Quaternions

Ehssan Khanmohammadi

1 Introduction

In 1843 Hamilton discovered a system of arithmetic for quadruples called the
quaternions. A quaternion is a vector in the four-dimensional vector space H
over real numbers with basis {1,1,j,k}. The vector space H is equipped with a
noncommutative vector multiplication given by

li=il=i, 1j=jl=j, 1lk=kl=k,
ij=-ji=k, jk=-kj=i, ki=-ik=}],
i’=j"=k>= -1,

and extending by linearity. The multiplication rules can be remembered easily

by the following diagram.
/ i \

k J
v

Note that since C is spanned by {1,i} with the same multiplication rules, we
can view C as a subset of H.

We shall frequently identify C with R? and H with R* below.

Warning: Due to the non-commutativity of H, to ensure that the ma-
trix multiplication map T' defined by v — Av is linear for v € H" we
should do the scalar multiplication from right so that

T(ve) = A(ve) = (Av)e = (T (v))e.

But if we were scaling from left, then in general the T would not be
linear because Ac # cA and

T(cv) = A(cw) # c(Av) = (T (v)).

From now on we will assume that all the vector spaces involved are right
vector spaces.
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Properties

For ¢ = a+ib+jc+kd in H, we define its conjugate to be § = a—ib—jc—kd.
It is easy to check that
94 =qq =+ 0+ +d°

The quantity ¢g is usually denoted by |g|?. Therefore, if ¢ # 0, then ¢/|q|?

gives the standard representation of ¢~ !.

A quaternion is called pure imaginary if its real part is zero, that is, if it
is of the form ib+ jc+kd. We can view any such pure imaginary quaternion
as a vector in R? using the identification

ib+jc+kd< [bed €R3,

Then a straightforward calculation shows that for pure imaginary quater-
nions p; and po,

pip2 = —pi1-P2 + D1 X P2 (1)
~— —_—— ——

prod. in H dot prod. in R3  cross prod. in R3
and thus we conclude that

e pi1py is real if and only if p; and py are collinear in R3.
e pipo is pure imaginary if and only if p; and p, are orthogonal in R3.

Exercise 1.
(i) Verify Equation (1).

(ii) Conclude that if p is a pure imaginary quaternion of length one, then
p? = —1, thus the second degree equation 22 = —1 has infinitely many

solutions over H.

For any two quaternions ¢; and g2 we have g1z = @2 1. (Note the reversal
of order.) You are invited to check this property of conjugation by a direct
calculation. Below we shall learn a second method of its verification using
matrices.
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3 Quaternions as Complex Matrices

Recall that any complex number a + ib has a matrix representation

a —b

b al|’
We would like to find an analogous representation for any quaternion ¢ = a +
ib+ je + kd such that the quaternionic multiplication corresponds to the matrix

multiplication. Note that ¢ can be written in the form ¢ = a 4 ib + j(c — id).
We claim that the matrix

_|la+ib —c—id
Mq_[c—id a—ib]

gives a representation of ¢. In other words, if ¢ = z 4 jw for z,w € C, then

z

z —w
g M, = [w ] .
Note that det {Z —w} = |q|2.
woZ
1

Exercise 2. Check that for a complex number z, we have jzj~* = Z.

Exercise 3. Consider g1 = 2 +1i and g2 = j + k. Compute ¢1¢2 in two ways:
(a) By a direct calculation using the definition of H.
(b) By representing ¢; and g2 as matrices.

(c) Verify that your answers in (a) and (b) are the same.
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Exercise 4. Let ¢ = a + ib + jc + kd.

(a) Find the matrix representation of q.

(b) Verity that Mz = ET where M, is the matrix obtained from M, by taking
the (complex) conjugate of each (complex) entry of M and T denotes the
transpose.

(c) Use the previous part to give a matrix-proof of the fact that 12 = @ q1-
(Hint: (AB)T = BT AT and AB = A B for complex matrices A and B.)

4 Group Structure on S°

We saw earlier that the set of complex numbers of absolute value 1 denoted by
St ={zeC|lz| = 1} = {(x1,22) | |21, 22)| = 1} C R?
carries two structures:

(1) (algebraic) S! is a commutative group under ordinary multiplication in C,
and

(2) (geometric) S can be viewed as a circle (i.e., a sphere of dimension 1, and
hence the notation S'.)

It turns out that among all spheres ™, n > 1, defined by
Sn = {(xl, e 71'n+1) ‘ ||(1‘1, sy .Z‘n+1)|| = 1} C RnJrl

only S! and S3 can be equipped with a (continuous) group operation.
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Exercise 5. Identify the 3-sphere S® with the set of unit quaternions. Then
show that S C H forms a group under the quaternionic multiplication. That
is, verify that

(a) If ¢; and go are in S3, then qqs is also in S3. (Hint: This is an application
of Exercise 4.)

(b) q € S implies that ¢~ € S3.

One can give an alternative proof of (a) by observing that |gi1g2| = |q1||¢2]| for
any two quaternions ¢g; and ¢o. Explain why this multiplicative property of the
absolute values is true.

5 Quaternions and Space Rotations

We saw earlier that the members of S* can be thought of as rotations of R2. In
this section we want to associate to any unit quaternion a rotation of R3. The
situation is not quite as easy as before however, because if we simply multiply
a unit quaternion in S® by a vector (or a pure imaginary quaternion) in R? we
won’t necessarily end up with a vector in R3. To find a solution, let us make a
short digression to take a closer look at S'.

Let v and w be any two complex numbers and consider their images under
multiplication by u € S'. Then

distance from uv to uw = |uv — vw|

= |u(v — w)| (by distributive law)
= |u||lv — w] (by multiplicative property of | - |)
= |v — w| (because |u| = 1)

= distance from v to w

In other words, the linear map m,: R?> — R? is distance preserving or an
isometry.
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Exercise 6. Prove that any isometry (a linear, distance preserving map) 7': R" —
R"™ preserves the dot product. That is

T(u)-T(v) =u-v for u,v € R™.

In particular conclude that v L v if and only if T'(u) L T'(v). (Hint: Think
about expressing the dot product and norm of vectors in R™.)

Exercise 7. Let ¢ be a unit quaternion. Show that ¢ can be written in the
form
q = cosf + usiné.

for some angle # and a unit pure imaginary quaternion u. (Hint: cos? §+sin® 6§ =

1)

Now we are ready to state the main result of this section about space rota-
tions.

Theorem. Let ¢ be a unit quaternion in S and express it as ¢ = cos 4 usin 6
where u is a pure imaginary quaternion in R3. Then conjugation by ¢ on R3 is
rotation through 26 about wu.
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