Matrix Lie Groups–Homework^{*}6

Ehssan Khanmohammadi

Please provide the details of your work for each problem. All problems are partial credit.

1. (2 points) (Tapp, Exercise 5.10) Let G be a matrix group with the Lie algebra \mathfrak{g} . Prove that the tangent space to G at any $A \in G$ is

$$T_A G = A\mathfrak{g} = \{AB \mid B \in \mathfrak{g}\}$$

Hint: By definition, the tangent space $T_A G$ consists of the initial velocity of curves in G with initial position A.

Educational Note: This exercise shows that the vector spaces T_IG and T_AG are isomorphic under the linear map $X \mapsto AX$.

2. (4 points) Let
$$G = \left\{ \begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix} \mid a > 0, b \in \mathbb{R} \right\}.$$

- (a) Show that G is subgroup of GL_2 under matrix multiplication.
- (b) Find the Lie algebra of G. *Hint:* The Lie algebra of G is defined to be the tangent space to G at the identity, that is, $\mathfrak{g} = T_I G$. Find the initial velocity of all curves in G with initial position I.
- (c) Use the previous part to find the dimension of G.

Educational Note: The group G is isomorphic with the group of affine transformations of \mathbb{R} , namely $\{f_{a,b} \mid f_{a,b}(x) = ax + b, a > 0, b \in \mathbb{R}\}$ where the group operation is the composition of functions.

3. (3 points) In class we proved that $\frac{d}{dt}e^{tX} = Xe^{tX}$. Show that e^{tX} is the only differentiable function f satisfying the initial value differential equation

$$f'(t) = X f(t)$$
 and $f(0) = I$

as follows.

^{*}Submit on Wednesday, March 29 in class.

- (a) Prove that for any solution f of the equation above, the product $e^{-tX} f(t)$ is a constant, that is, $e^{-tX} f(t) = c$ for some c. *Hint:* A differentiable function $g: \mathbb{R} \to \mathbb{R}^N$ is constant if and only if g'(t) = 0 for all t.
- (b) Show that c = I to conclude that $f(t) = e^{tX}$.

4. (1 point) Give an example of a matrix group G and a matrix X such that $e^X \in G$ but $X \notin \mathfrak{g}$.

Educational Note: It turns out that if $e^{tX} \in G$ for all real t, then $X \in \mathfrak{g}$. In fact, later we shall see that

$$\mathfrak{g} = \{ X \mid e^{tX} \in G \text{ for all real } t \}.$$

5. (2 points) (Optional Bonus Problem) Consider the matrix $A = \begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix}$ in $SL_2(\mathbb{C})$. Show that there is no matrix $X \in \mathfrak{sl}_2(\mathbb{C})$ with $A = e^X$.

Educational Note: In class we showed that there is no matrix $X \in \mathfrak{sl}_2(\mathbb{R})$ such that $A = e^X$ by resorting to the fact that the equation $-1 = e^{\lambda}$ has no real solution. This argument is no longer valid in the complex case.

The following **Practice Problems** will not be collected/graded.

6. (0 points) Solve the following system of differential equations:

$$\begin{cases} y_1' = 2y_1 + y_2 \\ y_2' = 2y_2 \end{cases} \quad \text{with } y_1(0) = 1, y_2(0) = 3 \end{cases}$$

Hint: Let A be an $n \times n$ matrix, and let **y** be an $n \times 1$ column vector whose entries depend smoothly on a parameter t. Then the system of differential equations $\mathbf{y}' = A\mathbf{y}$ with the initial condition $\mathbf{y}(0)$ has the unique solution $\mathbf{y}(t) = e^{tA}\mathbf{y}(0)$. Compare with problem 3 above.

7. (0 points) (Practice Problem) Let A be an $n \times n$ matrix with all eigenvalues equal to λ . Show that e^A is given by the following finite sum

$$e^A = e^{\lambda I} \sum_{k=0}^{n-1} \frac{(A - \lambda I)^k}{k!}.$$

Hint: $e^A = e^{\lambda I} e^{A - \lambda I}$ (why?)