier transform of the spectral tensor function,

that is,

R
ij
(r)5

ððð
k1k2k3

F
ij
(k)eik�r dk , (2)

where the integrations are from 2‘ to to ‘. If turbu-
lence with spatial representation given by Eq. (2) is

advected past a sensor by a steady current uc and wave

orbital velocity uw, then the effective spatial position in

the turbulence field that is sampled by the sensor at

time t is given by Eq. (1). Therefore, the correlation

function of the measured velocity time series can be

written as

R
ij
(t)5

ððð
k1k2k3

F
ij
(k)eik�r(t) dk

5

ððð
k1k2k3

F
ij
(k)eik1ucteik�rw(t) dk , (3)

where x1 has been defined as the direction of the current,

and rw(t) is the wave orbital excursion at time t. In the

last step, the negative sign in the first exponent can be

omitted because of symmetry.

Note that Fij(k) is a function of the turbulence only,

and rw(t) is a function of the waves only. If it is assumed

that the waves and turbulence are independent random

processes, then Eq. (3) can be written as

R
ij
(t)5

ððð
k1k2k3

F
ij
(k)eik1uctheik�rw(t)i dk . (4)

The angle brackets are the expected value of the

function inside the brackets at a given time t over

many realizations. This term incorporates the statis-

tical distribution of rw at a particular time t. Note that

heik�rw(t)i is the characteristic function of rw(t). It is

therefore the inverse Fourier transform of its proba-

bility density function p(rw). If it is assumed that wave

orbital excursions have a Gaussian distribution, that

is, p(rw) is Gaussian (e.g., Wyngaard and Clifford

1977; Lumley and Terray 1983), which is true for

random waves, then the characteristic function can be

expressed as

heik�rw(t)i5 e2klkm[clm(0)2clm(t)] , (5)

where clm(t)5 hrl(t 1 t)rm(t)i is the cross-correlation

function of the wave orbital excursions in directions xl
and xm, and the angle brackets represent the expected

value over all times t. The quantity clm(0) is therefore

the covariance of the orbital excursion components rl
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and rm. Although the assumption that wave orbital

excursions have a Gaussian distribution breaks down

in very shallow water, it is a reasonable approximation

offshore of the surfzone. The assumption that fluctu-

ations due to waves and turbulence are uncorrelated

may also be poor under breaking waves. Therefore,

the results should be used with caution for analysis of

turbulence associated with wave breaking.

The correlation function clm(t) is the inverse Fourier

transform of the spectrum of wave orbital excursions

Srlrm(v), which can be computed from the spectrum of

wave orbital velocities Sulum(v) as

c
lm
(t)5

ð‘
0

cos(vt)S
rlrm

(v) dv5

ð‘
0

cos(vt)
S
ulum

(v)

v2
dv .

(6)

Substituting Eq. (5) into Eq. (4) yields an expression

for the correlation function of the turbulent velocity

fluctuations observed by the sensor as a function of the

turbulence wavenumber spectrum and the wave orbital

excursion statistics:

R
ij
(t)5

ððð
k1k2k3

F
ij
(k)eik1ucte2klkm[clm(0)2clm(t)] dk . (7)

The turbulence frequency spectrum Pij(v) can then be

calculated as the Fourier transform of the turbulence

correlation function Rij(t):

P
ij
(v)5

1

2p

ð‘
2‘

e2ivtR
ij
(t) dt . (8)

For any given turbulence wavenumber spectrum Fij(k)

and any known current uc and wave orbital velocity

spectrum Sulum(v), the spectrum of turbulent fluctua-

tions that would be observed by a fixed sensor Pij(v) can

be computed from Eqs. (6) to (8).

In this study, we consider only the simplest case of

one-dimensional advection of turbulence by horizontal

wave orbital velocities and a parallel current. In this

case, the spatial structure of turbulence in the x1 di-

rection controls the temporal fluctuations observed by

the sensor. Therefore, Eq. (7) can be written in terms of

one-dimensional spectrum Eij(k1), defined as the con-

tribution to the covariance of ui and uj from all wave-

numbers with a k1 component between k1 and k1 1 dk1
(see Pope 2000). The term Eij is related to the spectral

tensor Fij by

E
ij
(k

1
)5 2

ðð
k2k3

F
ij
(k) dk

2
dk

3
. (9)

For the 1D case, using Eq. (9), Eq. (7) reduces to

R
ij
(t)5

1

2

ð‘
2‘

E
ij
(k

1
)eik1ucte2k1k1[c11(0)2c11(t)] dk

1

5

ð‘
0

E
ij
(k

1
) cos(k

1
u
c
t) e2k1k1[c11(0)2c11(t)] dk

1
. (10)

In this study, Eqs. (6), (8), and (10) were used to trans-

form model turbulence wavenumber spectra to fre-

quency spectra that would be observed by a fixed sensor

when the turbulence was advected by currents and wave

orbital velocities with a range of peak periods and

amplitudes.

b. Representation of turbulence

The transformations above were applied to semi-

theoretical wavenumber spectra for both isotropic and

anisotropic turbulence.

1) ISOTROPIC TURBULENCE

In isotropic turbulence, Fij(k) is completely de-

termined by the energy spectrum because the turbu-

lence properties are independent of direction (Pope

2000). The energy spectrum E(k) represents the total

turbulent kinetic energy contained in wavenumbers with

magnitude between k and k 1 dk and can also be

thought of as Fij(k) stripped of all directional in-

formation, that is,

E(k)5

ððð
1

2
[F

11
(k)1F

22
(k)1F

33
(k)]d(jkj2 k) dk .

(11)

Note that the scalar energy spectrum E(k), which de-

scribes the turbulent kinetic energy as a function of

wavenumber magnitude, is different from the one-

dimensional spectrum tensor Eij(k1), which describes

the covariance between two velocity components as a

function of the wavenumber component in the x1 di-

rection. Our notation follows that of Pope (2000).

Previous work (e.g., Lumley and Terray 1983;

Trowbridge and Elgar 2001) has used a Kolmogorov

25/3 spectrum to describe the turbulence wavenumber

spectrum. Here, we use a spectrum that includes the

low-wavenumber rolloff and the dissipative range

(Figs. 1a,b,d,e). The spatial structure of isotropic

turbulence was represented using a model spectrum

with two adjustable parameters, the dissipation rate

« and the energy-containing turbulence length scale

L (Pope 2000). The spectra follow the Kolmogorov

25/3 relationship in the inertial subrange, the low-

wavenumber rolloff is controlled by L, and the

high-wavenumber rolloff is controlled by the Kolmo-

gorov length scale h 5 (n3/«)1/4, where n is kinematic

viscosity:
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E(k)5C«2/3k25/3f
L
(kL)f

h
(kh) , (12)

f
L
5

(
kL

[(kL)2 1 4p2]1/2

)5/31p0

5

(
k/k

0

[(k/k
0
)2 1 1]1/2

)5/31p0

f
h
5 exp(2c

b
f[(kh)4 1 c4h]

1/4 2 c
h
g)

5 exp(22pc
b
f[(k/k

h
)4 1 (c

h
/2p)4]1/4 2 c

h
g) .

The function fL determines the shape of the energy-

containing range and tends to unity for large k/k0.

Similarly, fh describes the shape of the dissipation

range and tends to unity for small k/kh. We use C5 1.5,

p0 5 2, cb 5 5.2, and ch 5 0.40 (Pope 2000). We have

defined k05 2p/L as the wavenumber corresponding to

the peak in the variance-preserving form of the energy

spectrum, which differs from the definition ofL used by

Pope (2000).

