Orthogonal Projections and the Gram-Schmidt Process

Ehssan Khanmohammadi

Review of the Theory

Recall that when $\{w_1, \ldots, w_p\}$ is an orthogonal basis for a subspace W of an inner product space V , we can find the *orthogonal projection* of any vector v in V onto W by the formula

$$
\operatorname{Proj}_{W} v = \frac{\langle v, w_{1} \rangle}{\langle w_{1}, w_{1} \rangle} w_{1} + \dots + \frac{\langle v, w_{p} \rangle}{\langle w_{p}, w_{p} \rangle} w_{p}.
$$
 (1)

Remark. There are several pieces of notation and terminology for the orthogonal projection of v onto W . (You just need to keep in mind that they refer to the same thing!)

> Proj $_W v$ = the orthogonal projection of v onto W $=$ the best approximation to v in W $=$ the closest point to v in W

Theorem 1 (Orthogonal Projection). Let V be an inner product space and $B = \{w_1, \ldots, w_p\}$ an orthogonal basis for a finite-dimensional subspace $W \subseteq V$.

- (a) Any vector $v \in V$ can be uniquely written in the form $v = v_1 + v_2$ where $v_1 \in W$ and $v_2 \in W^{\perp}$. The vector v_1 equals Proj_W v.
- (b) The lengths satisfy $||v||^2 = ||v_1||^2 + ||v_2||^2$.
- (c) The vector v_1 is the best approximation to v in W, in the sense that

$$
||v - v_1|| < ||v - w|| \quad \text{for any } w \in W \text{ with } w \neq v_1.
$$

The Gram-Schmidt Process (GS for short) is an algorithm named after two mathematicians who discovered how one can transform any basis for a given vector space to an orthogonal basis. The idea is to use orthogonal projections.

Theorem 2 (Gram-Schmidt Process). Let $\{w_1, \ldots, w_p\}$ be a basis for W. Then $\{v_1, \ldots, v_p\}$ is an orthogonal basis for W where v_1, \ldots, v_p are defined recursively as follows

$$
v_1 = w_1
$$

\n
$$
v_2 = w_2 - \frac{\langle w_2, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1
$$

\n
$$
v_3 = w_3 - \frac{\langle w_3, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1 - \frac{\langle w_3, v_2 \rangle}{\langle v_2, v_2 \rangle} v_2
$$

\n
$$
\vdots
$$

In other words,

$$
v_1 = w_1
$$

\n
$$
v_2 = w_2 - \text{Proj}_{v_1} w_2
$$

\n
$$
v_3 = w_3 - \text{Proj}_{v_1, v_2} w_3
$$

\n
$$
\vdots
$$

Review Examples

Example 1. Let $V = C[-1, 1]$ be equipped with the inner product $\langle f, g \rangle =$ $\int_{-1}^{1} f(x)g(x) dx$ and let $W = \text{Span}\{p_0, p_1\}$ where $p_0(x) = 1, p_1(x) = x$. Find the best approximation to $p_2(x) = x^2$ in W.

Solution. We are asked to find Proj_W p_2 . Note that $p_0 \perp p_1$ with the given inner product because $\int_{-1}^{1} (1)x \, dx = 0$. Thus we can use the orthogonal projection formula [\(1\)](#page-0-0).

$$
\operatorname{Proj}_{W} p_{2} = \frac{\langle p_{2}, p_{0} \rangle}{\langle p_{0}, p_{0} \rangle} p_{0} + \frac{\langle p_{2}, p_{1} \rangle}{\langle p_{1}, p_{1} \rangle} p_{1}
$$

=
$$
\underline{\hspace{2cm}} 1 + \underline{\hspace{2cm}} x
$$

I will let you compute the coefficients of 1 and x by carrying out the necessary integrations.

Example 2. Let $V = C[0, 1]$ be equipped with the inner product $\langle f, g \rangle =$ $\int_0^1 f(x)g(x) dx$ and let $W = \text{Span} \{p_0, p_1\}$ where $p_0(x) = 1, p_1(x) = x$. Find the best approximation to $p_2(x) = x^2$ in W.

Solution. Again we need to find $\text{Proj}_W p_2$. Note that with the new inner product $\int_0^1 (1)x dx \neq 0$ $\int_0^1 (1)x dx \neq 0$ $\int_0^1 (1)x dx \neq 0$. Thus we cannot use the orthogonal projection formula (1) directly.

• Step I Use the Gram-Schmidt process to find an orthogonal basis for W , say $\{q_0, q_1\}$. Indeed, the short calculation

$$
q_0 = p_0
$$

$$
q_1 = p_1 - \text{Proj}_{q_0} p_1
$$

gives $q_0(x) = 1, q_1(x) = x - \frac{1}{2}$.

• Step II Solve the problem as in the previous Example.

$$
\begin{aligned} \text{Proj}_W \, p_2 &= \frac{\langle p_2, q_0 \rangle}{\langle q_0, q_0 \rangle} q_0 + \frac{\langle p_2, q_1 \rangle}{\langle q_1, q_1 \rangle} q_1 \\ &= \frac{q_0 + \langle p_1, q_2 \rangle}{\langle q_1, q_2 \rangle} q_1 + \langle p_2, q_1 \rangle \end{aligned}
$$

I will let you compute the coefficients of q_0 and q_1 by carrying out the necessary integrations.