

Capstone Project: Real Time Musical Audio Detection,

Conversion & Transcription

ECE-499: Capstone Design Project Part III

By Ian Krause & Raphael Sebastian II

Advisor: Aussie Schnore

March 21​st​ 2019

1

Report Summary

The following report details the design process, implementation, and results of a system

intended to transcribe music to MIDI and sheet music in real-time. The system is intended to use

an electric guitar as its input instrument, and record and process the instrument’s output using a

computer or microcontroller. It is written in the Python programming language and uses several

Python-specific libraries and modules. The system is intended to assist DIY musicians with

limited music theory knowledge, and to be low-cost and open source. The project focused on

monophonic audio transcription, or music with one note at a time (no chords), with a tempo less

than or equal to 120 BPM, though research was done into polyphonic transcription, which

requires a significantly more complex algorithm. The major design goals were that the system be

roughly the size of a large guitar pedal currently on the market, have a low transcription error

rate at 120 BPM and below, operate in real-time, and be low cost and easy to use/improve upon.

The final system meets many of the initial design goals, though its error rate is much higher than

we had hoped due in large part to the complexities of a real-time processing and scheduling, and

harmonic transients that interfered with our peak-based pitch detection method.

2

Table of Contents:

Report Summary - Ian 1

Terminology 4

Introduction 6

1 | BACKGROUND 6

2 | DESIGN REQUIREMENTS 9

3 | PRELIMINARY PROPOSED DESIGN 11
High Level Design & Hardware 11

Figure 1: Functional Decomposition of Monophonic Signal Transcription 12
Figure 2: Hardware Configuration 13

Low Level Design and Software 13
Figure 3: Raw Monophonic Audio 14
Figure 4: FFT of Monophonic Signal 14
Figure 5: Algorithm for the Spectrum Analyzer 15
Figure 6: Spectrum Analyzer Response to Pure Tone 15
Figure 7: Potential Algorithm for Pitch Detection 16
Figure 8: Alternate Functional Decomposition of Polyphonic Signal Transcription 16

4 | DESIGN ALTERNATIVES 17
Figure 9: High-Level Functional Decomposition 17

5 | FINAL DESIGN & IMPLEMENTATION - Ian & Rafi 18
Hardware Implementation 18

Figure 10: Hardware Diagram 19
Figure 11: Optional DI Configuration for External Amplification 19

Pitch & Rhythm Detection Algorithm Implementation 19
Figure ø: Real-Time Sheet Music Generation Algorithm 20
Equation ¥: Conversion from Frequency to MIDI Note Value 20

File Creation Implementation 21

6 | PERFORMANCE ESTIMATES & RESULTS 21
Table 1: Performance Test Results 22

7 | PRODUCTION SCHEDULE 22

8 | COST ANALYSIS 24

3

Table 2: Component List 24

9 | USER MANUAL 25
Hardware Set-Up 25
Software Set-Up 25
Execution 25
File Location 25
Notes 25

10 | CONCLUSIONS & RECOMMENDATIONS 26

References 28

Appendices 29
Appendix A: Raspberry Pi Pinout: 29
Appendix B: Visualization Code 29
Appendix C: End-To-End Real-Time Audio & MIDI File Generation Code 31
Appendix D: MIDI Test Screenshots 36

4

Terminology

● MIDI - Musical Instrument Digital Interface - a file format and technical communication

protocol that carries data for pitch, volume, rhythm, and tempo.

● MIDI Data - Processed data that contains the elements needed to generate a MIDI note or

series of MIDI notes.

● DAW - Digital Audio Workstation - an application software that records, edits, and

processes audio files.

● FFT - Fast Fourier Transform - an algorithm that computes the Discrete Fourier

Transform of a sequence from the time domain to the frequency domain.

● MIR - Musical Information Retrieval - a small but growing interdisciplinary field focused

on retrieving information from music.

● ISMIR - The International Society for Music Information Retrieval - a non-profit

organization which oversees the ISMIR conference and is the world’s leading research

forum on processing, searching, organising and accessing music-related data.

● AMT - Automatic Music Transcription - The capability of transcribing music audio into

music notation using computational algorithms.

● BPM - Beats Per Minute, a musical unit describing the tempo of a song based on how

many quarter notes, or “beats,” occur in a minute of music.

● PyAudio - Is a Python module that allows programmers to capture audio with Python and

manipulate it easily.

5

● NumPy - NumPy is a library for the Python programming language, adding support for

large, multi-dimensional arrays and matrices, along with a large collection of high-level

mathematical functions to operate on these arrays.

● LilyPond - LilyPond is a Python module and file format for music engraving. One of

LilyPond's major goals is to produce scores that are engraved with traditional layout

rules, reflecting the era when scores were engraved by hand.

6

Introduction

Since digital musicians deal in MIDI files, and analog musicians deal in Western notated

sheet music, it seems vital that a tool be developed that can easily transcribe between the two.

Currently, the toolset available is expensive and bloated, a mere ad-on feature of sheet music

composition software, or a subscription service early in its infancy. Free options have limited

features and require payment for full features. In addition, most programs aren’t designed to

seamlessly generate audio recordings, MIDI files, and sheet music. The goal of this project is to

produce a system that will allow users to easily generate recorded audio, MIDI, and sheet music

automatically, in real-time, and with low cost and complexity. The following paper details our

design for converting analog monophonic audio from a single instrument to MIDI files and sheet

music, with the goal being low error transcriptions, low cost hardware, and a final system that is

modular enough to be built upon and recreated by others. We also cover ideas for polyphonic

transcription, though the data acquisition process varies significantly and is much more difficult

due to the nature of polyphonic audio.

