
 

 

 

 

 

 

 

Capstone Project: Real Time Musical Audio Detection, 

Conversion & Transcription 

 

ECE-499: Capstone Design Project Part III 

By Ian Krause & Raphael Sebastian II 

Advisor: Aussie Schnore 

March 21​st​ 2019 

 

 

 

 

 

 

 

 

 

 



 

1 

Report Summary 

The following report details the design process, implementation, and results of a system             

intended to transcribe music to MIDI and sheet music in real-time. The system is intended to use                 

an electric guitar as its input instrument, and record and process the instrument’s output using a                

computer or microcontroller. It is written in the Python programming language and uses several              

Python-specific libraries and modules. The system is intended to assist DIY musicians with             

limited music theory knowledge, and to be low-cost and open source. The project focused on               

monophonic audio transcription, or music with one note at a time (no chords), with a tempo less                 

than or equal to 120 BPM, though research was done into polyphonic transcription, which              

requires a significantly more complex algorithm. The major design goals were that the system be               

roughly the size of a large guitar pedal currently on the market, have a low transcription error                 

rate at 120 BPM and below, operate in real-time, and be low cost and easy to use/improve upon.                  

The final system meets many of the initial design goals, though its error rate is much higher than                  

we had hoped due in large part to the complexities of a real-time processing and scheduling, and                 

harmonic transients that interfered with our peak-based pitch detection method.  
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Terminology 

● MIDI - Musical Instrument Digital Interface -  a file format and technical communication 

protocol that carries data for pitch, volume, rhythm, and tempo. 

● MIDI Data - Processed data that contains the elements needed to generate a MIDI note or 

series of MIDI notes. 

● DAW - Digital Audio Workstation - an application software that records, edits, and 

processes audio files. 

● FFT - Fast Fourier Transform - an algorithm that computes the Discrete Fourier 

Transform of a sequence from the time domain to the frequency domain. 

● MIR - Musical Information Retrieval - a small but growing interdisciplinary field focused 

on retrieving information from music. 

● ISMIR - The International Society for Music Information Retrieval - a non-profit 

organization which oversees the ISMIR conference and is the world’s leading research 

forum on processing, searching, organising and accessing music-related data. 

● AMT - Automatic Music Transcription - The capability of transcribing music audio into 

music notation using computational algorithms. 

● BPM - Beats Per Minute, a musical unit describing the tempo of a song based on how 

many quarter notes, or “beats,” occur in a minute of music. 

● PyAudio - Is a Python module that allows programmers to capture audio with Python and 

manipulate it easily. 
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● NumPy - NumPy is a library for the Python programming language, adding support for 

large, multi-dimensional arrays and matrices, along with a large collection of high-level 

mathematical functions to operate on these arrays. 

● LilyPond - LilyPond is a Python module and file format for music engraving. One of 

LilyPond's major goals is to produce scores that are engraved with traditional layout 

rules, reflecting the era when scores were engraved by hand. 
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Introduction 

Since digital musicians deal in MIDI files, and analog musicians deal in Western notated              

sheet music, it seems vital that a tool be developed that can easily transcribe between the two.                 

Currently, the toolset available is expensive and bloated, a mere ad-on feature of sheet music               

composition software, or a subscription service early in its infancy. Free options have limited              

features and require payment for full features. In addition, most programs aren’t designed to              

seamlessly generate audio recordings, MIDI files, and sheet music. The goal of this project is to                

produce a system that will allow users to easily generate recorded audio, MIDI, and sheet music                

automatically, in real-time, and with low cost and complexity. The following paper details our              

design for converting analog monophonic audio from a single instrument to MIDI files and sheet               

music, with the goal being low error transcriptions, low cost hardware, and a final system that is                 

modular enough to be built upon and recreated by others. We also cover ideas for polyphonic                

transcription, though the data acquisition process varies significantly and is much more difficult             

due to the nature of polyphonic audio.  

 

1 | BACKGROUND 

With the advent of the digital age, it has become possible for any driven artist to become                 

a musician. Some musicians work exclusively using digital software-based tools while others            

prefer to work using sheet music and physical instruments. Digital musicians use Digital Audio              

Workstations (DAWs) to produce their work and record using MIDI (Musical Instrument Digital             

Interface), but often do not have a solid background in music theory. Traditional musicians tend               

to work mostly with physical instruments and record their work using sheet music of some kind,                
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which requires knowledge of music theory. As a result, musicians with vastly different             

experiences and music education backgrounds end up collaborating on many projects. Therefore,            

a tool for transposing analog audio signals to MIDI files, sheet music, tablature, and other               

representations of music is necessary for modern musicians on a limited budget who want to               

work together on complex projects. Traditional musicians benefit from transposing their music            

directly to MIDI files that can be manipulated much more precisely than raw audio recordings               

using a DAW.  

The goal of this project is to complete a compact, affordable, all-in-one system that              

bridges the gap between traditional and digital musicians by recording a raw analog signal,              

transposing from analog audio to sheet music, and creating midi files. Currently, in the market,               

musicians are limited to pricey subscription-based services, like Lunaverus and Scorecloud, that            

hide many of the more valuable benefits of basic conversion behind a paywall or simply do not                 

include them at all. The other market options are professional musical transcription software             

such as Finale or Sibelius, that can cost hundreds of dollars just to get access to their mid-tier                  

version. The other issue with these services is that the transcription error rates they report for                

testing don’t need to be on extreme test cases, so their software could be worse than they report. 