For isotropic turbulence, the one-dimensional spectra

are related to the energy spectrum by (Pope 2000)

E
11
(k

1
)5

ð‘
k1

E(k)

k

�
12

k2
1

k2

�
dk

E
33
(k

1
)5

1

2

�
E

11
(k

1
)2 k

1

dE
11

dk
1

�
. (13)

One-dimensional spectrawere computed numerically from

Eq. (13) using the form of E(k) in Eq. (12) (Figs. 1a,b,d,e).

2) ANISOTROPIC TURBULENCE

For the anisotropic turbulence cospectrum E13(k1),

we used a spectrum shape proposed for the atmospheric

boundary layer by Kaimal et al. (1972) and later applied

to the coastal ocean bottom and surface boundary layers

by Trowbridge and Elgar (2003), Feddersen and

Williams (2007), and Gerbi et al. (2008):

E
13
(k

1
)5

u0
1u

0
3

k
0

7

3p
sin

�
3p

7

�
1

11 (k
1
/k

0
)7/3

. (14)

The shape of this spectrum is controlled by two pa-

rameters, the spatial scale of the energy-containing

turbulent eddies (2p/k0), and the Reynolds stress u0
1u

0
3

(Figs. 1e,f). For k � k0, the spectrum goes like k1
27/3.

c. Representations of waves

The transformation of turbulence spectra from

wavenumber to frequency space described in section 2a

assumes that wave orbital excursions are randomly dis-

tributed. To simulate random waves, we specified the

wave orbital excursion spectrum Sx1x1(v). It was neces-

sary to specify the wave orbital excursion spectrum

FIG. 1. Model turbulence (a),(b),(d),(e) autospectra for isotropic turbulence with « 5 1 3 1024 m2 s23 and (c),(f) cospectra for an-

isotropic turbulence with Reynolds stress of 1 3 1024 m2 s22. Curves are one-dimensional spectra in the x1 direction. Colors indicate

different energy-containing length scales L and dashed lines correspond to k0 5 2p/L.
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rather than the wave orbital velocity spectrum to

avoid the wave orbital excursion spectrum blowing

up at low frequencies. The wave orbital velocity

spectrum is related to the wave orbital excursion

spectrum by

S
u1u1

(v)5v2S
x1x1

(v) , (15)

and Sx1x1(v) was defined such that

ð‘
0

S
u1u1

(v) dv5

ð‘
0

v2S
x1x1

(v) dv5s2
w . (16)

Two different spectral shapes were used: Gaussian

and JONSWAP (Fig. 2). Although real wave spectra are

skewed to high frequencies, a Gaussian spectrum was

used in this study so that the width of the wave peak

could be controlled independently of the peak wave

frequency. These spectra had the form

S
x1x1

(v)5
A2ffiffiffiffiffiffi

2p
p

Dv
w

exp

"
2
(v2v

w
)2

2Dv2
w

#
, (17)

where A2 5
Ð ‘
0
Su1u1(v)/v

2 dv 5 ms2
w/v

2
w is the

root-mean-square wave orbital excursion,

m5 (sw/vw)
22Ð ‘

0
Su1u1(v)/v

2 dv is a coefficient of order

unity that depends on the shape of the wave spectrum,vw

is the peak wave frequency, and Dvw is the width of the

wave peak (one standard deviation). Two different

spectral peakwidths were used in the analyses:Dvw /vw5
0.025 (narrowband) and Dvw/vw 5 0.2 (broadband).

To compare results for narrowband and broadband

Gaussian spectra with more realistic wave distributions,

as a third case a JONSWAP spectrum was used to de-

scribe the wave heights:

S
hh
(v)5

ag2

v5
exp

�
2b

v4
w

v4

�
g r . (18)

Here, a controls the spectrum amplitude, g5 9.8m s22

is acceleration due to gravity, b 5 1.25 is a constant,

and g 5 3.3 controls the enhancement of the wave

peak relative to background. The exponent r is

given by

r5 exp

"
2
(v2v

w
)2

2v2
wz

2

#
, (19)

where z 5 0.07 for v , vw and 0.09 for v . vw.

The JONSWAP spectrum for wave heights was eval-

uated and converted to a spectrum for wave orbital ex-

cursions at the seafloor using the relationship from

linear wave theory,

S
x1x1

5 (sinhkh)22
S
hh
, (20)

along with the dispersion relation v2 5 gk tanhkh,

where here k is the wavenumber of the wave and h is

the water depth. The coefficient a was set such that

Eqs. (15) and (16) were satisfied. Although not ap-

propriate close to the surfzone, linear wave theory has

been shown to work well across the majority of the

continental shelf.

The correlation function of wave orbital excursions

was then computed from the wave orbital excursion

spectrum using Eq. (6). The peak wave frequency vw as

well as the magnitude of the wave spectrum sw was

varied to investigate how wave properties affect ob-

served turbulence frequency spectra.

d. Cases

One-dimensional spectra [E11(k1), E33(k1), E13(k1)]

for isotropic and anisotropic turbulence described in

section 2b were transformed to corresponding

v spectra that would be observed at a fixed location for

four different peak wave frequencies, four energy-

containing turbulence length scales, and four currents

(64 combinations total; Table 1). For each combination

of these parameters, rms wave orbital velocities were

varied from 0 up to 7 times the current (sw/uc 5 0–7).

The parameter space included peak wave frequencies

vw ranging from 1/8 to 8 times the frequency corre-

sponding to advection of large turbulent eddies by the

current uck0. These analyses were repeated for nar-

rowband and broadband Gaussian wave spectra and

JONSWAP wave spectra.

FIG. 2. Wave orbital excursion spectra used to transform tur-

bulence spectra from wavenumber to frequency space. Spectra

shown are narrowband Gaussian (Dvw/vw 5 0.025), broadband

Gaussian (Dvw/vw 5 0.2), and a JONSWAP spectrum for fully

developed waves. All spectra shown are normalized such that the

integral of the corresponding orbital velocity spectrum is unity.
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3. Results

a. Effects of wave advection on observed turbulence
v spectra

The integrals of turbulence autospectra and

cospectra, which represent the total velocity compo-

nent variances and covariances (Reynolds stresses),

respectively, are not altered by wave orbital motion.

However, as unsteady wave orbital velocities increase

relative to the steady current, the shapes of observed

spectra change (Figs. 3, 4). In our analyses, when rms

wave orbital velocities were smaller than the current

speed (sw/uc , 1), v spectra were affected little by

wave orbital motion and were similar to when tur-

bulence was advected by just a current. When rms

wave orbital velocities exceeded the current speed

(sw/uc . 1), less variance appeared to the left of the

wave frequency (v , vw) and more appeared to the

right of the wave frequency (v . vw) than when tur-

bulence was advected by the current alone (Figs. 3, 4).

This is most easily seen in the variance-preserving

spectra. When plotted on a logarithmic frequency

scale, the area under these curves is proportional to

each frequency band’s contribution to the total

variance.

The turbulence v spectra can be divided into 1) a

low-frequency part (v � vw, v , uck0) in which

spectral density is constant and there is an apparent

rolloff that resembles the rolloff in the wavenumber

spectrum at energy-containing scales, 2) an in-

termediate frequency part near the wave band in

which spectral density oscillates with frequency, and

3) a high-frequency part (v� vw, v� uck0) in which

spectral density is increased by waves. At frequencies

well above vw and uck0, wave advection causes a

positive offset in the25/3 part of the spectrum, as first

described by Lumley and Terray (1983). Both the

apparent rolloff frequency and the high-frequency

extent of the intermediate range vary with properties

of the wave and turbulence spectra. The part of the

spectrum that is altered by wave advection extends to

lower frequencies for lower-frequency waves. The

intermediate frequency range extends to higher fre-

quencies as the wave frequency increases and as

the wave orbital velocity increases. The same gen-

eral patterns are true for both isotropic turbulence

autospectra and anisotropic turbulence cospectra

(Figs. 3, 4).