1 | BACKGROUND

With the advent of the digital age, it has become possible for any driven artist to become

a musician. Some musicians work exclusively using digital software-based tools while others

prefer to work using sheet music and physical instruments. Digital musicians use Digital Audio

Workstations (DAWs) to produce their work and record using MIDI (Musical Instrument Digital

Interface), but often do not have a solid background in music theory. Traditional musicians tend

to work mostly with physical instruments and record their work using sheet music of some kind,

7

which requires knowledge of music theory. As a result, musicians with vastly different

experiences and music education backgrounds end up collaborating on many projects. Therefore,

a tool for transposing analog audio signals to MIDI files, sheet music, tablature, and other

representations of music is necessary for modern musicians on a limited budget who want to

work together on complex projects. Traditional musicians benefit from transposing their music

directly to MIDI files that can be manipulated much more precisely than raw audio recordings

using a DAW.

The goal of this project is to complete a compact, affordable, all-in-one system that

bridges the gap between traditional and digital musicians by recording a raw analog signal,

transposing from analog audio to sheet music, and creating midi files. Currently, in the market,

musicians are limited to pricey subscription-based services, like Lunaverus and Scorecloud, that

hide many of the more valuable benefits of basic conversion behind a paywall or simply do not

include them at all. The other market options are professional musical transcription software

such as Finale or Sibelius, that can cost hundreds of dollars just to get access to their mid-tier

version. The other issue with these services is that the transcription error rates they report for

testing don’t need to be on extreme test cases, so their software could be worse than they report.

In the world of Academia the problem we are attempting to tackle is fundamental to the

rapidly growing field of Music Information Retrieval (MIR), called Automatic Music

Transcription (AMT). AMT is an end to end process consisting of many components, including

pitch detection[1][3][5] and note onset detection[1], each of which have had multiple papers

examining them. Only fairly recently, with the development of machine learning, have

8

researchers attempted to complete the full end-to-end process[2], and there has yet to be a

conclusive result as to which method is the best.

The three different papers discussing approaches to pitch detection we focused on

include: “​Towards Complete Polyphonic Music Transcription: Integrating Multi-Pitch Detection

and Rhythm Quantization,” which outlines the standard approach to complete AMT (signal to

midi to sheet music) and goes into depth about using the Hidden Markov Model to detect the

pitch and rhythm of a polyphonic signal[1], ​“Polyphonic Pitch Tracking with Deep Layered

Learning” which discusses polyphonic pitch detection and rhythm detection by way of cascading

Neural Networks[3], and “Using a Pitch Detector for Onset Detection,” which discusses a

method to detect pitch and offset of a monophonic signal[5]. Another paper, “An End-To-End

Framework For Audio-To-Score Music Transcription On Monophonic Excerpts,” focused on

tend-to-end AMT, which takes a monophonic signal and skips the conversion to an intermediate

stage (piano-roll data) and goes straight to sheet music using a Convolutional Recurrent Neural

Network[2].

It’s one thing if our final product works, but it’s another if it works and is unethical, so

we must consider the ethical implications of the project. ​Since the goal of our device is to

transcribe music, a task that is currently reserved for people who went to music school or at the

very least studied music theory in some context, it could be argued that our device could put

people out of work, or cause harm to music theory learning institutions. This is not the case. Our

tool cannot replace the role of humans in transcribing music, it simply makes it easier for

musicians without theory knowledge to create sheet music and work with their music in DAWs.

9

The ability to interpret and error check traditional music transcription remains a skill that must

be learned from professionals.

The other ethical consideration is that this technology could be used for music industry

gatekeeping if it were to become a large part of the music industry. Making a cost-effective

system, and specifically preventing it from becoming bloated, over-complicated, and overpriced

is essential to our goal. An all-in-one system is our final goal, or if this is not possible, a small

system that is connected to an external computer running software. Keeping the tech small-scale

and musician oriented is our utmost priority. This will prevent industry giants from limiting the

distribution of our tech, should it become an industry standard.

2 | DESIGN REQUIREMENTS

We came up with the following design specifications for our final product in order for it

to function well and produce results we are satisfied with. This section acts as both a reference

for technical specifications, and for more broad goals and stretch objectives. The section is

broken down into categories with items that are either demands, marked D, or wishes, marked

W.

● Performance

○ The system must be able to take a monophonic signal as input (D)

○ The system must be able to take a polyphonic signal as input (W)

○ The system must be able to take audio files as input (D)

○ The system must be able to produce MIDI output that can be used with external

audio processing software (D)

10

○ The system must operate with an overall percent error of less than 30% for

polyphonic transcription (at ≤ 120 BPM)[1](D)

○ Working monophonic transcription error of less than 20% (at BPM ≤ 120)[1] (D)

○ The system should transcribe in real time to facilitate creativity and to be practical

for the user (W)

○ The system should have a user-set tempo that can go up to at least 150 BPM[1]

(W)

● Geometry

○ The size of the system will most likely be small by virtue of the fact that we plan

to use a microcontroller, but we hope that it will be the size of a large guitar pedal

(W).

