The Gibbs Phenomenon

Ehssan Khanmohammadi

Example 1. Let f be the function of period 1 given by

$$
f(x) = \begin{cases} 1 & \text{if } 0 < x < \frac{1}{2} \\ -1 & \text{if } -\frac{1}{2} < x < 0 \end{cases}
$$

with a jump discontinuity at $x = 0$. According to Dirichlet's theorem, $S_N(f)(0)$ converges to the midpoint of the jump namely $\frac{f(0^+)+f(0^-)}{2}=\frac{1+(-1)}{2}=0$. However, as you can see in the graphs below, for positive x near 0 the function $S_N(f)(x) = (D_N * \overline{f})(x)$ overshoots $f(0^+) = 1$, and the *height* of this bump (or overshoot) does not decay as $N \to \infty$. Despite of this phenomenon, the *width* of the bump tends to zero as $N \to \infty$.

Gibbs and Wilbraham discovered independently that this happens near the jump discontinuity of many other functions.

Gibbs Phenomenon. If f is a piecewise $C¹$ function, then near a jump discontinuity, the Fourier series of f overshoots (or undershoots) it by approximately 9% of the jump.^{[1](#page-0-0)}

Example 2. As before, let f be the function of period 1 given by

$$
f(x) = \begin{cases} 1 & \text{if } 0 < x < \frac{1}{2} \\ -1 & \text{if } -\frac{1}{2} < x < 0 \end{cases}.
$$

Find an approximation to the amount of overshoot of the Fourier series of f near $x = 0$.

Solution. The overshoot of the Fourier series of f near 0 is approximately

$$
0.09 \underbrace{(f(0^+) - f(0^-))}_{\text{size of the jump}} = 0.09 \times 2 = 0.18.
$$

¹More precisely, if $x = 0$ is a jump discontinuity, then

$$
\max_{0 < x \le \frac{1}{2N}} S_N(f)(x) \simeq f(0^+) + c \underbrace{(f(0^+) - f(0^-))}_{\text{jump}} \tag{1}
$$

where $c = \int_0^1 \frac{\sin \pi t}{\pi t} dt - \frac{1}{2} \simeq 0.09$. The approximation [\(1\)](#page-0-1) becomes an equality in the limit as $N \to \infty$.

 $g(0^+) = g(0^-).$

Check that for $g(x) = f(x) - cs(x)$,

Hint: $s(0^+) = 1/2$ and $s(0^-) = -1/2$.

Educational Note: The above exercise can be used to verify the Gibbs phenomenon for *any* piecewise $C¹$ function f with a jump discontinuity at 0, just by verifying it for the sawtooth function s ; the latter is indeed what we did in class by explicit calculations.

Optional Reading: Avoiding the Gibbs Phenomenon

Theorem (No Gibbs Phenomenon). Let $\Delta_N(x) = \sum_{n=1}^{N}$ $n = -N$ $\left(1-\frac{|n|}{N}\right)$ $\left(\frac{n}{N}\right)e^{2\pi inx}$ denote the Fejér kernel as usual, and let f be a piecewise continuous function of period 1. Then for any x and any N ,

$$
|(\Delta_N * f)(x)| \le \max_{t \in [0,1]} |f(t)|.
$$

Proof.

$$
|(\Delta_N * f)(x)| = \left| \int_0^1 \Delta_N(x - t) f(t) dt \right|
$$

\n
$$
\leq \int_0^1 |\Delta_N(x - t)| |f(t)| dt
$$
 by triangle inequality for integrals
\n
$$
\leq \max_{t \in [0,1]} |f(t)| \int_0^1 \Delta_N(x - t) dt
$$

\n
$$
= \max_{t \in [0,1]} |f(t)|
$$
 because $\int_0^1 \Delta_N(x - t) dt = 1$.

The reason that this argument fails to work for the Dirichlet kernel is that D_N takes both positive and negative values.

Exercise 2. Use the above theorem to argue that the Gibbs phenomenon does not occur if we use $\Delta_N * s$, rather than $D_N * s$, to approximate the sawtooth function s.