Complex Numbers as Real Matrices

Ehssan Khanmohammadi

In class we found the standard matrix of rotation through the angle x in the counter clockwise direction about the origin:

$$\operatorname{Rot}_{x} = \begin{bmatrix} \cos x & -\sin x \\ \sin x & \cos x \end{bmatrix}$$

The goal of this note is to show you how much mileage we can get from this little calculation.

1 Trigonometry

In trigonometry classes students are usually given some formulas for computing $\cos(x + y)$ and $\sin(x + y)$ in terms of trigonometric values of the angles x and y. Now we will learn how we can use *linear* algebra to justify those formulas about the *nonlinear* trigonometric functions.

We make the following simple observation. A rotation through x followed by a rotation though y is a rotation through x + y. For instance, a rotation through 10° followed by a rotation though 5° is a rotation through 15°. Thus geometry tells us that we must have the *algebraic* relation

$$\operatorname{Rot}_{x+y} = \operatorname{Rot}_x \operatorname{Rot}_y \tag{1}$$

for rotation matrices.

Exercise 1. Do the matrix multiplication on the left side of the equation (??) and compare the entries of the resulting matrix with the right side.

(a) Conclude that

 $\cos(x+y) = \cos x \cos y - \sin x \sin y$

Isn't that amazing?

(b) Find a similar identity for sin(x + y).

2 Complex Numbers

In high school, students are often told that i is a number that solves the equation $x^2 + 1 = 0$, i.e., $i^2 = -1$. This explanation is not really satisfactory, and raises more questions than it answers. Why should such a number 'exist'? Can we just 'invent' numbers this way?

Here you will be given a hint about a possible 'construction' of the imaginary number i, dispelling some of the mystery around i.

Let us decompose the rotation matrix Rot_x as follows:

$$\begin{bmatrix} \cos x & -\sin x \\ \sin x & \cos x \end{bmatrix} = \cos x \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \sin x \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}.$$
 (2)

This should be reminiscent of the familiar Euler formula

$$e^{ix} = \cos x + i\sin x.$$

But what is the imaginary number i in this setting? Remember that i has the property that $i^2 = -1$; therefore, since the identity matrix is the multiplicative unit, we denote it by $\mathbf{1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, and then we look for a matrix *matrix* **i** such that

$$\mathbf{i}^2 = -\mathbf{1} \tag{3}$$
$$= -\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}.$$

Exercise 2. Let us take the matrix $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ which appeared in equation (??) as a candidate for the matrix **i**. Check the equation (??) holds, namely, that

$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}^2 = - \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Does the matrix equation $\mathbf{x}^2 = -\mathbf{1}$ have any solution other than $\mathbf{x} = \mathbf{i}$?

The moral of the above exercise is that any complex number a + ib has a matrix representation

$$\begin{bmatrix} a & -b \\ b & a \end{bmatrix} = a \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + b \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}.$$

Exercise 3. Let a + ib be a nonzero complex number.

- (a) Write $\frac{1}{a+ib}$ in the form c+id by multiplying the numerator and denominator of $\frac{1}{a+ib}$ by a-ib.
- (b) Since we can think of a + ib as the matrix $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ we should be able to find $\frac{1}{a+ib}$ as in the previous part by computing $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}^{-1}$. Check that this is indeed the case.

Now let us say a few words about the absolute value (modulus) of complex numbers.

Exercise 4. This exercise gives a proof of the multiplicative property of the absolute value of complex numbers using linear algebra.

(a) Check that det $\begin{bmatrix} a & -b \\ b & a \end{bmatrix} = a^2 + b^2$ and conclude that

$$|a+ib|^2 = \det \begin{bmatrix} a & -b \\ b & a \end{bmatrix}.$$

(b) Let z = a + ib and w = c + id. Use the previous part to show that

$$|zw| = |z||w|.$$

Hint: Write the above equality as $|zw|^2 = |z|^2 |w|^2$ and use the multiplicative property of the determinant function for square matrices Z and W:

$$\det ZW = \det Z \det W.$$