The shape of the wave spectrum does not signifi-

cantly affect the low- or high-frequency behavior of the

observed turbulence spectrum; however, it strongly

affects the spectrum shape close to the wave peak, in

the intermediate frequency range (Fig. 5). The nar-

rower the wave peak, the larger the magnitude of os-

cillations in the turbulence v spectrum near the wave

peak. Although these oscillations have a large effect on

the value of the spectrum at a given frequency near the

wave band, their effect on the integral of the spectrum

is minimal; therefore, the shape of integrated turbu-

lence spectrum is almost independent of the shape of

the wave spectrum.

b. Dimensionless parameters controlling the shapes
of observed spectra

Expressions for the shapes of observed v spectra can

be derived by substituting the expressions for model

k spectra [Eqs. (12)–(14)] into the equations used to

transform spectra from wavenumber to frequency

space [Eqs. (6), (8), (10)]. Variables in the equations

(k1, t, v) are then arranged into dimensionless

variables [v/(uck0), s 5 k1/k0, and y 5 uck0t], where

v/(uck0) is dimensionless frequency, and s and y are

integration variables, resulting in expressions for

v spectra in terms of dimensionless parameter groups.

The shape of the dissipation range has negligible

effect on thev spectrum, except for very large values of

v/(uck0), corresponding to very small, high-frequency

fluctuations that are typically not resolved in field

measurements. Over the frequency range relevant to

field measurements, fh 5 1, and the shape of the

v spectrum is independent of k0h. We therefore take

fh 5 1 in our theoretical analyses. Derivations are

provided in the appendix.

The resulting expression for the two-sided u1 auto-

spectrum for isotropic turbulence is

P
11
(v)5

�
«

k
0

�2/3
1

u
c
k
0

F
3

�
v

u
c
k
0

,
u
c
k
0

v
w

,
s
w

u
c

,m

�
, (21)

where

TABLE 1. Parameters used to generate frequency spectra ob-

served when isotropic and anisotropic turbulence is advected past

a point by parallel waves and current.

Parameters Values

Peak wave frequency vw (rad s21) 0.31, 0.63, 0.94, 1.26

Wave peak width Dvw/vw 0.025, 0.2

Current uc (m s21) 0.05, 0.1, 0.15, 0.2

Rolloff wavenumber k0 (radm
21) 3.1, 4.2, 6.3, 12.6

Wave advection speed: current speed

sw/uc

0–7

Frequency corresponding to large

eddies: wave frequency uck0/vw

0.125–8

Wave orbital excursion: large

eddy size swk0/vw

0–9
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0
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)] ,
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�
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v
w
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0
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(v)
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dv, and

FIG. 3. Example isotropic turbulence autospectra in frequency space, showing the effect of increasing wave orbital velocities. Colors

indicate different ratios of rms wave orbital velocity to current (sw/uc). Rows are (top) spectra, (middle) variance-preserving spectra, and

(bottom) integrated spectra. Columns are (left) low, (center)medium, and (right) high-frequency waves. Dashed vertical lines indicate the

wave frequency. All cases shown correspond to the narrowband wave spectrum.
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F
1
(s)5

ð‘
s

s0

(s02 1 1)11/6

�
12

s2

s02

�
ds0 .

For the u3 autospectrum P33, the same equations apply

except that F1 is replaced by G1:

G
1
(s)5

1

2

ð‘
s

s0

(s02 1 1)11/6

�
11

s2

s02

�
ds0 . (22)

The magnitude of the spectrum is proportional to

(«/k0)
2/3/(uck0), while the spectrum shape is described

by the function F3. The v-spectrum shape therefore

depends primarily on the two parameters uck0/vw and

sw/uc. Near the peak wave frequency, the v spectrum

is also affected by Su1u1
* , the wave orbital velocity

spectrum defined as a function of v/(uck0) and nor-

malized such that
Ð ‘
0
Su1u1
* [v/(uck0)]d[v/(uck0)]5 1 (see

the appendix).

The corresponding expressions for the cospectrum for

anisotropic turbulence are

P
13
(v)5

u0
1u

0
3

u
c
k
0

H
3

�
v

u
c
k
0

,
u
c
k
0

v
w

,
s
w

u
c

,m

�
, (23)

where

FIG. 4. As in Fig. 3, but for anisotropic turbulence cospectra in frequency space, showing the effect of increasing wave orbital velocities on

observed spectra.
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2[m2F2(y)]s

2

ds dy ,

and F2 and m are defined in Eq. (21).

The shapes of both turbulence autospectra and

cospectra in frequency space are controlled primarily

by the same two parameters: uck0/vw and sw/uc. The

first parameter uck0/vw represents the ratio of the fre-

quency corresponding to the low-wavenumber rolloff

in the turbulence spectrum in the absence of waves

uck0 to the peak wave frequency vw. The second

parameter sw/uc is the ratio of the rms advection speed

by waves to the advection speed by current. A third

parameter swk0/vw, representing the ratio of the rms

wave orbital excursion to the spatial scale of energy-

containing eddies, can be formed from the product of

uck0/vw and sw/uc. Equations (21)–(23) can be rewritten

in terms of any two of these three dimensionless

parameters.

FIG. 5. Example isotropic turbulence autospectra in frequency space, showing the effect of wave spectrum shape on observed turbulence

spectra. For these examples, uck0/vw 5 0.67. Colors indicate different ratios of rms wave orbital velocity to current (sw/uc). (left) Nar-

rowband, (center) broadband, and (right) JONSWAP wave spectra. Dashed vertical lines indicate the peak wave frequency.
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When the fraction of the variance and covariance

appearing in the spectrum at frequencies less than the

frequency corresponding to advection of energy-

containing turbulence by the current uck0 is plotted

against sw/uc, the results collapse according to uck0/vw

(Figs. 6a,c). However, the results become independent

of uck0/vw for uck0/vw . 1, which corresponds to wave

frequencies in the flat part of the turbulence spectrum,

below the turbulence rolloff frequency. That is, for

uck0/vw . 1, the fraction of the turbulent energy below

v5 uck0 is independent of the wave frequency and is a

function only of sw/uc.

When instead the fraction of the total variance and

covariance appearing in the spectrum at frequencies less

than the peak wave frequency is plotted against sw/uc,

the results collapse again according to the value of

uck0/vw (Figs. 7a,c). When the variance and covariance

fraction below the wave frequency are plotted against

swk0/vw, results for all 64 parameter combinations

collapse onto a single curve for high values of swk0/vw

(Figs. 7b,d). Curves for different uck0/vw values

collapse onto this curve when swk0/vw . 2uck0/vw,

corresponding to sw/uc . 2, that is, when the average

speed at which turbulence is advected past a point is

dominated by wave orbital motion rather than current.

This means that the fraction of the variance or co-

variance below the peak wave frequency depends only

on wave properties and is independent of the current if

sw/uc . 2.

c. Properties of v spectra and dependence on
dimensionless parameters

We now consider how turbulence v-spectrum shapes

vary with the above dimensionless parameters, focusing

on properties that are relevant to interpreting observa-

tions and estimating turbulence parameters. The de-

pendences of spectrum properties on dimensionless

parameters are summarized in Table 2.