In the world of Academia the problem we are attempting to tackle is fundamental to the                

rapidly growing field of Music Information Retrieval (MIR), called Automatic Music           

Transcription (AMT). AMT is an end to end process consisting of many components, including              

pitch detection[1][3][5] and note onset detection[1], each of which have had multiple papers             

examining them. Only fairly recently, with the development of machine learning, have            
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researchers attempted to complete the full end-to-end process[2], and there has yet to be a               

conclusive result as to which method is the best. 

The three different papers discussing approaches to pitch detection we focused on            

include: “​Towards Complete Polyphonic Music Transcription: Integrating Multi-Pitch Detection         

and Rhythm Quantization,” which outlines the standard approach to complete AMT (signal to             

midi to sheet music) and goes into depth about using the Hidden Markov Model to detect the                 

pitch and rhythm of a polyphonic signal[1], ​“Polyphonic Pitch Tracking with Deep Layered             

Learning” which discusses polyphonic pitch detection and rhythm detection by way of cascading             

Neural Networks[3], and “Using a Pitch Detector for Onset Detection,” which discusses a             

method to detect pitch and offset of a monophonic signal[5]. Another paper, “An End-To-End              

Framework For Audio-To-Score Music Transcription On Monophonic Excerpts,” focused on          

tend-to-end AMT, which takes a monophonic signal and skips the conversion to an intermediate              

stage (piano-roll data) and goes straight to sheet music using a Convolutional Recurrent Neural              

Network[2]. 

It’s one thing if our final product works, but it’s another if it works and is unethical, so                  

we must consider the ethical implications of the project. ​Since the goal of our device is to                 

transcribe music, a task that is currently reserved for people who went to music school or at the                  

very least studied music theory in some context, it could be argued that our device could put                 

people out of work, or cause harm to music theory learning institutions. This is not the case. Our                  

tool cannot replace the role of humans in transcribing music, it simply makes it easier for                

musicians without theory knowledge to create sheet music and work with their music in DAWs.               
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The ability to interpret and error check traditional music transcription remains a skill that must               

be learned from professionals.  

The other ethical consideration is that this technology could be used for music industry              

gatekeeping if it were to become a large part of the music industry. Making a cost-effective                

system, and specifically preventing it from becoming bloated, over-complicated, and overpriced           

is essential to our goal. An all-in-one system is our final goal, or if this is not possible, a small                    

system that is connected to an external computer running software. Keeping the tech small-scale              

and musician oriented is our utmost priority. This will prevent industry giants from limiting the               

distribution of our tech, should it become an industry standard. 

 

2 | DESIGN REQUIREMENTS 

We came up with the following design specifications for our final product in order for it                

to function well and produce results we are satisfied with. This section acts as both a reference                 

for technical specifications, and for more broad goals and stretch objectives. The section is              

broken down into categories with items that are either demands, marked D, or wishes, marked               

W.  

● Performance 

○ The system must be able to take a monophonic signal as input (D) 

○ The system must be able to take a polyphonic signal as input (W)  

○ The system must be able to take audio files as input (D) 

○ The system must be able to produce MIDI output that can be used with external 

audio processing software (D) 
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○ The system must operate with an overall percent error of less than 30% for 

polyphonic transcription (at ≤ 120 BPM)[1](D) 

○ Working monophonic transcription error of less than 20% (at BPM ≤ 120)[1] (D) 

○ The system should transcribe in real time to facilitate creativity and to be practical 

for the user (W) 

○ The system should have a user-set tempo that can go up to at least 150 BPM[1] 

(W) 

● Geometry 

○ The size of the system will most likely be small by virtue of the fact that we plan 

to use a microcontroller, but we hope that it will be the size of a large guitar pedal 

(W). 

● Economic  

○ The parts for the system should cost no more than $150 (W) 

○ The whole system should be cheaper than similar proprietary software to recreate 

(W) 

● Energy 

○ The system should be able to be powered by a standard 9V or 12V power source 

(W) 

● Environmental & Safety 

○ Should operate at given constraints for room temperature (approx. 25​° C) ​(D) 

○ System should be properly grounded and use low voltage so as to be safe for user 

contact (D) 

● User Interface 

○ The user interface should display information about the system BPM, which note 

is being read, how long the recording has been running, whether it’s recording or 

not, and whether or not it’s powered (D) 

○ The user should have access to each of the steps of the full AMT process (i.e. just 

MIDI to sheet music, or just audio to MIDI, etc.) (D) 



 

11 

○ The user should be able to select when the system begins and ends recording (D) 

● Materials 

○ The prototype will most likely be made in a rectangular wood or aluminum case 

so that it is easy to customize for the project constraints (W) 

● Manufacturability 

○ We will document our device creation process well enough to be reproduced by 

other students if they want to continue and improve out work (W) 

○ The system will use off the shelf components that can be utilized easily for 

replicating the device (W) 

● Social and Cultural 

○  By creating this device, we bridge an important generational & technological 

divide and help to preserve traditional music notation and make it more accessible 

to digital musicians. The design we choose should not make music notation 

obsolete, but should increase the ease with which it can be used. (W) 

● Aesthetics 

○ The system will have a minimalist design that emphasizes practicality and 

functionality (W) 

● Engineering standards 

○ Adhere to applicable IEEE standards and restrictions (D) 

 

3 | PRELIMINARY PROPOSED DESIGN 

High Level Design & Hardware 

Fundamentally, our design is simple (Fig. 1). The system will take audio generated by an               

instrument as its input, detect when notes begin, analyze those notes frequency to determine their               

pitch, and detect when they end. Then it will process and package this data, combining it with                 

other known, externally provided information (BPM, start time) to generate MIDI data that can              



 

12 

be turned into a MIDI file, be translated into sheet music, or both. The process is similar for                  

polyphonic audio, but we use different methods to achieve the same MIDI data, which is then                

converted to MIDI files or sheet music.  

