
MAT329–Modes of Convergence

Recall that we say that a sequence of (complex or real) numbers {an} is con-
vergent to a number L, if |an−L| → 0 as n→∞. In analysis, one often needs
to make sense of the convergence of a sequence of functions. For instance, let
SN (f) denote the Nth partial sum of the Fourier series of f :

SN (f)(x) =

N∑
n=−N

cne
2πinx.

Of course, {SN (f)} is a sequence of functions and one of the goals of Fourier
analysis is to answer whether “SN (f)→ f” as N →∞, and a step in this project
is to make it precise what we mean by the convergence of a sequence of functions.
In this note, you will be introduced to two notions of convergence: pointwise,
and uniform. The discussions will be kept short, because these notions are
discussed in any good real analysis book.

Perhaps the easiest way to make sense of “fn → f” is to define it via the
convergence of a sequence of numbers by evaluating fn and f at a fixed point
x. This gives rise to the pointwise convergence of a sequence of functions.

Definition 1. We say that the sequence of functions {fn} is pointwise con-

vergent to f , in symbols fn
pw→ f , if for each point x, the sequence of numbers

fn(x) converges to f(x).

Example 1. The sequence of continuous functions fn : [0, 1] → R given by
fn(x) = xn is pointwise convergent to the discontinuous function

f(x) =

{
0 if 0 ≤ x < 1

1 if x = 1

because if |a| < 1, then an → 0 as n→∞.

Example 2. Consider the function f defined by

f(x) =

{
5 if x = 1/2

0 if x 6= 1/2 and x ∈ [0, 1].
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Then the complex Fourier coefficients of (a periodic extension of) f , namely
cn are all equal to 0 (check this!) and hence SN (f) is the constant function 0.
Thus SN (f) is not pointwise convergent to f at x = 1/2.

One of the most basic results in Fourier analysis is Dirichlet’s Theorem about
(pointwise) convergence of the sequence of partial sums {SN (f)}. In order to
state this theorem we need to learn about the notion of piecewise continuously
differentiable functions.

Definition 2. A function f is said to be piecewise C1 on [a, b] if there are
finitely many points a = a0 < a1 < · · · < ak = b such that f is C1 on each
interval (aj , aj+1) and moreover the limits f ′(a+j ) and f ′(a−j ) exist for all j.

Theorem 1 (Dirichlet). Suppose f is a piecewise C1 function of period 1. Then

SN (f)(x)→ f(x+) + f(x−)

2
as N →∞.

In particular, SN (f)(x)→ f(x) at any point of continuity x.

As a straightforward exercise, you can use Dirichlet’s Theorem to explain
the pointwise convergence of SN (f)(1/2) to 0 in Example 2.

Another approach to making sense of “fn → f” is to treat all points equally
or uniformly.

Definition 3. We say that the sequence of functions {fn} is uniformly con-
vergent to f , in symbols fn ⇒ f , if supx |fn(x)− f(x)| → 0 as n→∞.

Note that it is clear from the definition that uniform convergence implies
pointwise convergence. The converse, however, is not true as the following
example illustrates.

Example 3. Consider the sequence of functions fn : (0, 1) → R defined by
fn(x) = 1

1+nx . It is clear that for each point x ∈ (0, 1), fn(x) → 0 as n → ∞.

Thus, fn
pw→ 0. You can easily check that supx∈(0,1) |fn(x)| 6→ 0. So fn does not

converge to the zero function uniformly.

Example 4. According to one of your homework problems, if f belongs to C2

and is of period 1, then

|f̂(n)| ≤ M

(2πn)2
, n 6= 0

where M is the maximum value of |f ′′(x)|. Using this, one can show (as sketched
in class by a comparison with the series

∑
1/n2) that SN (f) converges uniformly

(and absolutely) to a function. It takes a little more work to prove that this
limit function is indeed f .

Later, as an easy application of the Cauchy-Schwarz inequality and Parseval
identity, we shall see that the conclusion of Example 4 holds for C1 functions
as well. But before that we need to learn about inner product spaces and in
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particular another mode of convergence: the mean-square convergence.

There are many theorems governing interchange of various limit processes
and we now give one such example. (This is a more detailed version of my
answer to a question that Faisal asked last week.)

Theorem 2. Let {sn} be a sequence of integrable functions. If sn converges
uniformly to an integrable function s, then

lim
n→∞

∫ 1

0

sn(x) dx =

∫ 1

0

s(x) dx.

That is, in this case the limit can be transferred inside the integral.

Proof. Note that

lim
n→∞

∫ 1

0

sn(x) dx = lim
n→∞

∫ 1

0

sn(x)− s(x) dx+

∫ 1

0

s(x) dx.

Thus it suffices to show that lim
n→∞

∫ 1

0
sn(x)− s(x) dx = 0. But

lim
n→∞

|
∫ 1

0

sn(x)− s(x) dx| ≤ lim
n→∞

∫ 1

0

|sn(x)− s(x)| dx (triangle inequality)

≤ lim
n→∞

∫ 1

0

sup
x
|sn(x)− s(x)|︸ ︷︷ ︸

indepedent of x

dx

= lim
n→∞

sup
x
|sn(x)− s(x)| = 0, (uniform convergence)

and this completes the proof.
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Exercise 1. Assume that
∞∑
n=0

fn converges uniformly on [0, 1]. Show that

∫ 1

0

∞∑
n=0

fn(x) dx =

∞∑
n=0

∫ 1

0

fn(x) dx

provided that the integrals exist. (Hint : Define the nth partial sum of the series

by sn =
n∑
k=0

fk and apply the previous theorem to sn.)

Exercise 2. Consider the sequence {fn} defined by fn(x) = xn on (0, 1). Show
that fn is pointwise convergent to a function f . Is the convergence uniform?
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