MAT472–The Geometry of Space Rotations

Ehssan Khanmohammadi

Our goal in this worksheet is a geometric description of the transformations in SO(3). But as a warm-up, let us start in two dimensions first.

Exercise 1. Answer these questions by reasoning geometrically.

- (a) Start in two dimensions and suppose T is a rotation of \mathbb{R}^2 about the origin. Recall that the nonzero vector v is an *eigenvector* for the linear transformation T with *eigenvalue* $\lambda \in \mathbb{R}$ if $T(v) = \lambda v$. What are the eigenvector(s) and eigenvalue(s) of T (if any)? Does the size of the angle of rotation matter?
- (b) Still in two dimensions, suppose T is a reflection of \mathbb{R}^2 across a line through the origin spanned by the nonzero vector u. What are the eigenvector(s) and eigenvalue(s) of T (if any)? Does the choice of the mirror line matter?
- (c) Now return to three dimensions and suppose T is a rotation of \mathbb{R}^3 around an axis spanned by the nonzero vector u. What are the eigenvector(s) and eigenvalue(s) of T (if any)? Does the size of the angle of rotation matter? Does the choice of the axis matter?

Exercise 2. Let M be a matrix in SO(3).

(a) Justify each step of the following argument.

$$det(M - I) = det(M - M^T M)$$
$$= det((I - M^T)M)$$
$$= det(I - M^T)$$
$$= det(I - M)$$

- (b) Explain why (a) tells you that det(M I) = 0.
- (c) Explain why (b) tells you that M has an eigenvector with eigenvalue +1.

Exercise 3. Suppose M is in O(3) and det M = -1. Use a variant of the above argument to show that M has an eigenvector with eigenvalue -1.

Exercise 4. Let M be a matrix in SO(3).

(a) Let u be an eigenvector for M with eigenvalue +1. Explain why multiplication by M preserves the space u^{\perp} defined by

$$u^{\perp} = \{ v \in \mathbb{R}^3 \mid u \cdot v = 0 \}.$$

- (b) Consider the special case of u = [0, 0, 1]. What is u^{\perp} in this case? Since multiplication by M preserves u^{\perp} we can think of it as if it were $T : \mathbb{R}^2 \to \mathbb{R}^2$. What is the general form of the standard matrix of T?
- (c) Continuing (b), describe the geometric effect of multiplying by M on u^{\perp} , and then describe the geometric effect of M on \mathbb{R}^3 .

Exercise 5.

- (a) Find a diagonal matrix D in O(3) but not in SO(3).
- (b) Show that $O(3) = SO(3) \cup SO(3)D$ where

 $SO(3)D = \{MD \mid M \in SO(3)\}.$