MAT472-Symplectic Matrices

Ehssan Khanmohammadi

Exercise 1. Let A and B be m x k and k X n complex matrices, respectively.

(a) Prove that (AB)T = BTAT. (Hint: Recall that, by definition, for any
matrix C, we have [CT];; = Cj;.)

(b) Verify that AB = A B.

(c) If A and B have the same size, so that A+ B makes sense, then (A+ B)T =
AT+ BT and A+ B=A+B.

(d) If A is a square matrix with complex entries, then det(A4) = det(A).

(e) If A is two-by-two complex matrix, show that det(AT) = det(A). Read the
proof of det(A) = det(AT) for n x n matrices in a linear algebra book, for
instance, Introduction to Linear Algebra by Strang.
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Exercise 2. Show, by giving an example, that in contrast to the case for com-
plex matrices, when A and B are quaternion matrices, in general

(AB)" # BTAT, AB+# AB.
Prove that for quaternion matrices A and B (of the same size)
AB' =B'4A".

Note: Recall that we have the following relation between the quaternion conju-
gation of a quaternion ¢ and complex conjugation of its complex Cayley matrix
representation M,:

qg e H < M, € M(C)
q < My

In other words, quaternion conjugation is equivalent to Hermitian transpose of
the complex matrix. This is immediate from the fact that

g=a+ib+jc+kdg=a—ib—jc—kd

and
. . . a+ib —(c—id)
= b —id) & M, = ~ .
¢=(atib)+i(e—id) & M, [c—id ot ib
This observation about g «» M clearly implies that g1g2 = g2q1. Thus we

have a proof of AB' =B A for 1x1 quaternion matrices! This can be

easily extended to the general case by block multiplication of complex Cayley
matrices.
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Exercise 3. Recall that we defined an “inner product” on H" by
(%,y) =T1y1 + - + Tnyn = X7y,

Use this to show that Sp(n) = {4 € M,(H) | A*A = I} is the group of
all matrices A that leave the quaternionic inner product invariant. That is,
A € Sp(n) if and only if

(Ax, Ay) = (x,).
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Exercise 4. Let A be an n xn matrix with quaternion entries. Define a 2n x 2n
matrix M4 with complex entries obtained from A by replacing each entry ¢ of
A with the 2 x 2 complex block M,.

(a) Show that My« = (Ma)*.
(b) Use the previous part to show that if AA* =T, then MyMa- = I.

Educational Note: In Tapp’s book M4 is denoted by ¢, (A) and some the
properties of the map ,,, such as its multiplicative property, are explored. This
exercise shows that ¢, (Sp(n)) = U(2n) N ¢, (GL,(H)). Since v, is injective,
by the first isomorphism theorem we get

Sp(n) = U(2n) N1y (G L, (H)).
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Exercise 5. (Stillwell, Page 59) There is an algebraic way of distinguishing
matrices C that lie in 1, (M, (H)). In fact a complex matrix C € ¥, (M, (H)) if
and only if

Jon,C Iyt =C

where Js, is a block diagonal matrix with n identical blocks

J = [_01 (1)] .
The matrix J that provides the “complex structure” has the property that
J?=—1I.
(a) Suppose that X € Ms(C). Verify that X € ¢, (M;(H)) if and only if
JXJ =X,

Extend this statement to matrices X € v, (M, (H)) and conclude that for
any such matrix, det X € R.

(b) Suppose A € Sp(n). Conclude from the previous part that det v, (A) € R.
Combine this with the result of the previous exercise, namely, ¥, (A), (4)*
I, to show that det v, (A) = £1.

(c) Show that if X € ,(Sp(n)), then X7J5, X = Jy,. (Warning: This
condition involves X7*, not X*.) Hint: Combine unitarity of X, namely
X*X =1, with part (a).

Educational Note: It is a remarkable fact that for any A € Sp(n), det ¢, (A) =
1 refining part (b) of this exercise. We shall go back to this problem after
learning about “path-connectedness” of topological spaces. Part (c) is equiva-
lent to saying that X € 1,,(Sp(n)) preserves the symplectic bilinear form
w: C?" x C?" — C in the sense that w(Xx, Xy) = w(x,y) where

w(x,y) = (151 — T2y2) + - + (T2n—1Y2n—1 — T2nY2n)-

Indeed, it it customary to define the complex symplectic group Sp(n,C) to
be the group of complex matrices that leave the symplectic form invariant:

Sp(n,C) = {A € My, (C) | AT Jpn A = Jo,}.
Therefore, by part (a) and also the note following the previous problem,

Sp(n) ~ U(2n) N Sp(n, C).



