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Report Summary 

Underwater data collection is a field that concerns the tracking, monitoring, or gathering 

of underwater data and has significant financial, social, and environmental implications. 

Technologies used to attain this data are vast, but suffer from key shortcomings that prevent their 

adoption at mass in society. Autonomous Underwater Vehicles (AUV’s) provide a cheap and 

autonomous option, however current industry products suffer either from a high price point or 

lack in ease of use (i.e. meters long and several tons heavy). Recently, AUV’s have been 

emerging on the micro-scale (a few feet in length), easily operable by one person. 

This project is the Autonomous Flocking µ-Sub project, or AFµS project. The goal of this 

project is to develop a micro-scale AUV at a cost of no more than $500, thus both handlable and 

affordable by a much larger audience. Further specifications include a communication system 

with a BER less than 10%, data rate of at least 62.5 bps, and transmission distance of at least 1 

meter, as well as successful obstacle detection at 1.5 meters away, and finally position holding in 

a 5 meter cube for at least 5 minutes. Flocking capabilities will increase the applicability of the 

product, and is achievable by utilizing a low latency optical communication system. Sonar is 

used for obstacle avoidance, and a combination of inertial measurement and global positioning 

allows for navigation and exploration. Results of this project show that decent performance in 

communication, locomotion and obstacle avoidance can still be achieved with off-the-shelf 

electrical components, however dead-reckoning using an off-the-shelf inertial measurement unit 

is not feasible due to unbounded error accumulation.   
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