1) INERTIAL SUBRANGE (v . 10uck0, v . 10vw)

For frequencies much higher than both the wave fre-

quency and the frequency corresponding to advection of

energy contain eddies by the current, the spectral energy

is increased by wave advection, and there is a positive

FIG. 6. Fraction of total (top) u3
0 variance and (bottom) u1

0–u30 covariance that appears in the spectrum at fre-

quencies less than the frequency corresponding to energy-containing turbulence advected by the current uck0 for

a range of wave conditions and turbulence properties. Results shown correspond to a broadband Gaussian wave

spectrum. (left) Plots of variance or covariance fraction vs velocity ratio sw/uc. Colors indicate different values of

the time-scale ratio uck0/vw. (right) Contours of variance and covariance fraction vs the velocity and time-

scale ratios.
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offset in the spectrum (e.g., Fig. 4), as first described by

Lumley and Terray (1983). Eddies that appear in the

spectrum at these frequencies have length scales much

smaller than the wave orbital excursion (k � vw/sw).

Wave orbital motion together with the current de-

termines the speed at which they are advected past a

sensor. The advection speed varies over a wave cycle;

therefore, energy corresponding to a single-turbulence

wavenumber k is spread across a range of frequencies.

For k . k0, there is a rapid decrease in the turbulent

energy with increasing k. Additionally, for sw/uc . 1,

waves increase the time-averaged advection speed. The

net result is that turbulent energy is observed at higher

frequencies in the presence of waves than when the

turbulence is advected by just a current. For this rea-

son, there is a positive offset in the inertial subrange

part of the spectrum relative to when there are

no waves.

The offset in the high-frequency range of autospectra

has previously been described using a factor I that

multiplies the expression for the 25/3 region in the

absence of waves (Trowbridge and Elgar 2001):

P
11,inertial

(v)5 (18/55)C«2/3u2/3
c v25/3I

P
33,inertial

(v)5 (24/55)C«2/3u2/3
c v25/3I . (24)

If a k25/3 spectral shape is assumed for all wavenumbers,

then an expression for I can be derived by taking the

high-frequency limit of Eq. (21) (see the appendix). For

parallel waves and current, the expression is (see also

Trowbridge and Elgar 2001)

I5
1ffiffiffiffiffiffi
2p

p
ð‘
2‘

�
12

s
w

u
c

x

�2/3

e2(1/2)x2 dx . (25)

The offset in the 25/3 part of the spectrum affects the

estimation of dissipation rates from fits to the high-

frequency portion of autospectra; correction of dissipa-

tion estimates is relatively straightforward.

Similar expressions can be derived for the high-

frequency limit of anisotropic turbulence cospectra, al-

though the dissipation rate cannot be calculated from

the anisotropic cospectrum. At high wavenumbers, the

cospectrum has a k27/3 shape; therefore, cospectra,

FIG. 7. Fraction of (top) total u3
0 variance and (bottom) u1

0–u30 covariance that appears in the spectrum at fre-

quencies less than the wave frequency for a range of wave conditions and turbulence properties. Results shown

correspond to a broadband Gaussian wave spectrum. Panels are plots of variance or covariance fraction vs (left)

wave to current velocity ratio and (right) ratio of rmswave orbital excursion to energy-containing turbulence length

scale. Colors indicate different values of the time-scale ratio uck0/vw.
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when plotted on log scales, have 27/3 slopes for high

frequencies.Wave advection causes an offset in the27/3

part of the v spectrum that is analogous to the offset in

the 25/3 region in autospectra. The offset is also a

function of one parameter sw/uc. It can be shown (see

the appendix) that, for v � vw and v � uck0, Eq. (23)

reduces to

P
13,inertial

(v)5 u0
1u

0
3(uc

k
0
)4/3

7

6p
sin

�
3p

7

�
v27/3J , (26)

where

J5
1ffiffiffiffiffiffi
2p

p
ð‘
2‘

�
12

s
w

u
c

x

�4/3

e2(1/2)x2 dx . (27)

The functional forms of I and J differ due to the different

exponent of k in the k spectrum.

We evaluated the accuracy of these relationships for

spectra that include a low-frequency rolloff (Fig. 1) by

fitting lines with 25/3 and 27/3 slopes to the inertial

subranges of computed autospectra and cospectra on

logarithmic axes. For the autospectra, we present re-

sults only for vertical velocities. Similar results were

obtained in our analyses of horizontal velocities. In

each case, the start and end points for the fit were

determined from the start and end points of the in-

ertial subrange of the corresponding k spectrum.

The low-frequency end point was chosen to be

the larger of klf(uc 1 sw), where klf was the start of

the25/3 (or 27/3) region in the k spectrum and 10vw.

The term klf(uc 1 sw) corresponds to advection of the

largest eddies in the inertial subrange at the speed

uc 1 sw, which is only exceeded 15% of the time for

random waves. The high-frequency end point was

chosen to be vhf5 khf(uc1 sw), where khf was the start

of the dissipation range for autospectra and the Nyquist

wavenumber for cospectra. End points vlf , 10vw and

vhf . vN/8, where vN is the Nyquist frequency, were not

allowed.

The factors I and J were computed from spectral

fits for different current speeds, wave amplitudes,

wave frequencies, and turbulence length scales

(Fig. 8). Both I and J were a function of one variable

sw/uc and were independent of wave frequency and

turbulence length scale (Fig. 8), confirming that

the low-wavenumber rolloff in the turbulence

k spectrum has negligible effect on the25/3 (or27/3)

part of the v spectrum for the range of conditions

considered in this study. Results from the fits to au-

tospectra agreed well with the analytical solution of

Trowbridge and Elgar (2001), which was derived

for a Kolmogorov 25/3 k spectrum with no rolloff or

T
A
B
L
E
2
.
S
u
m
m
a
ry

o
f
d
e
p
e
n
d
e
n
ce

o
f
sp
e
ct
ru
m

p
ro
p
e
rt
ie
s
o
n
d
im

e
n
si
o
n
le
ss

p
a
ra
m
e
te
rs
.

H
ig
h
-f
re
q
u
e
n
cy

w
a
v
e
s

L
o
w
-f
re
q
u
e
n
cy

w
a
v
e
s

u
c
k
0
/v

w
,

1

s
w
/u

c
,

1

u
c
k
0
/v

w
,

1

s
w
/u

c
.

1

u
c
k
0
/v

w
.

1

s
w
/u

c
,

1

u
c
k
0
/v

w
.

1

s
w
/u

c
.

1

F
ra
ct
io
n
o
f
v
a
ri
a
n
ce

in
v
,

u
c
k
0
(F
ig
.
6
)

u
c
k
0
/v

w
u
c
k
0
/v

w
a
n
d
s
w
/u

c
s
w
/u

c
s
w
/u

c

F
ra
ct
io
n
o
f
v
a
ri
a
n
ce

in
v
,

v
w
(F
ig
.
7
)

u
c
k
0
/v

w
a
n
d
s
w
/u

c
s
w
k
0
/v

w
u
c
k
0
/v

w
a
n
d
s
w
/u

c
s
w
k
0
/v

w

O
ff
se
t
o
f
2
5
/3

a
n
d
2
7
/3

re
g
io
n
s
(F
ig
.
8
)

s
w
/u

c
s
w
/u

c
s
w
/u

c
s
w
/u

c

V
P
sp
e
ct
ru
m

h
ig
h
-f
re
q
u
e
n
cy

p
e
a
k
(v

p
e
a
k
;
F
ig
.
9
)

u
c
k
0

s
w
k
0
,
if
s
w
k
0
/v

w
.

2
u
c
k
0

s
w
k
0
,
if
s
w
k
0
/v

w
.

2

V
e
ry

lo
w
-f
re
q
u
e
n
cy

o
ff
se
t
(F
ig
.
1
0
)

N
/A

(n
o
o
ff
se
t)

N
/A

(n
o
o
ff
se
t)

u
c
k
0
/v

w
a
n
d
s
w
/u

c
u
c
k
0
/v

w
a
n
d
s
w
/u

c

A
p
p
a
re
n
t
ro
ll
o
ff
fr
e
q
u
e
n
cy

(v
9
0
;
F
ig
.
1
1
)

u
c
k
0

(s
w
/u

c
)2

1
v
w
,
if
s
w
k
0
/v

w
.