Figure 1: Functional Decomposition of Monophonic Signal Transcription 

To functionally implement our specific design (Fig. 2), we have chosen to focus on the               

guitar as our instrument of choice for audio signal generation. We will connect it to a direct                 

injection box (DI box) which is essentially a transformer that balances the signal coming from               

the guitar and boosts signal strength, and we will connect the DI box to the Raspberry Pi 4 with                   

our Python-based audio to MIDI software via USB. The Raspberry Pi can then output whichever               

file is preferred via USB to an external computer. The Pi can output MIDI to a computer with a                   

DAW installed for editing MIDI and producing music, or it can output the finished sheet music                

as a MusicXML file to be edited or as a PDF. 

We will use a Behringer passive DI box, which is an inexpensive box that will work well                 

for balancing our signal and converting the high output impedance signal source (on the order of                

50k Ohms) to a low impedance source (100-200 Ohm range)[6]. We will connect the DI box to                 

the Raspberry Pi using an XLR to USB cable. The Raspberry Pi will process the signal and                 

output the chosen file type, then output via USB to a PC. 
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Figure 2: Hardware Configuration 

Low Level Design and Software 

The process that the Python-based Raspberry Pi code follows for monophonic audio            

consists essentially of converting the time domain audio signal into the frequency domain,             

searching for the highest amplitude peaks and detecting their frequencies, detecting their onset             

times, then associating them with the closest pitch that is recognized as a note in Western music                 

notation, and detecting its offset time. It simultaneously records the audio in the time domain,               

and packages the MIDI data into MIDI files which are converted to sheet music afterwards using                

an outsourced Python module called LilyPond. Monophonic audio can be analyzed in real time,              

or from pre-recorded audio using our current planned implementation. Polyphonic audio will            

likely require analysis from recorded audio because of the added complexity of a machine              

learning algorithm, however we need to do additional testing to figure out how feasible real time                

polyphonic transcription may be. 
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Figure 3: Raw Monophonic Audio 

Fig. 3 contains an example of a monophonic signal we might get. This signal is in the                 

time domain, thus its y-axis corresponds to the amplitude (volume) of the signal. In order to                

extract frequency data from this signal, we have to apply a Fourier Transform of some type in                 

order to get it into the frequency domain. 

  
Figure 4: FFT of Monophonic Signal 

Fig. 4 shows the result of running the original signal through a Discrete Fourier Fourier               

transform, also known as a fast Fourier Transform (FFT) in Matlab. The x-axis is the frequency                
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and the y-axis is the amplitude of the spectrum frequency. The next step was learning how to                 

obtain FFTs in real-time, and the algorithm we used along with some important functions are               

shown in Fig. 5, while the results of entering a pure tone (whistling) into the real time FFT are                   

shown in Fig. 6 (code in Appendix B). 

  
Figure 5: Algorithm  for the Spectrum Analyzer 

 
Figure 6: Spectrum Analyzer Response to Pure Tone 

Fig. 6 demonstrates that when we create a pure tone, we receive the fundamental              

frequency as the highest peak, and then its harmonics afterwards. This means that in order to get                 

the pitch of a monophonic signal, all we need to do is find the maximum value of the spectrum                   

analyzer to get the fundamental frequency and convert that frequency to a pitch. The algorithm               

for it is roughly described in Fig. 7. 
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Figure 7: Potential Algorithm for Pitch Detection 

 
Figure 8: Alternate Functional Decomposition of Polyphonic Signal Transcription 

In terms of the next steps, we need to figure out how to detect note onset and offset to get                    

rhythm data of a monophonic signal[5] and then we can create a midi note, and we can then                  

create sheet music from the ability to find midi notes. Once we figure out how to create sheet                  

music for Monophonic signals, we must figure out how to do the same for polyphonic signals.                

The approach for polyphonic signals (Fig. 9) is to use one of the Machine Learning methods                

described in the ​Nakamura paper​[1] and the ​Elowsson paper​[3], in order to detect note pitch,               

offset and offset in order to create MIDI data. 
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4 | DESIGN ALTERNATIVES 

 

Figure 9: High-Level Functional Decomposition 

The fundamental idea behind this system is to take output from a real instrument (in our                

testing we will use a guitar), convert that input to MIDI and sheet music and export it to a                   

computer with a DAW (Fig. 9). There are multiple ways that we considered creating this system.                

One way was taking a similar approach to the paper by ​Román et al.​[2] and creating the sheet                  

music directly from the signal itself while we create the midi data in a separate process. We                 

decided against this approach for multiple reasons. The biggest reason being that it only worked               

for monophonic signals and we wanted the ability to detect polyphonic signals. On top of this,                

since it uses deep learning to create sheet music data while also trying to create midi data in an                   

entirely separate process, the processing power required would be immense and slow the system              

down. For these reasons, we decided to approach this problem by using the MIDI data to help                 

build the sheet music.  

The challenge once we decided to take this approach was to decide how we would create                

the MIDI data and how we would build the sheet music, both of which have multiple approaches.                 

