Athletic Recovery Device ECE-499

Ryan, Herschel, and Amanda

Problem Statement

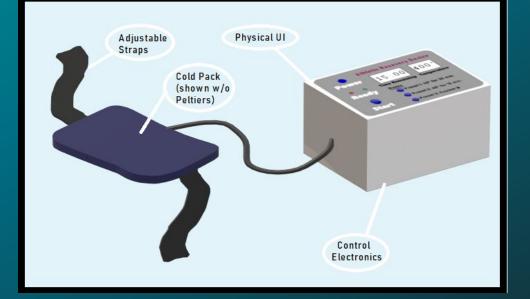
- Sports cause acute injury
- Cold therapy treatment
 - RICE Method: Rest, Ice, Compression, Elevate
 - Application of cold surface to injured area
- At Union College
 - Plastic Ice Bags
 - Pros: Easy to use, cheap, sanitary
 - Cons: Unsustainable, lack of temp. regulation

https://www.macleans.ca/society/the-end-of-the-ice-age/

https://unionathletics.com/images/2020/5/25/union_lo r_new.jpg?width=1920&quality=80&formation

Existing Products

- Chemical Packs
 - 🖡 Easy to use
 - 🗧 Must be refrozen
 - Too cold/not cold enough
- Liquid Circulation Systems
 - \pm Consecutive Use
 - 🕂 Temperature control
 - Expensive, Inconvenient
- Electrically Powered Devices
 - 🛖 Temperature Control
 - Expensive
 - Limited Market


https://capitalosteopathy.ca/ice-packs-pain-sprained-ankles/

https://www.greatnesscollective.com/recoverx

https://cdn11.bigcommerce.com/s-gpuq0v 2/images/stencil/1280x1280/products/639/ 2890/Kodiak-cold-therapy-withpad 6259 4.1579814446.png?c=2

Project Goal

To create an electronically powered ice pack with the ability to control the temperature and duration of the treatment for consecutive uses. We believe this would be a valuable and sustainable asset to the Union College training room.

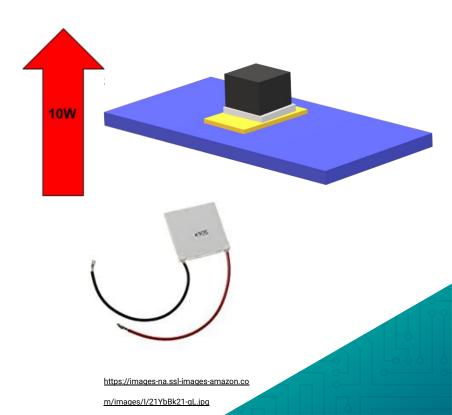
User Requirements

Software and Signals

- User-Friendly Interface
- Treatment Modes

Temperature Control

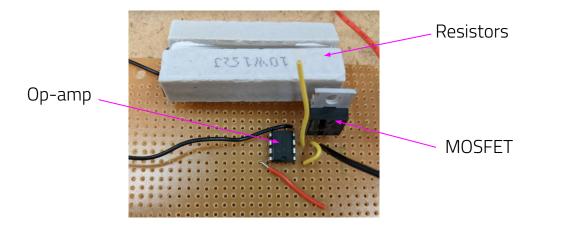
- Reaches 40-50°F in <5 min.
- Hold temp. for duration of treatments (3+hrs)
- Uniform cooling

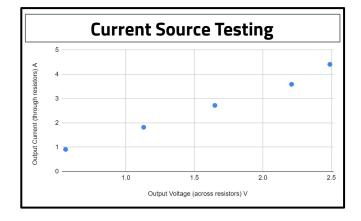

Construction & Safety

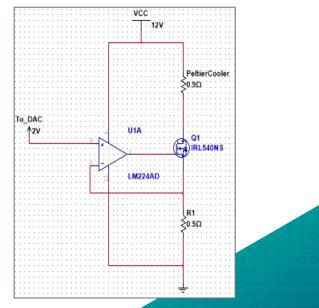
- Fit in 2 cubic foot area
- Ensuring user isolation and sanitation
- 180-360° coverage

Adjustable Straps	Physical UI	
	Cold Pack (shown w/o Peltiers)	
		Control
		Electronics