● Economic

○ The parts for the system should cost no more than $150 (W)

○ The whole system should be cheaper than similar proprietary software to recreate

(W)

● Energy

○ The system should be able to be powered by a standard 9V or 12V power source

(W)

● Environmental & Safety

○ Should operate at given constraints for room temperature (approx. 25​° C) ​(D)

○ System should be properly grounded and use low voltage so as to be safe for user

contact (D)

● User Interface

○ The user interface should display information about the system BPM, which note

is being read, how long the recording has been running, whether it’s recording or

not, and whether or not it’s powered (D)

○ The user should have access to each of the steps of the full AMT process (i.e. just

MIDI to sheet music, or just audio to MIDI, etc.) (D)

11

○ The user should be able to select when the system begins and ends recording (D)

● Materials

○ The prototype will most likely be made in a rectangular wood or aluminum case

so that it is easy to customize for the project constraints (W)

● Manufacturability

○ We will document our device creation process well enough to be reproduced by

other students if they want to continue and improve out work (W)

○ The system will use off the shelf components that can be utilized easily for

replicating the device (W)

● Social and Cultural

○ By creating this device, we bridge an important generational & technological

divide and help to preserve traditional music notation and make it more accessible

to digital musicians. The design we choose should not make music notation

obsolete, but should increase the ease with which it can be used. (W)

● Aesthetics

○ The system will have a minimalist design that emphasizes practicality and

functionality (W)

● Engineering standards

○ Adhere to applicable IEEE standards and restrictions (D)

3 | PRELIMINARY PROPOSED DESIGN

High Level Design & Hardware

Fundamentally, our design is simple (Fig. 1). The system will take audio generated by an

instrument as its input, detect when notes begin, analyze those notes frequency to determine their

pitch, and detect when they end. Then it will process and package this data, combining it with

other known, externally provided information (BPM, start time) to generate MIDI data that can

12

be turned into a MIDI file, be translated into sheet music, or both. The process is similar for

polyphonic audio, but we use different methods to achieve the same MIDI data, which is then

converted to MIDI files or sheet music.

Figure 1: Functional Decomposition of Monophonic Signal Transcription

To functionally implement our specific design (Fig. 2), we have chosen to focus on the

guitar as our instrument of choice for audio signal generation. We will connect it to a direct

injection box (DI box) which is essentially a transformer that balances the signal coming from

the guitar and boosts signal strength, and we will connect the DI box to the Raspberry Pi 4 with

our Python-based audio to MIDI software via USB. The Raspberry Pi can then output whichever

file is preferred via USB to an external computer. The Pi can output MIDI to a computer with a

DAW installed for editing MIDI and producing music, or it can output the finished sheet music

as a MusicXML file to be edited or as a PDF.

We will use a Behringer passive DI box, which is an inexpensive box that will work well

for balancing our signal and converting the high output impedance signal source (on the order of

50k Ohms) to a low impedance source (100-200 Ohm range)[6]. We will connect the DI box to

the Raspberry Pi using an XLR to USB cable. The Raspberry Pi will process the signal and

output the chosen file type, then output via USB to a PC.

13

Figure 2: Hardware Configuration

Low Level Design and Software

The process that the Python-based Raspberry Pi code follows for monophonic audio

consists essentially of converting the time domain audio signal into the frequency domain,

searching for the highest amplitude peaks and detecting their frequencies, detecting their onset

times, then associating them with the closest pitch that is recognized as a note in Western music

notation, and detecting its offset time. It simultaneously records the audio in the time domain,

and packages the MIDI data into MIDI files which are converted to sheet music afterwards using

an outsourced Python module called LilyPond. Monophonic audio can be analyzed in real time,

or from pre-recorded audio using our current planned implementation. Polyphonic audio will

likely require analysis from recorded audio because of the added complexity of a machine

learning algorithm, however we need to do additional testing to figure out how feasible real time

polyphonic transcription may be.

14

Figure 3: Raw Monophonic Audio

Fig. 3 contains an example of a monophonic signal we might get. This signal is in the

time domain, thus its y-axis corresponds to the amplitude (volume) of the signal. In order to

extract frequency data from this signal, we have to apply a Fourier Transform of some type in

order to get it into the frequency domain.

Figure 4: FFT of Monophonic Signal

Fig. 4 shows the result of running the original signal through a Discrete Fourier Fourier

transform, also known as a fast Fourier Transform (FFT) in Matlab. The x-axis is the frequency

15

and the y-axis is the amplitude of the spectrum frequency. The next step was learning how to

obtain FFTs in real-time, and the algorithm we used along with some important functions are

shown in Fig. 5, while the results of entering a pure tone (whistling) into the real time FFT are

shown in Fig. 6 (code in Appendix B).

Figure 5: Algorithm for the Spectrum Analyzer

Figure 6: Spectrum Analyzer Response to Pure Tone

Fig. 6 demonstrates that when we create a pure tone, we receive the fundamental

frequency as the highest peak, and then its harmonics afterwards. This means that in order to get

the pitch of a monophonic signal, all we need to do is find the maximum value of the spectrum

analyzer to get the fundamental frequency and convert that frequency to a pitch. The algorithm

for it is roughly described in Fig. 7.

16

Figure 7: Potential Algorithm for Pitch Detection

Figure 8: Alternate Functional Decomposition of Polyphonic Signal Transcription

In terms of the next steps, we need to figure out how to detect note onset and offset to get

rhythm data of a monophonic signal[5] and then we can create a midi note, and we can then

create sheet music from the ability to find midi notes. Once we figure out how to create sheet

music for Monophonic signals, we must figure out how to do the same for polyphonic signals.

The approach for polyphonic signals (Fig. 9) is to use one of the Machine Learning methods

described in the ​Nakamura paper​[1] and the ​Elowsson paper​[3], in order to detect note pitch,

offset and offset in order to create MIDI data.

17

4 | DESIGN ALTERNATIVES

Figure 9: High-Level Functional Decomposition

The fundamental idea behind this system is to take output from a real instrument (in our

testing we will use a guitar), convert that input to MIDI and sheet music and export it to a

computer with a DAW (Fig. 9). There are multiple ways that we considered creating this system.