The MIDI data could be generated by Machine Learning methods/Convolutional Neural           

Networks being run on the signals, or, if we are just working with monophonic signals, it can be                  

done with Fourier Transforms to get the pitch and some calculus in order to calculate the onset                 
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and offset times[5]. Machine learning has parameters that can be trained to accurately predict              

complex results. The main downside is that it requires a decent amount of storage and isn’t                

computationally efficient. Another idea we had was generating a look-up table of wave forms              

that we could reference in order to quickly identify frames of data. We decided fourier               

transforms would be best for monophonic signals, due to their computational simplicity, and             

Machine Learning for polyphonic signals due to their compositional complexity, though we did             

not get there.  

Once we have the MIDI data we must convert that into sheet music and that can also be                  

done in a variety of ways. One approach is to export the MIDI data to an external program that                   

automatically creates sheet music from MIDI. The other way to go about this is to use a musical                  

transcription programing module such as Lilypond. We decided to go with Lilypond in order to               

allow us maximum control of the system and because it has a function to automatically create                

sheet music from a MIDI file, though we did not integrate this feature into our final version, it is                   

trivial using the system we’ve created. 

 

5 | FINAL DESIGN & IMPLEMENTATION - Ian & Rafi 

Hardware Implementation 

We used the following setup to record audio from an electric guitar for MIDI conversion;               

the guitar was connected via a ¼” instrument cable to a passive direct injection box. The DI box                  

was connected with an XLR to USB 2.0 cable with a built-in ADC. This was connected to the                  

computer, which could be the Raspberry Pi, or a standard laptop or desktop capable of running                

depending on user preference. For the final tested system iteration, the system ran on a laptop                
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with Windows 10. No additional hardware was required, but if desired, the user is able to                

connect the parallel output of the DI box to an amplifier to better hear themselves, and make sure                  

their note accentuation is precise enough to ensure good detection. 

 
Figure 10: Hardware Diagram 

 
Figure 11: Optional DI Configuration for External Amplification 

Pitch & Rhythm Detection Algorithm Implementation 

The fundamental idea of this process is to check every frame of data read in from the                 

guitar, calculate and store the frequency values and assign a made up number to that frame, so                 

that it can be referenced in the future. There are some frames that can be disposed of                 

immediately as they are just noise but others that need to be tracked no matter what, so as a result                    

we determine MIDI data after the real-time stream is done. The overall algorithm for our design                

is shown below in Figure ø.  
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Figure ø: Real-Time Sheet Music Generation Algorithm 

Step 1 of the algorithm is handled by the Pyaudio non-blocking mode stream pulling in               

data every TimePerTick (variable defining how long a tick lasts) seconds. Step 2 is handled               

using Scipy’s FFT function in order to perform a discrete fourier transform to get frequency data                

in Numpy format, then we find the max of that array in order to find the fundamental frequency                  

of the frame for step 3. Steps 4 through 6 are handled by lines 187 - 227 of the code.  

 
 f​ = 440*2^((n-69)/12) 

Equation ¥: Conversion from Frequency to MIDI Note Value 

These lines store and process the read pitch data through a series of if-statements in order to 

calculate MIDI data based on equation ¥ the tick number of the frame being processed. These 

checks are supposed to determine the MIDI value read for the frame’s fundamental frequency, 

whether we care about it and whether it is a part of a note or just noise. If the frame is the last of 

a MIDI note, then the MIDI note value is displayed along with its onset and duration in ticks. 

Step 7 of the algorithm is completed by the buildMIDI() function, which cycles through the data 

stored from the real-time processing. Step 8 is discussed in the next section 
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File Creation Implementation 

The file creation is the most crucial step, as this is the step that builds the usable end                  

product for the target audience of the project. As the program runs, the raw audio is stored as a                   

.WAV file while the data for the MIDI file is being calculated and stored in real-time based on                  

the raw audio. This MIDI file is stored in the same folder the program is being run from, as is the                     

.WAV. 

 

6 | PERFORMANCE ESTIMATES & RESULTS 

The physical components of the system were expected to be less than $150 and be about                

the size of a large guitar pedal. We were able to achieve both, as the total cost of the system is                     

$95.98, including the Raspberry Pi, and the system is just a USB to XLR cord, a ¼” instrument                  

cable and a D/I Box. 

The expected runtime performance for this system was to run in real time with a total                

accuracy rate of 80% and was mostly based around rough estimates of how other papers did in                 

this category. In order to test our design, we ran 6 total tests on the MIDI data, three playing the                    

C scale at 60, 90 and 120 BPM and the others playing the E scale at 60, 90, and 120 BPM. We                      

then used this to calculate a pitch accuracy, rhythmic accuracy and total accuracy. Pitch              

Accuracy was measured by if each of the notes appeared within the scale, within the time played.                 

Rhythmic Accuracy was determined by if there was a MIDI Note with an onset on each beat.                 

The total accuracy was determined by if the note was both Rhythmically accurate and had an                

accurate pitch. The MIDI files generated by the tests can be viewed in Appendix D and below                 

are the results of the 6 tests: 
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Musical Scale C* E C* E C E C E 

BPM 60 90 120 Avg 

Pitch Detection 
Accuracy 77.80% 44.44% 100% 55.60% 55.60% 44.44% 75.33% 48% 

Rhythm Detection 
Accuracy 55.60% 44.44% 44.44% 22.22% 55.60% 22.22% 53.67% 29.33% 

Total Accuracy 44.44% 44.44% 44.44% 22.22% 55.60% 22.22% 46.67% 38.67% 
*Denotes Test generated extra note 

Table 1: Performance Test Results 

While these results are less than stellar, this was a test on the first iteration of the full working                   

system and the data was neither quantized nor cleaned up after initial recording. These are both                

common techniques done automatically by many real time recording softwares and we ran out of               

time to implement it. Another reason the performance could have been so poor is that our                

algorithm may be fundamentally flawed (i.e. an error in our logic) or there is an error in our code                   

(i.e. an error in our implementation). While the latter is more likely, some more iterations of this                 

algorithm and a couple more tests could prove the former true. 