Temperature Control Overview

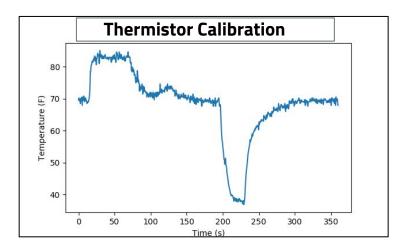

- Why use Peltier Coolers?
- Module Requirements
 - 10W thermal transfer
 - 100cm² cooling area
- Two Modules (one shown)

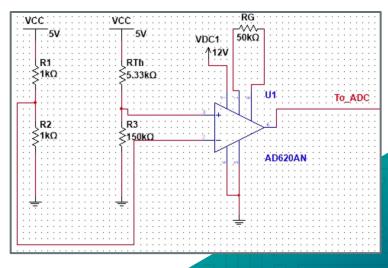



Peltier Control

Variable Current Source

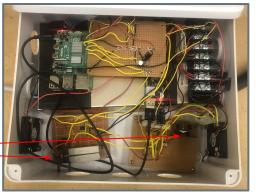
- 8V 8A Peltier as load
 10A Power MOSFET
- Op amp control





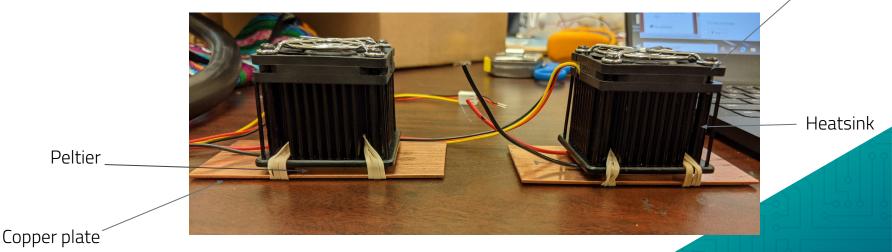
Temperature Measurement

- Use 10k Thermistor (1/module)
- Instrumentation amp (AD620)
- ADC value 1-5V
 - Headroom requirements
- Capacitor needed



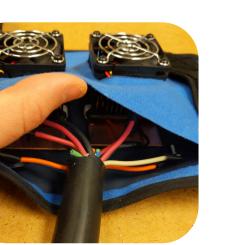
Layout and Wiring: Case

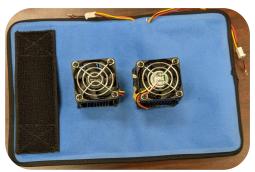
- Power supply SE-600-12: 12V and 50A
 - Takes up more space than expected
- Raspberry Pi and buck converter on power supply
 - Isolation
- Fan Orientation and placement
 - Blow Inwards, 3 exits
 - Heat sinks close to fan =



Sleeve electronics

- Holding fans, bar, and peltier together
 - Thermal tape: not strong enough thermal connection
- Alternate solution: rubber bands!!
 - Thread rubber bands through heat sink
- Electric tape: isolate all connections




Fan

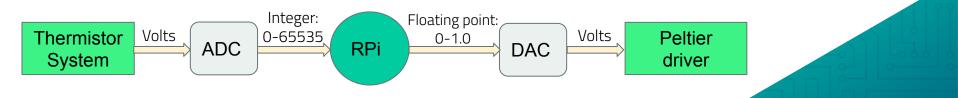
Sleeve

- Emptying gel pack
- Openings for electronics
 - Inserting electronics
 - Fan Openings
- Velcro strap
- Table of cable connections
- 2 subsystems
 - Trim cable wires

System wire
Peltier 1 +
Peltier 1 -
Fan 1 +
Fan 1 -
Thermistor 1 +
Thermistor 1 -
Pelter 2 +
Peltier 2-
Fan 2 +
Fan 2 -
Thermistor 2 +
Thermistor 2 -