One way was taking a similar approach to the paper by ​Román et al.​[2] and creating the sheet

music directly from the signal itself while we create the midi data in a separate process. We

decided against this approach for multiple reasons. The biggest reason being that it only worked

for monophonic signals and we wanted the ability to detect polyphonic signals. On top of this,

since it uses deep learning to create sheet music data while also trying to create midi data in an

entirely separate process, the processing power required would be immense and slow the system

down. For these reasons, we decided to approach this problem by using the MIDI data to help

build the sheet music.

The challenge once we decided to take this approach was to decide how we would create

the MIDI data and how we would build the sheet music, both of which have multiple approaches.

The MIDI data could be generated by Machine Learning methods/Convolutional Neural

Networks being run on the signals, or, if we are just working with monophonic signals, it can be

done with Fourier Transforms to get the pitch and some calculus in order to calculate the onset

18

and offset times[5]. Machine learning has parameters that can be trained to accurately predict

complex results. The main downside is that it requires a decent amount of storage and isn’t

computationally efficient. Another idea we had was generating a look-up table of wave forms

that we could reference in order to quickly identify frames of data. We decided fourier

transforms would be best for monophonic signals, due to their computational simplicity, and

Machine Learning for polyphonic signals due to their compositional complexity, though we did

not get there.

Once we have the MIDI data we must convert that into sheet music and that can also be

done in a variety of ways. One approach is to export the MIDI data to an external program that

automatically creates sheet music from MIDI. The other way to go about this is to use a musical

transcription programing module such as Lilypond. We decided to go with Lilypond in order to

allow us maximum control of the system and because it has a function to automatically create

sheet music from a MIDI file, though we did not integrate this feature into our final version, it is

trivial using the system we’ve created.

5 | FINAL DESIGN & IMPLEMENTATION - Ian & Rafi

Hardware Implementation

We used the following setup to record audio from an electric guitar for MIDI conversion;

the guitar was connected via a ¼” instrument cable to a passive direct injection box. The DI box

was connected with an XLR to USB 2.0 cable with a built-in ADC. This was connected to the

computer, which could be the Raspberry Pi, or a standard laptop or desktop capable of running

depending on user preference. For the final tested system iteration, the system ran on a laptop

19

with Windows 10. No additional hardware was required, but if desired, the user is able to

connect the parallel output of the DI box to an amplifier to better hear themselves, and make sure

their note accentuation is precise enough to ensure good detection.

Figure 10: Hardware Diagram

Figure 11: Optional DI Configuration for External Amplification

Pitch & Rhythm Detection Algorithm Implementation

The fundamental idea of this process is to check every frame of data read in from the

guitar, calculate and store the frequency values and assign a made up number to that frame, so

that it can be referenced in the future. There are some frames that can be disposed of

immediately as they are just noise but others that need to be tracked no matter what, so as a result

we determine MIDI data after the real-time stream is done. The overall algorithm for our design

is shown below in Figure ø.

20

Figure ø: Real-Time Sheet Music Generation Algorithm

Step 1 of the algorithm is handled by the Pyaudio non-blocking mode stream pulling in

data every TimePerTick (variable defining how long a tick lasts) seconds. Step 2 is handled

using Scipy’s FFT function in order to perform a discrete fourier transform to get frequency data

in Numpy format, then we find the max of that array in order to find the fundamental frequency

of the frame for step 3. Steps 4 through 6 are handled by lines 187 - 227 of the code.

 f​ = 440*2^((n-69)/12)

Equation ¥: Conversion from Frequency to MIDI Note Value

These lines store and process the read pitch data through a series of if-statements in order to

calculate MIDI data based on equation ¥ the tick number of the frame being processed. These

checks are supposed to determine the MIDI value read for the frame’s fundamental frequency,

whether we care about it and whether it is a part of a note or just noise. If the frame is the last of

a MIDI note, then the MIDI note value is displayed along with its onset and duration in ticks.

Step 7 of the algorithm is completed by the buildMIDI() function, which cycles through the data

stored from the real-time processing. Step 8 is discussed in the next section

21

File Creation Implementation

The file creation is the most crucial step, as this is the step that builds the usable end

product for the target audience of the project. As the program runs, the raw audio is stored as a

.WAV file while the data for the MIDI file is being calculated and stored in real-time based on

the raw audio. This MIDI file is stored in the same folder the program is being run from, as is the

.WAV.

6 | PERFORMANCE ESTIMATES & RESULTS

The physical components of the system were expected to be less than $150 and be about

the size of a large guitar pedal. We were able to achieve both, as the total cost of the system is

$95.98, including the Raspberry Pi, and the system is just a USB to XLR cord, a ¼” instrument

cable and a D/I Box.

The expected runtime performance for this system was to run in real time with a total

accuracy rate of 80% and was mostly based around rough estimates of how other papers did in

this category. In order to test our design, we ran 6 total tests on the MIDI data, three playing the

C scale at 60, 90 and 120 BPM and the others playing the E scale at 60, 90, and 120 BPM. We

then used this to calculate a pitch accuracy, rhythmic accuracy and total accuracy. Pitch

Accuracy was measured by if each of the notes appeared within the scale, within the time played.

Rhythmic Accuracy was determined by if there was a MIDI Note with an onset on each beat.