1
(s

w
/u

c
)2

1
v
w
,
if
s
w
k
0
/v

w
.

1
(s

w
/u

c
)2

1
v
w

APRIL 2017 ROSMAN AND GERB I 921



dissipation range. Therefore, dissipation estimates

from Eqs. (24) and (25) are expected to be robust and

independent of details of the turbulence spectrum

and wave spectrum as long as the inertial subrange

spans a sufficient wavenumber range. Results from

fits to cospectra also agreed well with the theoretical

solution [Eq. (27)].

2) INTERMEDIATE FREQUENCY RANGE

(0.5vw , v , 10vw)

In the intermediate-frequency range close to the wave

peak, the shape of the turbulence v spectrum is complex

and depends on the shape of the wave spectrum. For

narrowband waves, there are large distinct fluctuations

in spectral density from 0.5vw to 10vw, with dips in

spectral density at harmonics of the peak wave fre-

quency (Figs. 3, 4). The amplitude of these fluctuations

increases with increasing sw/uc. The fluctuations are

smaller and less well-defined for broadband waves

(Fig. 5).

As shown by Lumley and Terray (1983), the fre-

quency spectrum resulting from advection of turbu-

lence by monochromatic waves with no current is a

line spectrum that can be represented as the sum of

delta functions at harmonics of the wave frequency.

For waves with finite spectral width, the turbulence

frequency spectrum is a sequence of finite-width

peaks, centered at harmonics of the peak wave fre-

quency. The broader the wave spectrum, the broader

are the peaks in the turbulence spectrum and the more

overlap occurs between consecutive harmonics.

When a current occurs with monochromatic waves,

the line peaks at harmonics of the wave frequency are

broadened, and there is a singularity at harmonics of

the wave frequency (Lumley and Terray 1983). For

waves with finite spectral width, these singularities

become ‘‘dips’’ in the turbulence frequency spec-

trum. Therefore, the oscillations in the turbulence

spectrum are larger for larger sw/uc and also larger

and more well-defined for narrower wave spectra

(smaller Dvw/vw; Fig. 5).

3) HIGH-FREQUENCY PEAK IN VARIANCE-
PRESERVING SPECTRUM (2uck0 , v , 10uck0,
v . 2vw)

Although there are large fluctuations in the turbu-

lence v spectrum at frequencies close to the wave peak

(0.5vw , v , 10vw; see previous section), there are

some general trends in the underlying spectrum shape

within this frequency range. For all cases where thewave

orbital excursion is larger than the energy-containing

turbulent eddies (swk0/vw . 2), wave advection results

in a shift of the turbulence rolloff (or peak in variance-

preserving spectrum) to higher frequencies (e.g., Figs. 3,

4, left column). This is because energy-containing length

scales are smaller than the wave orbital excursion;

therefore, wave orbital motion increases the speed at

which eddies, from energy-containing scales through the

inertial subrange, are advected past the sensor. The bulk

of the turbulence spectrum, from the rolloff through the

inertial subrange, is therefore shifted to higher fre-

quencies. If swk0 /vw , 2, there is not a well-defined,

high-frequency peak in the variance-preserving

spectrum.

FIG. 8. Offset of (a) the 25/3 region of autospectra and (b) the 27/3 region of cospectra due to advection of

turbulence by waves. Results shown correspond to a broadband Gaussian wave spectrum. Circles are plots of the

parameters I [Eq. (24)] and J [Eq. (26)] determined fromfits to frequency spectra. Colors indicate turbulence length

scale, which determines the length of the inertial subrange. Results for different turbulence length scales are almost

indistinguishable, indicating that I and J depend only on sw/uc. The dashed lines are the analytical forms for the

functions I [Eq. (25)] and J [Eq. (27)].
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For each spectrum that satisfied the condition

swk0/vw . 2, the frequency of the peak in the variance-

preserving spectrum vpeak was estimated by smoothing

the variance-preserving spectrum to remove oscillations

and selecting the frequency that corresponded to the

maximum in the smoothed spectrum. For sw/uc , 1, the

frequency of the peak is unaffected by wave advection

and vpeak ; 2uck0. For sw/uc . 1, vpeak/uck0 increases

linearly with sw/uc (Fig. 9). This translates to an

vpeak proportional to swk0, corresponding to advec-

tion of energy-containing eddies at the rms wave or-

bital velocity. The dimensionless peak frequency

vpeak/uck0 increasesmore slowlywithsw/uc for cospectra

than for autospectra due to the more rapid decline in

spectral energywith increasingwavenumber in cospectra.

These results suggest that if the wave orbital excursion is

long compared with energy-containing length scales

(swk0/vw . 2), energy-containing turbulence length

scales (L 5 2p/k0) can be estimated from the peak

frequency in the variance-preserving turbulence

v spectrum vpeak together with the ratio of the wave

orbital velocity to current sw/uc.

4) LOW-FREQUENCY RANGE (v, 0.5vw,v, uck0)

The shapes of the low-frequency parts of both auto-

spectra and cospectra resemble those in the absence of

waves (Figs. 3, 4, 5). At very low frequencies, the

spectrum is flat and spectral density does not vary with

FIG. 9. Frequency of high-frequency peak in variance-preserving turbulencev spectra vs wave to current velocity

ratio. Results shown correspond to a broadband Gaussian wave spectrum. Peaks in (a) u3
0 autospectra and (b) u1

0u30

cospectra. Colors indicate values of the parameter uck0/vw. Only spectra with a well-defined peak in the range

v . vw are shown, which correspond to cases where the wave orbital excursion is large compared with energy-

containing turbulence (swk0/vw . 2).

FIG. 10. Value of spectral density function in the very low-frequency part of the spectrum, below the apparent

rolloff frequency, vs wave to current velocity ratio. Results shown correspond to a broadband Gaussian wave

spectrum. Panels correspond to (a) the autospectrum and (b) the cospectrum. Colors indicate different values

of uck0/vw.
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frequency (Figs. 3, 4, 5). We denote the spectral density

in this frequency range as P33,lf. The value of P33,lf in-

creases as sw/uc increases from 0 to 1 and then decays as

sw/uc increases further (Fig. 10a). The offset in P33,lf

associated with waves is greatest for large uck0/vw and

reduces to zero for uck0 /vw , 1. The same pattern oc-

curs for P13,lf.

The rolloff in the spectrum appears to be shifted to

lower frequencies as wave orbital velocities increase

(Figs. 3, 4, 5). The frequency of this apparent rolloff

was estimated as v90, the frequency above which

the spectral density is less than 90% of its value in the

very low frequency, flat part of the spectrum. The

apparent rolloff frequency was determined empiri-

cally from computed spectra and is plotted versus

parameters that control the spectral shape in Fig. 11.

The apparent rolloff frequency decreases as sw/uc
increases (Figs. 11a,c). This effect is more extreme

when uck0/vw is larger, that is, when the wave fre-

quency is lower relative to the frequency corre-

sponding to advection of energy-containing eddies by

the current. When v90 is plotted against swk0/vw the

results collapse onto a single curve (Figs. 11b,d), il-

lustrating that the low-frequency spectral shape, in

dimensionless form, is determined primarily by the

ratio of wave orbital excursion to energy-containing

turbulence length scale. There are small deviations

from this curve according to the value of sw/uc.

The apparent rolloff frequency is constant and in-

dependent of swk0/vw when swk0/vw , 1 (Figs. 11b,d),

corresponding to cases where the wave orbital excursion

is smaller than the size of energy-containing eddies, and

therefore the frequency at which energy-containing

eddies appear in the spectrum is not altered by wave

advection.