 

7 | PRODUCTION SCHEDULE 

Over Winter Break: ​We continued research on pitch detection and rhythm detection methods. 

Weeks 1-2: ​We worked on transitioning from our real-time visualization code to fundamental 

frequency recognition, using the peak frequency in the Fourier domain as our presumed 

fundamental pitch. We also implemented a formula for converting raw frequency to a MIDI note 

number. 
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Weeks 3-5:​ We devised a simple system using common, low cost, off-the-shelf devices to 

connect a guitar almost directly to the computer, and purchased these parts. We modified the 

code to work on a Raspberry Pi to verify that it could meet our dimension requirements. We 

continued work on our algorithm, discovering that pitch and rhythm detection must be built 

together to generate MIDI files and minimize error. This led to breakthroughs in our code, 

namely waiting for a frequency to be detected in multiple consecutive samples before declaring it 

a note, and setting hard limits on the lowest and highest notes that could be detected, which 

eliminated transients and false detections. 

Weeks 6-7: ​We began working through major difficulties with rhythm detection that prevented 

us from collecting audio at a fixed rate. We profiled our code to figure out which operations took 

the longest and what we could do to make each sample take less time. We changed our algorithm 

to use non-blocking mode and added a timer. We also reexamined what happened to the 

frequency domain signal in real-time (since we were able to use direct input from the guitar to 

the computer) and discovered harmonic transients that made notes that were played quickly (a 

quarter note at 120 BPM for instance) difficult to detect using peak-detection alone, and 

discussed alternate methods for detecting fundamental frequency.  

Weeks 8-10: ​We developed a version of the code that allowed the user to set the BPM and that 

recorded the raw audio and generated MIDI files simultaneously so we could compare them. A 

metronome was added to determine if the music’s speed in BPM was correct, and to allow users 

to synchronize their playing with the recording. We observed that generated MIDI files were 

much longer than they should be and worked on modifying formulas in the code to account for 

processing time delay and correct the length of the generated MIDI files.  
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8 | COST ANALYSIS 

Table 1 contains our parts, and costs, totalling at $95.98, meeting our cost requirement.              

Our parts list assumes the user already has a guitar with a ¼” instrument cable. Note that the                  

software can also be run on a computer besides a Raspberry Pi, assuming the user already has                 

one, which lowers the cost to $33.99. This is very economical for a DIY musician, our target                 

user demographic.  

Part Name Part Description Part Link Part Price 

4GB RAM Raspberry 
Pi 4  

Microcontroller that 
will hold the software 

https://www.adafruit.
com/product/4296 

$55.00 

XLR to USB 
Connecter 

Connect interface to 
Microcontroller 

https://www.amazon.
com/Microphone-Co
nnector-Microphones
-Instruments-Recordi
ng/ 

$10.99 

Behringer DI Box An analog device to 
receive a cleaner 
signal 

https://www.guitarce
nter.com/Behringer/U
LTRA-DI-DI400P-Pa
ssive-Direct-Box.gc 

$23.00 

32 GB MicroSD Additional storage for 
the Raspberry Pi 

https://www.amazon.
com/SanDisk-Ultra-
MicroSDHC-Memor
y-Adapter/dp/B073J
WXGNT/ref=dp_ob_
title_ce 

$6.99 

Table 2: Component List 

  

https://www.adafruit.com/product/4296
https://www.adafruit.com/product/4296
https://www.amazon.com/Microphone-Connector-Microphones-Instruments-Recording/dp/B019GYKGRC/ref=sr_1_5?keywords=xlr+to+usb+cable&qid=1574886561&sr=8-5#customerReviews
https://www.amazon.com/Microphone-Connector-Microphones-Instruments-Recording/dp/B019GYKGRC/ref=sr_1_5?keywords=xlr+to+usb+cable&qid=1574886561&sr=8-5#customerReviews
https://www.amazon.com/Microphone-Connector-Microphones-Instruments-Recording/dp/B019GYKGRC/ref=sr_1_5?keywords=xlr+to+usb+cable&qid=1574886561&sr=8-5#customerReviews
https://www.amazon.com/Microphone-Connector-Microphones-Instruments-Recording/dp/B019GYKGRC/ref=sr_1_5?keywords=xlr+to+usb+cable&qid=1574886561&sr=8-5#customerReviews
https://www.amazon.com/Microphone-Connector-Microphones-Instruments-Recording/dp/B019GYKGRC/ref=sr_1_5?keywords=xlr+to+usb+cable&qid=1574886561&sr=8-5#customerReviews
https://www.guitarcenter.com/Behringer/ULTRA-DI-DI400P-Passive-Direct-Box.gc
https://www.guitarcenter.com/Behringer/ULTRA-DI-DI400P-Passive-Direct-Box.gc
https://www.guitarcenter.com/Behringer/ULTRA-DI-DI400P-Passive-Direct-Box.gc
https://www.guitarcenter.com/Behringer/ULTRA-DI-DI400P-Passive-Direct-Box.gc
https://www.amazon.com/SanDisk-Ultra-MicroSDHC-Memory-Adapter/dp/B073JWXGNT/ref=dp_ob_title_ce
https://www.amazon.com/SanDisk-Ultra-MicroSDHC-Memory-Adapter/dp/B073JWXGNT/ref=dp_ob_title_ce
https://www.amazon.com/SanDisk-Ultra-MicroSDHC-Memory-Adapter/dp/B073JWXGNT/ref=dp_ob_title_ce
https://www.amazon.com/SanDisk-Ultra-MicroSDHC-Memory-Adapter/dp/B073JWXGNT/ref=dp_ob_title_ce
https://www.amazon.com/SanDisk-Ultra-MicroSDHC-Memory-Adapter/dp/B073JWXGNT/ref=dp_ob_title_ce
https://www.amazon.com/SanDisk-Ultra-MicroSDHC-Memory-Adapter/dp/B073JWXGNT/ref=dp_ob_title_ce
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9 | USER MANUAL 

