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1 Introduction

In 1843 Hamilton discovered a system of arithmetic for quadruples called the
quaternions. A quaternion is a vector in the four-dimensional vector space H
over real numbers with basis {1, i, j,k}. The vector space H is equipped with a
noncommutative vector multiplication given by

1i = i1 = i, 1j = j1 = j, 1k = k1 = k,

ij = −ji = k, jk = −kj = i, ki = −ik = j,

i2 = j2 = k2 = −1,

and extending by linearity. The multiplication rules can be remembered easily
by the following diagram.

i

k j

Note that since C is spanned by {1, i} with the same multiplication rules, we
can view C as a subset of H.

We shall frequently identify C with R2 and H with R4 below.

Warning: Due to the non-commutativity of H, to ensure that the ma-
trix multiplication map T defined by v 7→ Av is linear for v ∈ Hn we
should do the scalar multiplication from right so that

T (vc) = A(vc) = (Av)c = (T (v))c.

But if we were scaling from left, then in general the T would not be
linear because Ac 6= cA and

T (cv) = A(cv) 6= c(Av) = c(T (v)).

From now on we will assume that all the vector spaces involved are right
vector spaces.
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2 Properties

(a) For q = a+ib+jc+kd in H, we define its conjugate to be q̄ = a−ib−jc−kd.
It is easy to check that

qq̄ = q̄q = a2 + b2 + c2 + d2.

The quantity qq̄ is usually denoted by |q|2. Therefore, if q 6= 0, then q̄/|q|2
gives the standard representation of q−1.

(b) A quaternion is called pure imaginary if its real part is zero, that is, if it
is of the form ib+ jc+kd. We can view any such pure imaginary quaternion
as a vector in R3 using the identification

ib+ jc+ kd↔ [b c d] ∈ R3.

Then a straightforward calculation shows that for pure imaginary quater-
nions p1 and p2,

p1p2︸︷︷︸
prod. in H

= −p1 · p2︸ ︷︷ ︸
dot prod. in R3

+ p1 × p2︸ ︷︷ ︸
cross prod. in R3

(1)

and thus we conclude that

• p1p2 is real if and only if p1 and p2 are collinear in R3.

• p1p2 is pure imaginary if and only if p1 and p2 are orthogonal in R3.

Exercise 1.

(i) Verify Equation (1).

(ii) Conclude that if p is a pure imaginary quaternion of length one, then
p2 = −1, thus the second degree equation x2 = −1 has infinitely many
solutions over H.

(c) For any two quaternions q1 and q2 we have q1q2 = q2 q1. (Note the reversal
of order.) You are invited to check this property of conjugation by a direct
calculation. Below we shall learn a second method of its verification using
matrices.
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3 Quaternions as Complex Matrices

Recall that any complex number a+ ib has a matrix representation[
a −b
b a

]
.

We would like to find an analogous representation for any quaternion q = a +
ib+ jc+kd such that the quaternionic multiplication corresponds to the matrix
multiplication. Note that q can be written in the form q = a + ib + j(c − id).
We claim that the matrix

Mq =

[
a+ ib −c− id
c− id a− ib

]
gives a representation of q. In other words, if q = z + jw for z, w ∈ C, then

q ↔Mq =

[
z −w̄
w z̄

]
.

Note that det

[
z −w̄
w z̄

]
= |q|2.

Exercise 2. Check that for a complex number z, we have jzj−1 = z̄.

Exercise 3. Consider q1 = 2 + i and q2 = j + k. Compute q1q2 in two ways:

(a) By a direct calculation using the definition of H.

(b) By representing q1 and q2 as matrices.

(c) Verify that your answers in (a) and (b) are the same.
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Exercise 4. Let q = a+ ib+ jc+ kd.

(a) Find the matrix representation of q̄.

(b) Verify that Mq = Mq
T

where Mq is the matrix obtained from Mq by taking
the (complex) conjugate of each (complex) entry of M and T denotes the
transpose.

(c) Use the previous part to give a matrix-proof of the fact that q1q2 = q2 q1.
(Hint: (AB)T = BTAT and AB = A B for complex matrices A and B.)

4 Group Structure on S3

We saw earlier that the set of complex numbers of absolute value 1 denoted by

S1 = {z ∈ C | |z| = 1} = {(x1, x2) | ‖(x1, x2)‖ = 1} ⊂ R2

carries two structures:

(1) (algebraic) S1 is a commutative group under ordinary multiplication in C,
and

(2) (geometric) S1 can be viewed as a circle (i.e., a sphere of dimension 1, and
hence the notation S1.)

It turns out that among all spheres Sn, n ≥ 1, defined by

Sn = {(x1, . . . , xn+1) | ‖(x1, . . . , xn+1)‖ = 1} ⊂ Rn+1

only S1 and S3 can be equipped with a (continuous) group operation.
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Exercise 5. Identify the 3-sphere S3 with the set of unit quaternions. Then
show that S3 ⊂ H forms a group under the quaternionic multiplication. That
is, verify that

(a) If q1 and q2 are in S3, then q1q2 is also in S3. (Hint: This is an application
of Exercise 4.)

(b) q ∈ S3 implies that q−1 ∈ S3.

One can give an alternative proof of (a) by observing that |q1q2| = |q1||q2| for
any two quaternions q1 and q2. Explain why this multiplicative property of the
absolute values is true.

5 Quaternions and Space Rotations

We saw earlier that the members of S1 can be thought of as rotations of R2. In
this section we want to associate to any unit quaternion a rotation of R3. The
situation is not quite as easy as before however, because if we simply multiply
a unit quaternion in S3 by a vector (or a pure imaginary quaternion) in R3 we
won’t necessarily end up with a vector in R3. To find a solution, let us make a
short digression to take a closer look at S1.

Let v and w be any two complex numbers and consider their images under
multiplication by u ∈ S1. Then

distance from uv to uw = |uv − uw|
= |u(v − w)| (by distributive law)

= |u||v − w| (by multiplicative property of | · |)
= |v − w| (because |u| = 1)

= distance from v to w

In other words, the linear map mu : R2 → R2 is distance preserving or an
isometry.
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Exercise 6. Prove that any isometry (a linear, distance preserving map) T : Rn →
Rn preserves the dot product. That is

T (u) · T (v) = u · v for u, v ∈ Rn.

In particular conclude that u ⊥ v if and only if T (u) ⊥ T (v). (Hint: Think
about expressing the dot product and norm of vectors in Rn.)

Exercise 7. Let q be a unit quaternion. Show that q can be written in the
form

q = cos θ + u sin θ.

for some angle θ and a unit pure imaginary quaternion u. (Hint: cos2 θ+sin2 θ =
1.)

Now we are ready to state the main result of this section about space rota-
tions.

Theorem. Let q be a unit quaternion in S3 and express it as q = cos θ+u sin θ
where u is a pure imaginary quaternion in R3. Then conjugation by q on R3 is
rotation through 2θ about u.
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