The total accuracy was determined by if the note was both Rhythmically accurate and had an

accurate pitch. The MIDI files generated by the tests can be viewed in Appendix D and below

are the results of the 6 tests:

22

Musical Scale C* E C* E C E C E

BPM 60 90 120 Avg

Pitch Detection
Accuracy 77.80% 44.44% 100% 55.60% 55.60% 44.44% 75.33% 48%

Rhythm Detection
Accuracy 55.60% 44.44% 44.44% 22.22% 55.60% 22.22% 53.67% 29.33%

Total Accuracy 44.44% 44.44% 44.44% 22.22% 55.60% 22.22% 46.67% 38.67%
*Denotes Test generated extra note

Table 1: Performance Test Results

While these results are less than stellar, this was a test on the first iteration of the full working

system and the data was neither quantized nor cleaned up after initial recording. These are both

common techniques done automatically by many real time recording softwares and we ran out of

time to implement it. Another reason the performance could have been so poor is that our

algorithm may be fundamentally flawed (i.e. an error in our logic) or there is an error in our code

(i.e. an error in our implementation). While the latter is more likely, some more iterations of this

algorithm and a couple more tests could prove the former true.

7 | PRODUCTION SCHEDULE

Over Winter Break: ​We continued research on pitch detection and rhythm detection methods.

Weeks 1-2: ​We worked on transitioning from our real-time visualization code to fundamental

frequency recognition, using the peak frequency in the Fourier domain as our presumed

fundamental pitch. We also implemented a formula for converting raw frequency to a MIDI note

number.

23

Weeks 3-5:​ We devised a simple system using common, low cost, off-the-shelf devices to

connect a guitar almost directly to the computer, and purchased these parts. We modified the

code to work on a Raspberry Pi to verify that it could meet our dimension requirements. We

continued work on our algorithm, discovering that pitch and rhythm detection must be built

together to generate MIDI files and minimize error. This led to breakthroughs in our code,

namely waiting for a frequency to be detected in multiple consecutive samples before declaring it

a note, and setting hard limits on the lowest and highest notes that could be detected, which

eliminated transients and false detections.

Weeks 6-7: ​We began working through major difficulties with rhythm detection that prevented

us from collecting audio at a fixed rate. We profiled our code to figure out which operations took

the longest and what we could do to make each sample take less time. We changed our algorithm

to use non-blocking mode and added a timer. We also reexamined what happened to the

frequency domain signal in real-time (since we were able to use direct input from the guitar to

the computer) and discovered harmonic transients that made notes that were played quickly (a

quarter note at 120 BPM for instance) difficult to detect using peak-detection alone, and

discussed alternate methods for detecting fundamental frequency.

Weeks 8-10: ​We developed a version of the code that allowed the user to set the BPM and that

recorded the raw audio and generated MIDI files simultaneously so we could compare them. A

metronome was added to determine if the music’s speed in BPM was correct, and to allow users

to synchronize their playing with the recording. We observed that generated MIDI files were

much longer than they should be and worked on modifying formulas in the code to account for

processing time delay and correct the length of the generated MIDI files.

24

8 | COST ANALYSIS

Table 1 contains our parts, and costs, totalling at $95.98, meeting our cost requirement.

Our parts list assumes the user already has a guitar with a ¼” instrument cable. Note that the

software can also be run on a computer besides a Raspberry Pi, assuming the user already has

one, which lowers the cost to $33.99. This is very economical for a DIY musician, our target

user demographic.

Part Name Part Description Part Link Part Price

4GB RAM Raspberry
Pi 4

Microcontroller that
will hold the software

https://www.adafruit.
com/product/4296

$55.00

XLR to USB
Connecter

Connect interface to
Microcontroller

https://www.amazon.
com/Microphone-Co
nnector-Microphones
-Instruments-Recordi
ng/

$10.99

Behringer DI Box An analog device to
receive a cleaner
signal

https://www.guitarce
nter.com/Behringer/U
LTRA-DI-DI400P-Pa
ssive-Direct-Box.gc

$23.00

32 GB MicroSD Additional storage for
the Raspberry Pi

https://www.amazon.
com/SanDisk-Ultra-
MicroSDHC-Memor
y-Adapter/dp/B073J
WXGNT/ref=dp_ob_
title_ce

$6.99

Table 2: Component List

https://www.adafruit.com/product/4296
https://www.adafruit.com/product/4296
https://www.amazon.com/Microphone-Connector-Microphones-Instruments-Recording/dp/B019GYKGRC/ref=sr_1_5?keywords=xlr+to+usb+cable&qid=1574886561&sr=8-5#customerReviews
https://www.amazon.com/Microphone-Connector-Microphones-Instruments-Recording/dp/B019GYKGRC/ref=sr_1_5?keywords=xlr+to+usb+cable&qid=1574886561&sr=8-5#customerReviews
https://www.amazon.com/Microphone-Connector-Microphones-Instruments-Recording/dp/B019GYKGRC/ref=sr_1_5?keywords=xlr+to+usb+cable&qid=1574886561&sr=8-5#customerReviews
https://www.amazon.com/Microphone-Connector-Microphones-Instruments-Recording/dp/B019GYKGRC/ref=sr_1_5?keywords=xlr+to+usb+cable&qid=1574886561&sr=8-5#customerReviews
https://www.amazon.com/Microphone-Connector-Microphones-Instruments-Recording/dp/B019GYKGRC/ref=sr_1_5?keywords=xlr+to+usb+cable&qid=1574886561&sr=8-5#customerReviews
https://www.guitarcenter.com/Behringer/ULTRA-DI-DI400P-Passive-Direct-Box.gc
https://www.guitarcenter.com/Behringer/ULTRA-DI-DI400P-Passive-Direct-Box.gc
https://www.guitarcenter.com/Behringer/ULTRA-DI-DI400P-Passive-Direct-Box.gc
https://www.guitarcenter.com/Behringer/ULTRA-DI-DI400P-Passive-Direct-Box.gc
https://www.amazon.com/SanDisk-Ultra-MicroSDHC-Memory-Adapter/dp/B073JWXGNT/ref=dp_ob_title_ce
https://www.amazon.com/SanDisk-Ultra-MicroSDHC-Memory-Adapter/dp/B073JWXGNT/ref=dp_ob_title_ce
https://www.amazon.com/SanDisk-Ultra-MicroSDHC-Memory-Adapter/dp/B073JWXGNT/ref=dp_ob_title_ce
https://www.amazon.com/SanDisk-Ultra-MicroSDHC-Memory-Adapter/dp/B073JWXGNT/ref=dp_ob_title_ce
https://www.amazon.com/SanDisk-Ultra-MicroSDHC-Memory-Adapter/dp/B073JWXGNT/ref=dp_ob_title_ce
https://www.amazon.com/SanDisk-Ultra-MicroSDHC-Memory-Adapter/dp/B073JWXGNT/ref=dp_ob_title_ce

