Weierstrass Approximation Theorem

Ehssan Khanmohammadi

Polynomials are "dense" in the set of all continuous functions over the interval [0, 1] in the following sense:

Theorem 1 (Weierstrass Approximation–Polynomial Version). Given a continuous function f on [0, 1] and any number n > 0, one can always find a polynomial p_n such that

$$\max_{x \in [0,1]} |f(x) - p_n(x)| < \frac{1}{n}.$$

Loosely speaking, any continuous function on [0, 1] can be approximated by a sequence of polynomials. We illustrate an application of this theorem by an example which is of importance in probability and statistics.

Example (Hausdorff Moment Problem). Suppose f is a continuous real-valued function on [0, 1] such that

$$\int_0^1 f(x) x^k \, dx = 0 \quad \text{ for all } k = 0, 1, 2, \dots$$

Show that f(x) = 0 for all $x \in [0, 1]$.

Solution. We claim that $\int_0^1 (f(x))^2 dx = 0$. Let us see why after proving this claim we can immediately proceed to conclude that f(x) = 0 everywhere. Since f^2 is continuous and $f^2(x) \ge 0$, the integral $\int_0^1 (f(x))^2 dx$ can equal

Since f^2 is continuous and $f^2(x) \ge 0$, the integral $\int_0^1 (f(x))^2 dx$ can equal zero only if the integrand $f^2(x)$ is zero for all x. Of course, this is equivalent to f(x) = 0 everywhere. So it suffices to prove our claim.

Let n > 0 be arbitrary and let p_n be a polynomial as in Theorem 1. Then observe the trivial identity that

$$f^{2}(x) = f(x)p_{n}(x) + f(x)(f(x) - p_{n}(x)).$$

Integrating both sides of this equality from 0 to 1 yields

$$\int_0^1 f^2(x) \, dx = \int_0^1 f(x) p_n(x) \, dx + \int_0^1 f(x) (f(x) - p_n(x)) \, dx$$
$$= 0 + \int_0^1 f(x) (f(x) - p_n(x)) \, dx.$$

The integral $\int_0^1 f(x)p_n(x) dx$ is zero because, if $p_n(x) = a_0 + \cdots + a_m x^m$, then we can use a term by term integration to obtain $\int_0^1 f(x)p_n(x) dx = \sum_{k=0}^m a_k \int_0^1 f(x)x^k dx = 0$ by assumption. Thus so far we have

$$\int_0^1 f^2(x) \, dx = \int_0^1 f(x)(f(x) - p_n(x)) \, dx.$$

Next observe that by triangle inequality for integration,

$$\int_0^1 f^2(x) \, dx = \left| \int_0^1 f^2(x) \, dx \right| = \left| \int_0^1 f(x) (f(x) - p_n(x)) \, dx \right|$$
$$\leq \int_0^1 |f(x)| |f(x) - p_n(x)| \, dx.$$

Finally note that since |f| is continuous on [0, 1], it achieves a maximum M, therefore

$$|f(x)||f(x) - p_n(x)| \le M\left(\frac{1}{n}\right),$$

and

$$\int_{0}^{1} |f(x)| |f(x) - p_{n}(x)| \, dx \le \int_{0}^{1} M\left(\frac{1}{n}\right) \, dx = M\left(\frac{1}{n}\right).$$

Thus

$$0 \le \int_0^1 f^2(x) \, dx \le M\left(\frac{1}{n}\right) \text{ for any } n > 0.$$

Letting $n \to \infty$, we see that $\int_0^1 f^2(x) dx = 0$ as claimed.

Exercise. Revisit this example after you take a course in analysis and try to give an alternate one-line solution for it.

Weierstrass Approximation Theorem has the following counterpart for continuous **periodic** functions. Recall that a **trigonometric polynomial** (of period 1) is a function of the form $\sum_{k=-m}^{m} a_k e^{2\pi i k x}$.

Theorem 2 (Weierstrass Approximation Theorem–Trigonometric Version). Given a continuous function f on [0, 1] with f(0) = f(1) and any number n > 0, one can always find a trigonometric polynomial p_n such that

$$\max_{x \in [0,1]} |f(x) - p_n(x)| < \frac{1}{n}.$$

After the break, we will briefly discuss this theorem in the context of Fourier series.