Hardware Set-Up 
1. Connect D/I Box to Computer or RaspberryPi with USB to XLR cable 
2. Connect guitar to D/I Box with ¼” cable 

 
Software Set-Up 

1. Make sure device has a python 3 interpreter 
2. Install the following python Modules: 

a. pyaudio  
b. os 
c. struct 
d. numpy  
e. time  
f. math  
g. cProfile  
h. keyboard 
i. Wave 
j. Winsound 

3. Download the Code 
 
Execution 

1. Navigate to code from terminal/ command prompt 
2. Run code 

 
File Location 

1. Go to Folder where code is saved 
2. Identify file named “recorded_audio.wav” - For raw audio 
3. Identify file named “midiTest.MIDI” - For MIDI file 

 
Notes 

● Modify ticksPerBeat - line 43 -to change the amount of accuracy per tick 
● Modify MINREAD - line 62 - to change the fastest note the system can read 
● To change how long the program runs for, modify line 92 with the maximum amount of 

ticks desired 
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● Use an online MIDI to Sheet Music Converter in order to generate sheet music, such as 
https://solmire.com/miditosheetmusic/ 

 

10 | CONCLUSIONS & RECOMMENDATIONS 

Our system was designed as a tool to flatten the learning curve associated with              

transcribing music and provide DIY musicians with an accessible, low-cost, compact tool for             

automatic transcription to MIDI and sheet music. We succeeded in creating a low cost system               

with simple modifiable parameters and straightforward implementation in an accessible and           

efficient coding language (Python, using NumPy) that generates audio and MIDI files, and             

whose progress is well documented for future interested parties to improve upon and use. The               

system uses Python, a couple libraries and several modules to detect and transcribe audio in               

real-time, however we were only able to complete this for monophonic audio detection due to the                

complexity of polyphonic transcription and time constraints.  

The overall performance of the system from our first test yielded an average accuracy              

rate of 75.3% for a C major scale pitch detection, and 53.7% accuracy for rhythm detection. For                 

the E major scale test, it yielded an average accuracy result of 48% for pitch detection and 29.3%                  

accuracy for rhythm detection. These fell short of our desired accuracy measures significantly,             

but we were sure that given more time we could improve the algorithm, and even attempt to                 

tackle polyphonic transcription. In particular, two main problems prevented the system from            

working as well as it could have. 

The first was scheduling, or forcing the computer to take snapshots of the incoming              

signal at regular intervals. Because of the musical nature of the data we were trying to record, it                  
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was particularly important to get this right, and while we came close, even in our current version                 

of the code scheduling has not worked as well as we had hoped, yielding inconsistent data. This                 

is an area that would benefit from more time spent on it, and could be improved in the future.  

The other problem was harmonic transients that occur naturally in instruments. Certain            

notes have higher harmonics (integer multiples of the fundamental frequency of the note) that              

arise at the beginning of the string being struck that are higher in amplitude than the fundamental                 

frequency, and certain notes have lower harmonics. We observed that over time these transient              

harmonics die out, but it can take a few seconds which is much too long if the user is playing                    

many notes in quick succession. We considered solutions using lookup tables that stored key              

information about each note’s frequency domain characteristics to help the algorithm match            

played notes to the correct MIDI note, but we did not complete this due to time constraints. This                  

would be another key area for future work. 

The biggest lessons that we learned were that frequency domain signal analysis is very              

tricky and that there are many approaches to note detection, and that real-time programs require               

significantly more precision and speed than programs that work by processing saved data             

retroactively. We also learned that the problem we originally sought out to tackle is very possible                

to overcome, and nearly all the tools we need already exist, it was just a matter of putting all of                    

them together. 
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Appendices 

Appendix A: Raspberry Pi Pinout: 

 

https://www.raspberrypi.org/documentation/hardware/raspberrypi/schematics/rpi_SCH_4b_4p0_

reduced.pdf 

 

Appendix B: Visualization Code 

%matplotlib notebook 

 

import pyaudio 

import os 

import struct 

import numpy as np 

import matplotlib.pyplot as plt 

import time 

from scipy.fftpack import fft 

from tkinter import TclError 

 

CHUNK = 1024 * 4 #samples per frame 

FORMAT = pyaudio.paInt16 #pulls audio info as 16bit  

https://www.raspberrypi.org/documentation/hardware/raspberrypi/schematics/rpi_SCH_4b_4p0_reduced.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/schematics/rpi_SCH_4b_4p0_reduced.pdf
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CHANNELS = 1 # number of channels 

RATE = 44100 #sample rate 

 

fig, (ax, ax2) = plt.subplots(2, figsize=(15,7)) 

p = pyaudio.PyAudio() #create pyaudio object 

 

stream = p.open( 

    format = FORMAT, 

    channels = CHANNELS, 

    rate = RATE, 

    input = True, 

    output = True, 

    frames_per_buffer = CHUNK 

) 

 

# variable for plotting 

x = np.arange(0, 2*CHUNK, 2) 

x_fft = np.linspace(0, RATE, CHUNK) 