It can be shown that in the limit of frequencies much

lower than the wave frequency (v�vw), ifswk0/vw. 1,

Eqs. (21) and (23) reduce to (see the appendix)

P
33
(v)5 e2m[(swk0)/vw]

2[v/(uck0)]
2

P
33,lf

5 e2m(sw/uc)
2(v/vw)

2

P
33,lf

P
13
(v)5 e2m[(swk0)/vw]

2[v/(uck0)]
2

P
13,lf

5 e2m(sw/uc)
2
v/vw

2

P
13,lf

,

(28)

where P33,lf and P33,lf are the spectral densities in the

low-frequency flat parts of the autospectrum and co-

spectrum. Therefore, the low-frequency spectral shape

FIG. 11. Frequency of apparent low-frequency rolloff. Panels are frequency (v90) below which (top) the u3
0

autospectrum and (bottom) the u1
0–u30 cospectrum differs from the value in the low-frequency flat part of the

spectrum by less than 10%.Results are plotted vs (left) ratio of wave orbital velocity to current and (right) ratio of

wave orbital excursion to energy-containing eddy size. The black lines in (b) and (d) are the relationship in

Eq. (29).
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in the presence of waves can be represented by the

constant spectral density at very low frequencies multi-

plied by a factor that decays exponentially with in-

creasing frequency. The decay scale for the spectrum in

dimensionless form is set by swk0/vw. This exponential

decay factor causes the shift of the apparent rolloff to

lower frequency.

From Eq. (28), the apparent rolloff frequency in the

dimensionless spectrum is

v
n

u
c
k
0

5

�
s
w
k
0

v
w

�21
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
1

m
ln
� n

100

�s
, (29)

where n5 100P33(vn)/P33,lf is the spectral density at the

apparent rolloff frequency as a percentage of

the spectral density for v / 0 (e.g., n 5 90% for v90).

The values determined empirically from spectra agreed

very well with Eq. (29) for swk0/vw . 1 (Figs. 11b,d).

Equation (29) can be written in dimensional form as

v
n
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
1

m
ln
� n

100

�s �
s
w

u
c

�21

v
w
. (30)

Therefore, the frequency at which the apparent low-

frequency rolloff occurs in the presence of waves is

proportional to the peak wave frequency and inversely

proportional to sw/uc. The apparent low-frequency

rolloff is therefore independent of the true rolloff that

occurs in the wavenumber spectrum at k ; k0.

4. Summary and conclusions

We have extended previous work that investigated the

kinematic effects of wave advection on fixed-location

observations of inertial subrange turbulence (Lumley and

Terray 1983) by considering the complete range of tur-

bulence length scales, from energy-containing scales to

dissipative scales. Using model turbulence k-spectrum

shapes together with a general form of the frozen tur-

bulence approximation, we investigated the effects of

wave orbital motion on turbulence v spectra across a

wide parameter space that includes conditions typical in

the coastal ocean, extending previous work (Gerbi et al.

2008) to situations where wave orbital velocities exceed

the current. While we found that the high-wavenumber

dissipation range has negligible effect on turbulence

v spectra across frequencies typically of interest, in-

teraction between wave advection and the rolloff at

energy-containing scales significantly affects the shapes

of turbulence v spectra.

We showed that the shapes of v spectra can be ex-

pressed as a function of two key dimensionless parameters:

sw/uc, the ratio of mean advection speed by waves to

the current, and uck0/vw, the ratio of the time scale

associated with waves to the time scale corresponding

to advection of energy-containing turbulence by the

current. The shape of the dimensionless spectrum at

high frequencies is controlled primarily by the param-

eter sw/uc, while the low-frequency spectral shape is

controlled by swk0/vw.

Our analyses illustrated the dependences of charac-

teristic features of v spectra on these dimensionless

parameters (Table 2):

1) The offset due to waves of the 25/3 region of

autospectra and the 27/3 region of cospectra is a

function of sw/uc only, illustrating that the rolloff

and dissipation range have negligible effect on the

inertial subrange in wave-affected v spectra. Pre-

viously proposed methods for estimating dissipa-

tion rate (Trowbridge and Elgar 2001; Feddersen

et al. 2007; Gerbi et al. 2009) are therefore ex-

pected to be robust across a wide range of

conditions.

2) When sw/uc , 1, the peak in the variance-

preserving spectrum occurs at v ; uck0 and is

unaffected by wave advection. If sw/uc. 1 and swk0
/vw . 2, the peak in the variance-preserving spec-

trum occurs at v ; swk0, corresponding to advec-

tion of energy-containing eddies at the rms wave

orbital velocity. In these parameter ranges, turbu-

lence length scales can be estimated from the

frequency of the peak in the variance-preserving

turbulence spectrum if the wave peak can first be

adequately removed.

3) When the wave orbital excursion is smaller than

energy-containing eddies (swk0/vw , 1), the low-

frequency rolloff in autospectra and cospectra

is unaffected by wave advection and occurs at

v ; uck0. When swk0/vw . 1, there is an apparent

rolloff at v ; (sw/uc)
21vw. Previously proposed

methods for estimating Reynolds stresses and turbu-

lence length scales by fitting tomodel spectrum shapes

to the low-frequency portion ofv spectra (Gerbi et al.

2008; Kirincich et al. 2010) should therefore only be

used when swk0/vw , 1 and sw/uc , 2. For larger

values of these parameters, the changes in the spec-

trum shape due to the wave advection derived in this

study must be taken into account.

Our model results have revealed the characteristics of

turbulence v spectra that can be attributed to the purely

kinematic process of advection by wave orbital motion.

Because spectrum shapes collapse according to key di-

mensionless parameters, these parameters can be used

to diagnose when wave advection needs to be taken into

APRIL 2017 ROSMAN AND GERB I 925



account and its effects turbulence spectra. Although

idealized, our model results provide insight into the in-

terpretation fixed-location turbulence observations

and a valuable point of comparison for the complex

spectral shapes that are often computed from field

measurements.
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APPENDIX

Expressions for the Shapes of Turbulence v Spectra

a. Horizontal velocity autospectrum for isotropic
turbulence

An expression for the spectral shape, in frequency

space, can be derived by substituting the form of the

wavenumber spectrum in Eqs. (12)–(13) into Eqs. (6),

(8), and (10). The one-dimensional autospectrum for

u1, along direction x1, in wavenumber space is

E
11
(k

1
)5

ð‘
k1

E(k)

k

�
12

k2
1

k2

�
dk

5C«2/3k25/3
0

ð‘
k1/k0

s0

(s02 1 1)11/6

"
12

(k
1
/k

0
)2

s02

#
ds0

5C«2/3k25/3
0 F

1
(k

1
/k

0
) .

(A1)

The integration variable is s0 5 k/k0, and E11 is defined

such that
Ð ‘
0
E11(k1) dk1 5 u02

1 . Both E11 and F1 are even

functions, that is, E11(2k1)5E11(k1).

Substituting Eq. (A1) into Eq. (10) yields the ex-

pression for the autocorrelation function for turbulent

velocity fluctuations at a fixed location:

R
11
(t)5

1

2

ð‘
2‘

E
11
(k

1
)eik1ucte2k1k1[c11(0)2c11(t)] dk

1

5
1

2
C«2/3k22/3

0

ð‘
2‘

F
1
(s)eisuck0te2k2

0
s2[c11(0)2c11(t)] ds .

(A2)

Here, the integration variable is s 5 k1/k0.