Software and Signals

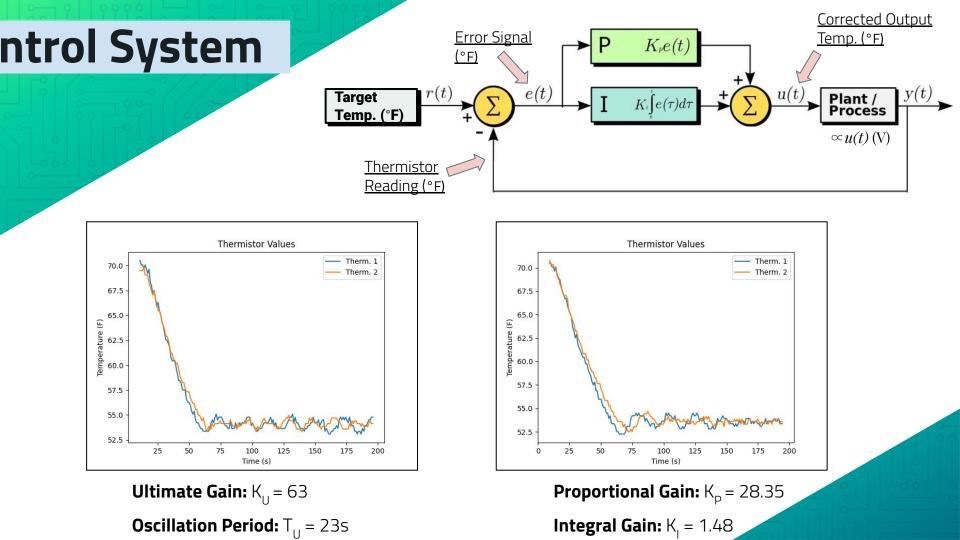
Control Device:


Raspberry Pi 4 Model B (RPi)

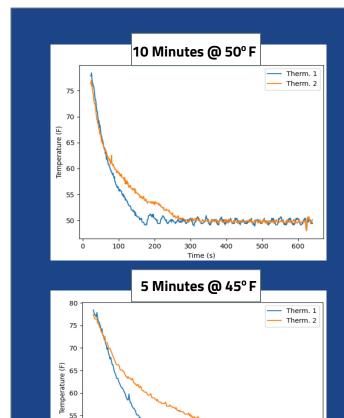
Graphical User Interface (GUI):

• Tkinter Program using Python

Signals Processing


- Input from 16-bit Analog-to-Digital Converter (MCP3008 ADC)
- Output to 12-bit Digital-to-Analog Converter (MCP4725 DAC)

User Interface



Tkinter: Frames: Layers of the interface Widgets: Button, Label, Entry StringVar(): Dynamically updates variables

Testing Results

- 50° F works great!
- 45° F test half successful
 - One module bad connection
 - Flaws in construction
 - No time to fix
- Oscillations

50

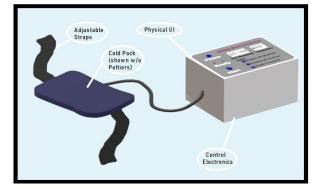
45 -

200

250

300

Time (s)


350

450

400

Design Requirements Met?

- 40-50° F on skin
- <5 min cool down</p>
- 3 hour near-continuous use

- <2 ft³
- 180-360° coverage
- Uniform cooling
- Treatment modes

Cost Analysis & Market Requirements

- Material Costs: \$485.68
- Labor costs: \$700 (35 hrs @ \$20/hr)
- Total costs: \$1185.68
- Likely class 2 device
 - Requires FDA classification
- Likely De Novo 510(k) Clearance
- Use existing relevant standards
 - Eg. ISO 59752, 9241

https://www.freepngimg.com/t humb/dollar/64032-united-mo ney-symbol-dollar-sign-statescurrency.png

https://www.wallseals.com/m isc%20seals/DHHS_FDA.jpg

Trainer feedback

- Approval:
 - Reached temperature values
 - Size: portable if needed
 - Interface: easy to use
 - Good area of coverage
- Concerns:
 - Robustness and durability: protruding heatsinks
 - Cable: both size and securedness
- Other thoughts:
 - Useful during travel
 - Contrast therapy

Future work

- Software:
 - Tuning of PID System
 - Modularization of code
- Temperature Control:
 - Potential to use higher currents
 - Contrast therapy
- Construction and safety:
 - Neater wiring
 - Improved isolation
 - More reliable connections

Acknowledgements

Professor Buma: Project Advisor

Gene Davidson: *Supply Logistician*

Mark Hooker: Tools and Copper Bar Lender

Cheryl Rockwood: Training Room Consultant

Robert Harlan: Machine Shop Consultant

Professor Dosiek: Control Systems Consultant

Guestions?