 

# create random line w/ random data. Can use either semilogx or plot 

line, = ax.plot(x, np.random.rand(CHUNK), '-', lw=2)#you only need one         

chunk because we slice the data in half in the while loop 

line_fft, = ax2.semilogx(x_fft, np.random.rand(CHUNK), '-', lw=2) 

 

# basic formatting for axes 

ax.set_title('AUDIO WAVEFORM') 

ax.set_xlabel('samples') 

ax.set_ylabel('volume') 

ax.set_ylim(0,255) 

ax.set_xlim(0,2*CHUNK) 

plt.setp(ax, xticks=[0, CHUNK, 2*CHUNK], yticks=[0,128,255]) 

 

ax2.set_xlim(20, RATE / 2) 

 

# show the plot 

plt.show(block=False) 

 

print('stream started') 

 

# for measuring frame rate 

frame_count = 0 

start_time = time.time() 

 

while True: 

  

    # binary data 

    data = stream.read(CHUNK) 

    data_int = struct.unpack(str(2*CHUNK) + 'B', data) 

  

    # convert data to integers, make np array, then offset it by 127 

    data_np = np.array(data_int, dtype='b')[::2] +128 
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    line.set_ydata(data_np) 

  

    # get fft, slice, and rescale to get magnitudes 

    y_fft = fft(data_int) 

  

# multiply by 2 and divide by the number of frequencies in spectrum              

times the amplitude of the waveform 

    line_fft.set_ydata(np.abs(y_fft[0:CHUNK]) * 2 / (256 * CHUNK)) 

  

    # update figure canvas 

    try: 

        fig.canvas.draw() 

        fig.canvas.flush_events() 

        frame_count += 1 

  

    except TclError: 

  

        #calculate average frame rate 

        frame_rate = frame_count / (time.time() - start_time) 

  

        print('stream stopped') 

        print('average frame rate = {:.0f} FPS'.format(frame_rate)) 

        break 

 

Appendix C: End-To-End Real-Time Audio & MIDI File Generation Code 

#Import statements 

import pyaudio #The module used for pulling in audio information 

import os 

import struct 

import numpy as np #Module used to convert Audio info into easily processed 

arrays 

import time #used to continuously call the stream by sleeping for the proper 

amount of time 

import math #used to perform certatin advanced mathematical calculations 

import cProfile #used to get timing info on the performancce of the program 

import keyboard 

import wave #how we make wave recording 

import winsound #Sound for metronome 

 

from midiutil import MIDIFile #how we build MIDI 

from scipy.fftpack import fft   #Fast Fourier transform is a computaionaly 

effective fouier transform 

from tkinter import TclError    #acces TclError funtion of Gui pack 

 

MINMIDI = 28 #min midi value considered by Algo 

MAXMIDI = 108 #max midi value considered by Algo 

data = [] 

 

#create list of midi and frequency values 

n = MINMIDI 
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noteNfreq = [] 

while n <= MAXMIDI: 

    f = 440*(2**((n-69)/12)) 

    noteNfreq.append(f) 

    n = n + 1 

noteArray = np.asarray(noteNfreq) 

 

#defines stream information 

CHUNK = 1024 * 4 #samples per frame 

FORMAT = pyaudio.paInt16 #pulls audio info as 16bit 

CHANNELS = 1 # number of channels 

RATE = 44100 #sample rate 

FREQ = 2500  # Set Frequency To 2500 Hertz 

DUR = 2 #set Duration of metronome to To 2 ms == .002 second 

 

# for measuring frame rate 

frame_count = 0 

 

totalTicks = 0 

ticksPerBeat = 4 

 

#keep track of notes 

noteValue = [] #stores midi Values of read data 

noteTime = [] #stores time(ticks) midi Values were read at 

 

#keep track of track 

midiNote = []  #Defines note values of midi Files 

mididuration = [] #defines length of note values within a Midi File 

midionset = [] #defines starting point of midi values within a Midi File 

tracker = 0 #tracks num of values have been tracked by the note 

track    = 0 

channel  = 0 

midiTime = 0   # In beats 

tempo    = int(input("Set Tempo in bpm: "))  # In BPM 

volume   = 100 # 0-127, as per the MIDI standard 

 

#tempo data 

secPerQnote = 1/(tempo/60) 

MINREAD = 16 #1/how long the smallest note is 

secPerMin = secPerQnote/(MINREAD/4) 

TICKTIME = secPerMin/ticksPerBeat 

delay = 0 

 

#stores audio data to provide recording 

framez = [] 

 

# get device information of system 

# d = pyaudio.PyAudio() 

# 

# for i in range(d.get_device_count()): 

#     dev = d.get_device_info_by_index(i) 

#     print((i,dev['name'],dev['maxInputChannels'])) 
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# d.terminate() 

 

#Calbackfunction that puts pyaudio in non-blocking mode 

def callback(in_data, frame_count, time_info, status): 

    global totalTicks 

    global data 

    global delay 

    global TICKTIME 

 

    data = in_data 

    #if the program took longer to run than the required tick time 

    if(TICKTIME-delay > 0): 

        time.sleep(TICKTIME-delay) 

    else: 

        print("wrong") 

    #Only allows program to run for 300 ticks, for the purpose of testing 

    if(totalTicks > 300): 

        return (data, pyaudio.paAbort) 

 

    return (data, pyaudio.paContinue) 

 