From Eq. (6), the autocorrelation function for wave

orbital excursions is

c
11
(t)5

ð‘
0

eivt
S
u1u1

(v)

v2
dv

5

�
s
w

v
w

�2� v
w

u
c
k
0

�2 ð‘
0

ei[v/(uck0)]uck0t
S
u1u1
* [v/(u

c
k
0
)]

[v/(u
c
k
0
)]2

d[v/(u
c
k
0
)]

5

�
s
w

v
w

�2

F
2
(u

c
k
0
t) . (A3)

The term Su1u1
* is the normalized, one-sided, wave orbital

velocity spectrum formed by first nondimensionalizing

frequency as v/(uck0) and then dividing by the variance

such that
Ð ‘
0
Su1u1
* [v/(uck0)]d[v/(uck0)]5 1.Wedefinem as

m5

�
s
w

v
w

�22ð‘
0

S
x1x1

(v) dv5

�
s
w

v
w

�22ð‘
0

S
u1u1

(v)

v2
dv

5

�
u
c
k
0

v
w

�22ð‘
0

S
u1u1

*[v/(u
c
k
0
)]

[v/(u
c
k
0
)]2

d[v/(u
c
k
0
)] . (A4)

The term m is a factor of order unity that depends

on the shape of the wave orbital velocity spec-

trum. For narrowband waves, m 5 1. From the above

definitions, F2(0)5m, and lim
y/‘

F2(y)5 0. We also de-

fine Sx1x1
* [v/(uck0)] 5Su1u1

* [v/(uck0)]/[v/(uck0)]
2. There-

fore,
Ð ‘
0
Sx1x1
* [v/(uck0)] d[v/(uck0)]5m[vw/(uck0)]

22 and

c11(0)5(sw/vw)
2[vw/(uck0)]

2Ð ‘
0
Sx1x1
* [v/(uck0)]d[v/(uck0)].

Substituting Eq. (A3) into Eq. (A2) gives

R
11
(t)5

1

2
C«2/3k22/3

0

ð‘
2‘

F
1
(s)eisuck0te2s2[(swk0)/vw]

2[m2F2(uck0t)] ds . (A5)

Now substituting Eq. (A5) into Eq. (8) gives
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P
11
(v)5

1

2p

ð‘
2‘

e2ivt R
11
(t) dt

5

�
«

k
0

�2/3
1

u
c
k
0

C

4p

ð‘
2‘

ð‘
2‘

F
1
(s)e2if[v/(uck0)]2sgye2[(uck0)/vw]

2(sw/uc)
2[m2F2( y)]s

2

ds dy

5

�
«

k
0

�2/3
1

u
c
k
0

F
3

�
v

u
c
k
0

,
u
c
k
0

v
w

,
s
w

u
c

,m

�
, (A6)

where the integration variable y5 uck0t. The term P11 is

defined such that
Ð ‘
2‘P11(v) dv5 u0 2

1 . Equation (A6)

gives the form of the dimensionless, two-sided spectrum

in frequency space F3 as a function of the two parame-

ters uck0/vw and swk0/vw and the wave spectrum shape

factor m.

1) HIGH-FREQUENCY LIMIT

For k/k0 � 1 (s0 � 1), for positive s, F1 reduces to

F
1
(s)5

ð‘
s

sgn(s0)s028/3

�
12

s2

s02

�
ds0 5

18

55
s25/3 . (A7)

The term F1 is even, so for negative s, F1(s) 5
18/55jsj25/3. Following Trowbridge and Elgar (2001), in

the limit of high frequencies (short times), the autocor-

relation function can be expressed as

c
11
(t)5 hx

1
(t)x

1
(t1 t)i5 s2

w

v2
w

"
m2

1

2

�
v
w

u
c
k
0

�2

(u
c
k
0
t)2

#
.

(A8)

This result is obtained by expanding x in a Taylor ex-

pansion around x(t).

Substituting Eq. (A8) into Eq. (A6) and using the

substitution y 5 uck0t yields

P
11
(v)5

1

4p

18

55
C

1

u
c
k
0

(«/k
0
)2/3

ð‘
2‘

jsj25/3

ð‘
2‘

e2if[v/(uck0)]2sgye2(sw/uc)
2(1/2)y2s2 ds dy . (A9)

The integral with respect to y can be evaluated using standard integral tables, yielding

P
11
(v)5

ffiffiffiffiffiffi
2p

p

4p

18

55
C

1

u
c
k
0

(«/k
0
)2/3(s

w
/u

c
)21

ð‘
2‘

jsj28/3 exp(2f[v/(u
c
k
0
)]2 sg2/2(s

w
/u

c
)2s2) ds .

Now using the variable substitution z5 [v/(uck0)]s
21,

P
11
(v)5

1ffiffiffiffiffiffi
2p

p 9

55
C(«u

c
)2/3jvj25/3(s

w
/u

c
)21

ð‘
2‘

jzj2/3e2(1/2)(sw/uc)
22(12z)2 dz ,

and substituting x5 (uc/sw)(12 z) gives

P
11
(v)5

9

55
C(«u

c
)2/3jvj25/3 1ffiffiffiffiffiffi

2p
p

ð‘
2‘

				12s
w

u
c

x

				
2/3

e2(1/2)x2 dx5
9

55
C(«u

c
)2/3jvj25/3

I , (A10)

where I5 (1/
ffiffiffiffiffiffi
2p

p
)
Ð ‘
2‘j12 (sw/uc)xj2/3e2(1/2)x2 dx. The expression for the 25/3 region in the absence of waves is

P
11
(v)5

1

2
E

11
[k

1
(v)]

dk
1

dv
5

9

55
C(«u

c
)2/3jvj25/3 . (A11)

Therefore, the spectral density is increased by a factor I by wave advection. This and similar expressions have been used

previously to calculate dissipation rates from 25/3 fits to spectra in the presence of waves (e.g., Trowbridge and

Elgar 2001).
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2) LOW-FREQUENCY LIMIT

We now consider the apparent rolloff at frequencies v , vw. Assuming Sx1x1
* is Gaussian [Eq. (17)],

S
x1x1
* [v/(u

c
k
0
)]5m[v

w
/(u

c
k
0
)]22 1ffiffiffiffiffiffi

2p
p

(Dv
w
/v

w
)[v

w
/(u

c
k
0
)]
exp

(
2
[v/(u

c
k
0
)2v

w
/(u

c
k
0
)]2

2(Dv
w
/v

w
)2[v

w
/(u

c
k
0
)]2

)
.

From Eq. (A3), using standard integral tables,

F
2
(y)5 [v

w
/(u

c
k
0
)]2

ð‘
0

ei[v/(uck0)]yS
x1x1
* [v/(u

c
k
0
)]d[v/(u

c
k
0
)]

5
mffiffiffiffiffiffi

2p
p

(Dv
w
/v

w
)[v

w
/(u

c
k
0
)]

ð‘
0

ei[v/(uck0)]y exp

(
2
[v/(u

c
k
0
)2v

w
/(u

c
k
0
)]2

2(Dv
w
/v

w
)2[v

w
/(u

c
k
0
)]2

)
d[v/(u

c
k
0
)]

5mei[vw/(uck0)]ye2(1/2)(Dv/vw)
2[vw/(uck0)]

2y2 . (A12)

For (Dvw/vw)[vw/(uck0)]. 1, F2 decays to zero quickly with increasing y. The term F2 decays to zero more quickly

and with fewer oscillations for broadband than narrowband waves.