25

9 | USER MANUAL

Hardware Set-Up
1. Connect D/I Box to Computer or RaspberryPi with USB to XLR cable
2. Connect guitar to D/I Box with ¼” cable

Software Set-Up

1. Make sure device has a python 3 interpreter
2. Install the following python Modules:

a. pyaudio
b. os
c. struct
d. numpy
e. time
f. math
g. cProfile
h. keyboard
i. Wave
j. Winsound

3. Download the Code

Execution

1. Navigate to code from terminal/ command prompt
2. Run code

File Location

1. Go to Folder where code is saved
2. Identify file named “recorded_audio.wav” - For raw audio
3. Identify file named “midiTest.MIDI” - For MIDI file

Notes

● Modify ticksPerBeat - line 43 -to change the amount of accuracy per tick
● Modify MINREAD - line 62 - to change the fastest note the system can read
● To change how long the program runs for, modify line 92 with the maximum amount of

ticks desired

26

● Use an online MIDI to Sheet Music Converter in order to generate sheet music, such as
https://solmire.com/miditosheetmusic/

10 | CONCLUSIONS & RECOMMENDATIONS

Our system was designed as a tool to flatten the learning curve associated with

transcribing music and provide DIY musicians with an accessible, low-cost, compact tool for

automatic transcription to MIDI and sheet music. We succeeded in creating a low cost system

with simple modifiable parameters and straightforward implementation in an accessible and

efficient coding language (Python, using NumPy) that generates audio and MIDI files, and

whose progress is well documented for future interested parties to improve upon and use. The

system uses Python, a couple libraries and several modules to detect and transcribe audio in

real-time, however we were only able to complete this for monophonic audio detection due to the

complexity of polyphonic transcription and time constraints.

The overall performance of the system from our first test yielded an average accuracy

rate of 75.3% for a C major scale pitch detection, and 53.7% accuracy for rhythm detection. For

the E major scale test, it yielded an average accuracy result of 48% for pitch detection and 29.3%

accuracy for rhythm detection. These fell short of our desired accuracy measures significantly,

but we were sure that given more time we could improve the algorithm, and even attempt to

tackle polyphonic transcription. In particular, two main problems prevented the system from

working as well as it could have.

The first was scheduling, or forcing the computer to take snapshots of the incoming

signal at regular intervals. Because of the musical nature of the data we were trying to record, it

27

was particularly important to get this right, and while we came close, even in our current version

of the code scheduling has not worked as well as we had hoped, yielding inconsistent data. This

is an area that would benefit from more time spent on it, and could be improved in the future.

The other problem was harmonic transients that occur naturally in instruments. Certain

notes have higher harmonics (integer multiples of the fundamental frequency of the note) that

arise at the beginning of the string being struck that are higher in amplitude than the fundamental

frequency, and certain notes have lower harmonics. We observed that over time these transient

harmonics die out, but it can take a few seconds which is much too long if the user is playing

many notes in quick succession. We considered solutions using lookup tables that stored key

information about each note’s frequency domain characteristics to help the algorithm match

played notes to the correct MIDI note, but we did not complete this due to time constraints. This

would be another key area for future work.

The biggest lessons that we learned were that frequency domain signal analysis is very

tricky and that there are many approaches to note detection, and that real-time programs require

significantly more precision and speed than programs that work by processing saved data

retroactively. We also learned that the problem we originally sought out to tackle is very possible

to overcome, and nearly all the tools we need already exist, it was just a matter of putting all of

them together.

28

References

[1] Nakamura, E., Benetos, E., Yoshii, K., & Dixon, S. (2018). “Towards Complete Polyphonic

Music Transcription: Integrating Multi-Pitch Detection and Rhythm Quantization”. ​2018 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP)​.

doi:10.1109/icassp.2018.8461914

[2] M. A. Román, A. A. Pertusa, and J. A. Calvo-Zargoza (2018, September). “AN

END-TO-END FRAMEWORK FOR AUDIO-TO-SCORE MUSIC TRANSCRIPTION ON

MONOPHONIC EXCERPTS,” in ​19th International Society for Music Information Retrieval

Conference, Paris, France​.

[3] Elowsson, A. (2018). “Polyphonic Pitch Tracking with Deep Layered Learning.” arXiv

preprint arXiv:1804.02918.

[4] Glover, J. C., Lazzarini, V., & Timoney, J. (2011). “Python for Audio Signal Processing.”

[5] Collins, N. (2005, September). “Using a Pitch Detector for Onset Detection,” In ISMIR (pp.

100-106).

