Ultrasound Imaging System for Educational Purposes

STUDENT: YAZAN BARHOUSH

FACULTY ADVISOR: PROF. TAKASHI BUMA

Principles of Ultrasound Imaging

- ➤ Echo-ranging technique
- >Transducer emits a short ultrasonic pulse into the object
- Same transducer records the echoes that come back
- >Transducer is scanned across the object

Motivation

- The constructed Ultrasound Imaging System will serve as an Educational tool.
 - ➤ Better Understanding for Ultrasound.
 - ➤ Better Understanding for Electronics involved.
- TIMING ELECTRONICS: Triggers Data Acquisition, PULSER/RECEIVER and controls Stepper-motor.
- ► Improved System
 - Accuracy
 - ➤ Flexibility
 - **≻**Modularity

Design and Testing FPGA vs Microcontroller

MICROCONTROLLER

Familiarity with programing Language.

Clock Speed: 22.118MHz.

FPGA (ALTERA DE BOARDS)

Hardware: Parallel execution

Clock Speed: 50MHz.

Interfaces include

- External GPIO headers
- 2. On-board memory devices
- General user peripheral with LEDs, Switches and pushbuttons.

1 Hz Schematic

Clock Divider: 50MHz System Clock in, 1 Hz out.

10 kHz and Stepper-Motor Driver Schematics

- -- 10 kHz Clock Divider: 50MHz System Clock in, 10 kHz out.
- -- Stepper Motor Driver

Generated Pulses Accuracy

Stepper Motor

Why?

- 1. Better accuracy
- 2. Reduced effects of resonance

Requirement

Drive a 200 step per revolution motor via micro-stepping (1/64)

Data Processing (MATLAB) Flowchart

Ultrasound Imaging System Setup

Conclusion

REQUIREMENT

- ➤ A good demonstration techniques for mediating learning
- >Improved Accuracy
- ➤ Higher Flexibility
- **≻**Modularity
- Trigger Data Acquisition,Pulser/Receiver and control aStepper-motor
- Process Data and Acquire images

ACHIEVED?

- >YES!
- Signals were generated accurately (with in limit)
- Smaller Size; System employs user peripheral with LEDs, Switches and push-buttons.
- Adaptable Blocks and Reusable code
- > FPGA was used
- ➤ MATLAB, Ultrasound Images

Future Work

- Implement different Modes for triggering and acquiring data
 - >MUXs and switches.
- User input taken through FPGA only.
- > Data processing using a different environment
 - >Implement a User Interface
- ➤ Improve stepper motor driver
 - Support other micro stepping modes

Questions?

Appendix

Parts

DE0-nano Development and Education Board	\$120
http://www.terasic.com.tw/cgi-	
bin/page/archive.pl?Language=English&No=364	
Stepper Motor Driver	\$5
https://www.pololu.com/product/2135/pictures	
Stepper Motor with Cable	\$14.91
https://www.sparkfun.com/products/9238	
Total	\$110

The project requires some additional components. These components will be covered by the faculty advisor overseeing this project, and/or the Electrical Engineering Department. The Altera DE2 Development, Olympus 1073PR Pulser-Receiver, NI USB-1133 acquisition board, c8011 microcontroller and a computer.

Component schematic and a timing diagram of a PWM uni-polar stepping motor controller.

Preliminary Data

- 1. Create Instrument Object
- 2. Configure the scope
 - Configure the vertical range for channels: Range, Offset, Coupling and Probe Attenuation.
 - Configure Channel
 - Configure the horizontal parameters: SamplingRate, numSamples ...
 - Setup the digital trigger and configure it.
- 3. Enter waveform parameters
- 4. Fetch the ultrasound data and reshape into 2D matrix
- select portion of ch0_data
- 6. display ultrasound image