The ratio of the spectral density at frequency v relative to its constant value at small v is

P
11
(v)

P
11,lf

5

ð‘
2‘

ð‘
2‘

F
1
(s)e2if[v/(uck0)]2sgye2s2[(swk0)/vw]

2[m2F2(y)] ds dyð‘
2‘

ð‘
2‘

F
1
(s)eisye2s2[(swk0)/vw]

2[m2F2(y)] ds dy

5

ð‘
2‘

ð‘
2‘

F
1
(s)e2if[v/(uck0)]2sgye2s2[(swk0)/vw]

2m(12expfi[vw/(uck0)]ygexpf2(1/2)(Dvw/vw)
2
i[vw/(uck0)]y

2g) ds dyð‘
2‘

ð‘
2‘

F
1
(s)eisye2s2[(swk0)/vw]

2m(12expfi[vw/(uck0)]ygexpf2(1/2)(Dvw/vw)
2[vw/(uck0)]

2y2g) ds dy
.

Using the variable substitutions z5 [vw/(uck0)]y and x5 [vw/(uck0)]
21fs2 [v/(uck0)]g,

P
11
(v)

P
11,lf

5

ð‘
2‘

F
1
f[v

w
/(u

c
k
0
)]x1 [v/(u

c
k
0
)]g

ð‘
2‘

eixze2f[vw /(uck0)]x1[v/(uck0)]g2[(swk0)/vw ]
2
mf12exp(iz)exp[2(1/2)(Dvw /vw)

2
z2]g dz dxð‘

2‘

F
1
f[v

w
/(u

c
k
0
)]xg

ð‘
2‘

eixze2x2[vw /(uck0)]
2[(swk0)/vw]

2
mf12exp(iz) exp[2(1/2)(Dvw /vw)

2
z2]g dz dx

5 e2m[(swk0)/vw]
2[v/(uck0)]

2

0
BB@
ð‘
2‘

F
1
f[v

w
/(u

c
k
0
)][x1 (v/v

w
)]ge2m(sw /uc)

2[x12(v/vw)]x

ð‘
2‘

eixzem(sw /uc)
2[x1(v/vw)]

2exp(iz)exp[2(1/2)(Dvw /vw)
2
z2] dz dxð‘

2‘

F
1
f[v

w
/(u

c
k
0
)]xge2m(sw /uc)

2
x2
ð‘
2‘

eixzem(sw /uc)
2
x2 exp(iz) exp[2(1/2)(Dvw /vw)

2
z2] dz dx

1
CCA

’ e2m[(swk0)/vw]
2[v/(uck0)]

2

.

(A13)

In the last step, we assumed F1f[vw/(uck0)]x1
[v/(uck0)]g’F1f[vw/(uck0)]xg. The rolloff in F1(s)

occurs at s 5 1. Since the exponential in the outside

integral has decay scale [m1/2(sw/uc)]
21 ’ (sw/uc)

21,

the integrand is dominated by x, (sw/uc)
21 or equiv-

alently [vw/(uck0)]x, [vw/(swk0)]. The assumption

F1f[vw/(uck0)]x 1 [v/(uck0)]g ’ F1f[vw/(uck0)]xg is

therefore reasonable if both v/(uck0) � 1 and

vw/(swk0) , 1.

From Eq. (A13), v/(uck0) � 1 is guaranteed if

P
11
(v

n
)

P
11,lf

5
n

100
5 e2m[(swk0)/vw]

2[vn/(uck0)]
2

� e2m[(swk0)/vw]
2

s
w
k
0

v
w

�
�
2
1

m
ln
� n

100

��1/2
, (A14)

where n is the spectral density at frequency vn as a

percentage of the spectral density for v/ 0. For n5 90,
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Eq. (A14) yields (s
w
k
0
)/v

w
� 0:3. Therefore, for n 5

90, all these criteria are satisfied if (s
w
k
0
)/v

w
. 1, that is,

if the wave orbital excursion is larger than the energy-

containing turbulent eddies.

b. Vertical velocity autospectrum for isotropic
turbulence

The 1D autospectrum for u3 along direction x1 in

wavenumber space is

E
33
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1
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1
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�
E
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1
)2k

1

dE
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12
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1
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5
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ð‘
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s0
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1
/k
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s02
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5C«2/3k25/3
0 G

1
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1
/k

0
) . (A15)

The remainder of the analysis follows that for the u1
autospectrum. The final result is given in Eqs. (21)

and (22).

1) HIGH-FREQUENCY LIMIT

The only difference between the high-frequency limit

for vertical and horizontal velocity components is the

difference between F1 and G1. In the high-frequency

limit,

G
1
(s)5

1

2

ð‘
s

js0j28/3

�
11

s2

s02

�
ds0 5

24

55
jsj25/3 . (A16)

Therefore, in the high-frequency limit,

P
33
(v)5

12

55
C(«u

c
)2/3v25/3I , (A17)

where I is the same as for the horizontal velocity auto-

spectrum [Eq. (A10)].

2) LOW-FREQUENCY LIMIT

The derivation for the low-frequency apparent rolloff

in the vertical velocity autospectrum follows that for the

horizontal spectrum exactly. For low frequencies, the

spectral density at frequency v relative to its constant

value for very low frequencies is

P
33
(v)

P
33,lf

’ e2m[(swk0)/vw]
2[v/(uck0)]

2

. (A18)

c. Cospectrum for anisotropic turbulence

The equation for the one-sided cospectrum in wave-

number space is

E
13
(k

1
)5

u0
1u

0
3

k
0

7

3p
sin

�
3p

7

�
1

11 jk
1
/k

0
j7/3

. (A19)

Substituting this into Eq. (10) yields

R
13
(t)5

1

2

ð‘
2‘

E
13
(k

1
)e2ik1ucte2k1k1[c11(0)2c11(t)] dk

1

5u0
1u

0
3

7

6p
sin

�
3p

7

�ð‘
2‘

1

11 jsj7/3
e2ik0uctse2s2k2

0
[c11(0)2c11(t)] ds , (A20)

where s 5 k1/k0. Substituting Eq. (A3) into Eq. (A20) gives

R
13
(t)5 u0

1u
0
3

7

6p
sin

�
3p

7

�ð‘
2‘

1

11 jsj7/3
e2ik0uctse2s2[(swk0)/vw]

2[m2F2(uck0t)] ds . (A21)

Now, substituting this into Eq. (8) with the variable substitution y 5 uck0t yields

APRIL 2017 ROSMAN AND GERB I 929



P
13
(v)5

1

2p

ð‘
2‘

e2ivtR
13
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1u

0
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u
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0

7

12p2
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�
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7

�ð‘
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ð‘
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1

11 jsj7/3
e2if[v/(uck0)]2sgye2[(uck0)/vw]
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2[m2F2(y)]s

2
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5
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1u

0
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u
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0

H
3

�
v

u
c
k
0

,
u
c
k
0

v
w

,
s
w

u
c

,m

�
. (A22)

1) HIGH-FREQUENCY LIMIT

The offset of the 27/3 region of cospectra can be derived in a similar way to the offset of the 25/3 region of

autospectra. Substituting Eq. (A9) into Eq. (A22) yields
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�ð‘
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2
s2y2 ds dy .

In the limit of high wavenumbers (s � 1), this expression reduces to
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The integral with respect to y can be evaluated using standard integral tables, yielding
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Now using the variable substitution z5 [v/(uck0)](1/s),
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and substituting x5 (uc/sw)(12 z) gives
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where

J(sw/uc)5 (1/
ffiffiffiffiffiffi
2p

p
)
Ð ‘
2‘j12(sw/uc)xj4/3exp[2(1/2)x2]dx.

Comparing with the expression for no waves,
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Therefore, J is the ratio of the spectral density in the27/3

region in the presence of waves to that in the absence of

waves and is analogous to I for isotropic turbulence

autospectra.

2) LOW-FREQUENCY LIMIT

The derivation for the apparent rolloff in P13 at fre-

quencies v , vw follows the corresponding derivation

for P11 exactly. In the low-frequency limit,

P
13
(v)

P
13,lf

’ e2m[(swk0)/vw]
2[v/(uck0)]

2

. (A25)
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