Matrix Lie Groups–Homework*7

Ehssan Khanmohammadi

Please provide the details of your work for each problem. All problems are partial credit.

1. (2 points) Let G_1 and G_2 be two matrix groups with Lie algebras $(\mathfrak{g}_1, [,]_1)$ and $(\mathfrak{g}_2, [,]_2)$, respectively.

We know that the Cartesian product $G_1 \times G_2$ is a group under componentwise multiplication with the identity element $I = (I_1, I_2)$ where I_1 and I_2 are the identity elements of G_1 and G_2 , respectively.

(a) Show that

$$T_I(G_1 \times G_2) = \mathfrak{g}_1 \times \mathfrak{g}_2.$$

In other words, the tangent space at the identity of $G_1 \times G_2$ consists of pairs of matrices (X, Y) with $X \in \mathfrak{g}_1$ and $Y \in \mathfrak{g}_2$.

(b) (Practice Problem. Part b will not be graded.) Show that $T_I(G_1 \times G_2)$ is a Lie algebra with the bracket operation

$$[(X_1, Y_1), (X_2, Y_2)] = ([X_1, X_2]_1, [Y_1, Y_2]_2).$$

2. (3 points)

- (a) Give an example of a Lie algebra of dimension one. Make sure to explicitly define the Lie bracket.
- (b) Prove that any two Lie algebras of dimension one are isomorphic.

Parts (a) and (b) together prove that there exists a unique one-dimensional Lie algebra, up to isomorphism.

3. (2 points) In class we showed that

$$(D_I \det)(X) = \operatorname{tr}(X)$$

 $^{^* \}mathrm{Submit}$ on Friday, April 7 in class.

where $(D_I \det)(X)$ is the directional derivative of the det function in the direction of X at the identity. Verify that

$$(D_A \det)(X) = \det(A) \operatorname{tr}(A^{-1}X)$$

for any invertible matrix A.

If L is a Lie algebra with basis $B = \{X_1, \ldots, X_n\}$, because of bilinearity of [,], the bracket is completely determined for any two vectors by knowing the values of $[X_i, X_j]$ only. Note that each $[X_i, X_j] \in L$ can itself be expressed in terms of the basis vectors $\{X_1, \ldots, X_n\}$:

$$[X_i, X_j] = \sum_{k=1}^n c_{ij}^k X_k.$$

The c_{ij}^k are called the **structure constants** of *L* with respect to *B*. We emphasize that c_{ij}^k depend on the choice of basis in general.

4. (3 points) Let L_1 and L_2 be Lie algebras. Show that L_1 is isomorphic to L_2 if and only if there is a basis B_1 of L_1 and a basis B_2 of L_2 such that the structure constants of L_1 with respect to B_1 are equal to the structure constants of L_2 with respect to B_2 .

5. (2 points) (Optional Bonus Problem) Let A be a 2×2 matrix with distinct eigenvalues α and β . Show that

$$\exp(A) = \left(\frac{e^{\alpha} - e^{\beta}}{\alpha - \beta}\right)A + \left(\frac{\alpha e^{\beta} - \beta e^{\alpha}}{\alpha - \beta}\right)I_2.$$

Hint: Let χ_A be the characteristic polynomial of A. By the division algorithm for polynomials (long division), if m is a positive integer, then

$$x^m = \chi_A(x)q_m(x) + r_m(x),$$

where $q_m(x)$ and $r_m(x)$ are polynomials, and $\deg r_m(x) < \deg \chi_A(x) = 2$. Thus $r_m(x) = a_m x + b_m$ for real numbers a_m and b_m . Show that

$$a_m = \frac{\alpha^m - \beta^m}{\alpha - \beta}$$
 and $b_m = \frac{\beta^m \alpha - \alpha^m \beta}{\alpha - \beta}$.

The following **Practice Problem** will not be collected/graded.

6. (0 points) (Practice Problem) Find the structure constants of $\mathfrak{sl}_2(\mathbb{R})$ with respect to the basis given by the matrices

$$e = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, f = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, h = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$