#uses midi info stored from the real time processing to build midi file 

def buildMidi(): 

    global track 

    global channel 

    global midiTime 

    #global duration = noteDuration/(total time/(beat per second))  # In beats 

    global tempo 

    global volume 

    global totalTicks 

    global ticksPerBeat 

    global midiNote 

    global mididuration 

    global midionset 

 

    MyMIDI = MIDIFile(1) # One track, defaults to format 1 (tempo track 

                     # automatically created) 

    MyMIDI.addTempo(track, midiTime,tempo) 

    delay = midionset[0] 

 

 

    #add logic to convert ticks to time value 

 

    for num in range(0, len(midiNote)): 

        MyMIDI.addNote(track, channel, midiNote[num], 

math.floor((midionset[num]-delay)/2), mididuration[num]/2, volume) 

 

    print(midiNote) 

    print(midionset) 

    with open("midiTest.MIDI", "wb") as output_file: 

        MyMIDI.writeFile(output_file) 

 



 

34 

 

def main(): 

    global TICKTIME 

    global data 

    global noteValue 

    global noteTime 

    global totalTicks 

    global ticksPerBeat 

    global midiNote 

    global mididuration 

    global tracker 

    global midionset 

    global framez 

    global data 

    global delay 

    global secPerQnote 

    #instantiate PyAudio 

    p = pyaudio.PyAudio() 

 

    #open Stream Using Callback 

    stream = p.open( 

            format = FORMAT, 

            channels = CHANNELS, 

            rate = RATE, 

            input = True, 

            output = False, 

            #input_device_index=1, 

            frames_per_buffer = CHUNK, 

            stream_callback = callback 

        ) 

 

    streamin = True 

    #Count in 

    print("Stream start in 4") 

    for x in range(0,3): 

        winsound.Beep(FREQ, DUR) 

        time.sleep(secPerQnote) 

 

    #start Stream 

    stream.start_stream() 

    while stream.is_active(): 

        startTime = stream.get_time() 

        if(totalTicks % 16 == 0): 

            winsound.Beep(FREQ, DUR) 

        if(data != []): 

            framez.append(data) 

            data_int = struct.unpack(str(2*CHUNK) + 'B', data) 

            # convert data to integers, make np array, then offset it by 127 

            #this is the magnitude data? 

            data_np = np.array(data_int, dtype='b')[::2] +128 

 

            # get fft, slice, and rescale to get magnitudes 
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            # multiply by 2 and divide by the number of frequencies in spectrum 

times the amplitude of the waveform 

            y_fft = fft(data_int) 

            frequencies = np.abs(y_fft[0:CHUNK]) * 2 / (256 * CHUNK) 

            maxf = max(frequencies[1:]) 

            flist = frequencies.tolist() 

            findex = flist.index(maxf) 

 

 

            if findex < 1000: 

               #find midinums 

                frequency_val = findex * (RATE/CHUNK) 

                arrindex = (np.abs(noteArray - frequency_val)).argmin() 

                midiNum = arrindex + MINMIDI 

 

 

                #if we find a midiValue we wanna keep 

                if midiNum <= MAXMIDI: 

                   #if there have already been a notes worth of midiValues 

stored up 

                    if len(noteValue) >= ticksPerBeat: 

                       #if the midi we see is the same as the other notes, add 

it to the list 

                            if midiNum == noteValue[tracker-3] and midiNum == 

noteValue[0]: 

                                noteValue.append(midiNum) 

                                noteTime.append(totalTicks) 

                                tracker = len(noteValue) 

                            #otherwise add note to track, display and clear 

variables 

                            else: 

                                midiNote.append(noteValue[0]) 

                                midionset.append(noteTime[0]/ticksPerBeat) 

                                duration = (totalTicks - 

noteTime[0])/ticksPerBeat 

                                mididuration.append(duration) 

                                print ("{} note, at time {}, for 

{}".format(noteValue[0], noteTime[0], duration), end="\r") 

                                tracker = 1 

                                noteValue = [midiNum] 

                                noteTime = [totalTicks] 

                    #if the note is empty 

                    elif len(noteValue) == 0: 

                            noteValue.append(midiNum) 

                            noteTime.append(totalTicks) 

                            tracker = 1 

                    else: 

                            #if note is the same as last, store value else, 

restart 

                            if noteValue[tracker-1] == midiNum: 

                                noteValue.append(midiNum) 

                                noteTime.append(totalTicks) 
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                                tracker = len(noteValue) 

                            else: 

                                tracker = 1 

                                noteValue = [midiNum] 

                                noteTime = [totalTicks] 

        delay = stream.get_time()-startTime 

        #if the program ran slower than the required ticktime. 

        if(TICKTIME-delay > 0): 

            time.sleep(TICKTIME-delay) 

        else: 

            print("wrong") 

        totalTicks = totalTicks+1 

 

 

    #Stop Stream 

    stream.stop_stream() 

    stream.close() 

 

    #close pyAudio 

    p.terminate() 

    wf = wave.open('recorded_audio.wav', 'wb') 

    wf.setnchannels(CHANNELS) 

    wf.setsampwidth(p.get_sample_size(FORMAT)) 

    wf.setframerate(RATE) 

    wf.writeframes(b''.join(framez)) 

    wf.close() 

 

    #build Midi 

    buildMidi() 

    return 

 

#cProfile.run('main()') 

 
Appendix D: MIDI Test Screenshots 

1) E Scale - 60 BPM 

2) E Scale - 90 BPM 

3) E Scale - 120 BPM 

4) C Scale - 60 BPM 

5) C Scale - 90 BPM 

6) C Scale - 120 BPM 
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1) 

2) 
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3) 4) 

4)  
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5)  

6)  