[6] Finnern, T. (1985). AES E-Library: “Interfacing Electronics and Transformers.”

http://www.aes.org/e-lib/browse.cfm?elib=11561

29

Appendices

Appendix A: Raspberry Pi Pinout:

https://www.raspberrypi.org/documentation/hardware/raspberrypi/schematics/rpi_SCH_4b_4p0_

reduced.pdf

Appendix B: Visualization Code

%matplotlib notebook

import pyaudio

import os

import struct

import numpy as np

import matplotlib.pyplot as plt

import time

from scipy.fftpack import fft

from tkinter import TclError

CHUNK = 1024 * 4 #samples per frame

FORMAT = pyaudio.paInt16 #pulls audio info as 16bit

https://www.raspberrypi.org/documentation/hardware/raspberrypi/schematics/rpi_SCH_4b_4p0_reduced.pdf
https://www.raspberrypi.org/documentation/hardware/raspberrypi/schematics/rpi_SCH_4b_4p0_reduced.pdf

30

CHANNELS = 1 # number of channels

RATE = 44100 #sample rate

fig, (ax, ax2) = plt.subplots(2, figsize=(15,7))

p = pyaudio.PyAudio() #create pyaudio object

stream = p.open(

 format = FORMAT,

 channels = CHANNELS,

 rate = RATE,

 input = True,

 output = True,

 frames_per_buffer = CHUNK

)

variable for plotting

x = np.arange(0, 2*CHUNK, 2)

x_fft = np.linspace(0, RATE, CHUNK)

create random line w/ random data. Can use either semilogx or plot

line, = ax.plot(x, np.random.rand(CHUNK), '-', lw=2)#you only need one

chunk because we slice the data in half in the while loop

line_fft, = ax2.semilogx(x_fft, np.random.rand(CHUNK), '-', lw=2)

basic formatting for axes

ax.set_title('AUDIO WAVEFORM')

ax.set_xlabel('samples')

ax.set_ylabel('volume')

ax.set_ylim(0,255)

ax.set_xlim(0,2*CHUNK)

plt.setp(ax, xticks=[0, CHUNK, 2*CHUNK], yticks=[0,128,255])

ax2.set_xlim(20, RATE / 2)

show the plot

plt.show(block=False)

print('stream started')

for measuring frame rate

frame_count = 0

start_time = time.time()

while True:

 # binary data

 data = stream.read(CHUNK)

 data_int = struct.unpack(str(2*CHUNK) + 'B', data)

 # convert data to integers, make np array, then offset it by 127

 data_np = np.array(data_int, dtype='b')[::2] +128

31

 line.set_ydata(data_np)

 # get fft, slice, and rescale to get magnitudes

 y_fft = fft(data_int)

multiply by 2 and divide by the number of frequencies in spectrum

times the amplitude of the waveform

 line_fft.set_ydata(np.abs(y_fft[0:CHUNK]) * 2 / (256 * CHUNK))

 # update figure canvas

 try:

 fig.canvas.draw()

 fig.canvas.flush_events()

 frame_count += 1

 except TclError:

 #calculate average frame rate

 frame_rate = frame_count / (time.time() - start_time)

 print('stream stopped')

 print('average frame rate = {:.0f} FPS'.format(frame_rate))

 break

Appendix C: End-To-End Real-Time Audio & MIDI File Generation Code

#Import statements

import pyaudio #The module used for pulling in audio information

import os

import struct

import numpy as np #Module used to convert Audio info into easily processed

arrays

import time #used to continuously call the stream by sleeping for the proper

amount of time

import math #used to perform certatin advanced mathematical calculations

import cProfile #used to get timing info on the performancce of the program

import keyboard

import wave #how we make wave recording

import winsound #Sound for metronome

from midiutil import MIDIFile #how we build MIDI

from scipy.fftpack import fft #Fast Fourier transform is a computaionaly

effective fouier transform

from tkinter import TclError #acces TclError funtion of Gui pack

MINMIDI = 28 #min midi value considered by Algo

MAXMIDI = 108 #max midi value considered by Algo

data = []

#create list of midi and frequency values

n = MINMIDI

32

noteNfreq = []

while n <= MAXMIDI:

 f = 440*(2**((n-69)/12))

 noteNfreq.append(f)

 n = n + 1

noteArray = np.asarray(noteNfreq)

#defines stream information

CHUNK = 1024 * 4 #samples per frame

FORMAT = pyaudio.paInt16 #pulls audio info as 16bit

CHANNELS = 1 # number of channels

RATE = 44100 #sample rate

FREQ = 2500 # Set Frequency To 2500 Hertz

DUR = 2 #set Duration of metronome to To 2 ms == .002 second

for measuring frame rate

frame_count = 0

totalTicks = 0

ticksPerBeat = 4

#keep track of notes

noteValue = [] #stores midi Values of read data

noteTime = [] #stores time(ticks) midi Values were read at

#keep track of track

midiNote = [] #Defines note values of midi Files

mididuration = [] #defines length of note values within a Midi File

midionset = [] #defines starting point of midi values within a Midi File

tracker = 0 #tracks num of values have been tracked by the note

track = 0

channel = 0

midiTime = 0 # In beats

tempo = int(input("Set Tempo in bpm: ")) # In BPM

volume = 100 # 0-127, as per the MIDI standard

#tempo data

secPerQnote = 1/(tempo/60)

MINREAD = 16 #1/how long the smallest note is

secPerMin = secPerQnote/(MINREAD/4)

TICKTIME = secPerMin/ticksPerBeat

delay = 0

#stores audio data to provide recording

framez = []

get device information of system

d = pyaudio.PyAudio()

for i in range(d.get_device_count()):

dev = d.get_device_info_by_index(i)

print((i,dev['name'],dev['maxInputChannels']))

33

d.terminate()

#Calbackfunction that puts pyaudio in non-blocking mode

def callback(in_data, frame_count, time_info, status):

 global totalTicks

 global data

 global delay

 global TICKTIME

 data = in_data

 #if the program took longer to run than the required tick time

 if(TICKTIME-delay > 0):

 time.sleep(TICKTIME-delay)

 else:

 print("wrong")

 #Only allows program to run for 300 ticks, for the purpose of testing

 if(totalTicks > 300):

 return (data, pyaudio.paAbort)

 return (data, pyaudio.paContinue)

#uses midi info stored from the real time processing to build midi file

def buildMidi():

 global track

 global channel

 global midiTime

 #global duration = noteDuration/(total time/(beat per second)) # In beats

 global tempo

 global volume

 global totalTicks

 global ticksPerBeat

 global midiNote

 global mididuration

 global midionset

 MyMIDI = MIDIFile(1) # One track, defaults to format 1 (tempo track

 # automatically created)

 MyMIDI.addTempo(track, midiTime,tempo)

 delay = midionset[0]

 #add logic to convert ticks to time value

 for num in range(0, len(midiNote)):

 MyMIDI.addNote(track, channel, midiNote[num],

math.floor((midionset[num]-delay)/2), mididuration[num]/2, volume)

 print(midiNote)

 print(midionset)

 with open("midiTest.MIDI", "wb") as output_file:

 MyMIDI.writeFile(output_file)

34

def main():

 global TICKTIME

 global data

 global noteValue

 global noteTime

 global totalTicks

 global ticksPerBeat

 global midiNote

 global mididuration

 global tracker

 global midionset

 global framez

 global data

 global delay

 global secPerQnote

 #instantiate PyAudio

 p = pyaudio.PyAudio()

 #open Stream Using Callback

 stream = p.open(

 format = FORMAT,

 channels = CHANNELS,

 rate = RATE,

 input = True,

 output = False,

 #input_device_index=1,

 frames_per_buffer = CHUNK,

 stream_callback = callback

)

 streamin = True

 #Count in

 print("Stream start in 4")

 for x in range(0,3):

 winsound.Beep(FREQ, DUR)

 time.sleep(secPerQnote)

 #start Stream

 stream.start_stream()

 while stream.is_active():

 startTime = stream.get_time()

 if(totalTicks % 16 == 0):

 winsound.Beep(FREQ, DUR)

 if(data != []):

 framez.append(data)

 data_int = struct.unpack(str(2*CHUNK) + 'B', data)

 # convert data to integers, make np array, then offset it by 127

 #this is the magnitude data?

 data_np = np.array(data_int, dtype='b')[::2] +128

 # get fft, slice, and rescale to get magnitudes

35

 # multiply by 2 and divide by the number of frequencies in spectrum

times the amplitude of the waveform

 y_fft = fft(data_int)

 frequencies = np.abs(y_fft[0:CHUNK]) * 2 / (256 * CHUNK)

 maxf = max(frequencies[1:])

 flist = frequencies.tolist()

 findex = flist.index(maxf)

 if findex < 1000:

 #find midinums

 frequency_val = findex * (RATE/CHUNK)

 arrindex = (np.abs(noteArray - frequency_val)).argmin()

 midiNum = arrindex + MINMIDI

 #if we find a midiValue we wanna keep

 if midiNum <= MAXMIDI:

 #if there have already been a notes worth of midiValues

stored up

 if len(noteValue) >= ticksPerBeat:

 #if the midi we see is the same as the other notes, add

it to the list

 if midiNum == noteValue[tracker-3] and midiNum ==

noteValue[0]:

 noteValue.append(midiNum)

 noteTime.append(totalTicks)

 tracker = len(noteValue)

 #otherwise add note to track, display and clear

variables

 else:

 midiNote.append(noteValue[0])

 midionset.append(noteTime[0]/ticksPerBeat)

 duration = (totalTicks -

noteTime[0])/ticksPerBeat

 mididuration.append(duration)

 print ("{} note, at time {}, for

{}".format(noteValue[0], noteTime[0], duration), end="\r")

 tracker = 1

 noteValue = [midiNum]

 noteTime = [totalTicks]

 #if the note is empty

 elif len(noteValue) == 0:

 noteValue.append(midiNum)

 noteTime.append(totalTicks)

 tracker = 1

 else:

 #if note is the same as last, store value else,

restart

 if noteValue[tracker-1] == midiNum:

 noteValue.append(midiNum)

 noteTime.append(totalTicks)

36

 tracker = len(noteValue)

 else:

 tracker = 1

 noteValue = [midiNum]

 noteTime = [totalTicks]

 delay = stream.get_time()-startTime

 #if the program ran slower than the required ticktime.

 if(TICKTIME-delay > 0):

 time.sleep(TICKTIME-delay)

 else:

 print("wrong")

 totalTicks = totalTicks+1

 #Stop Stream

 stream.stop_stream()

 stream.close()

 #close pyAudio

 p.terminate()

 wf = wave.open('recorded_audio.wav', 'wb')

 wf.setnchannels(CHANNELS)

 wf.setsampwidth(p.get_sample_size(FORMAT))

 wf.setframerate(RATE)

 wf.writeframes(b''.join(framez))

 wf.close()

 #build Midi

 buildMidi()

 return

#cProfile.run('main()')

Appendix D: MIDI Test Screenshots

1) E Scale - 60 BPM

2) E Scale - 90 BPM

3) E Scale - 120 BPM

4) C Scale - 60 BPM

5) C Scale - 90 BPM

6) C Scale - 120 BPM

37

1)

2)

38

3) 4)

4)

39

5)

6)

