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1 Linear algebra in coordinates

(1) A basis for a vector space V is a linearly independent subset S ⊂ V such
that Span(S) = V . Here Span(S) denotes the set of all possible (finite)
linear combination of vectors in S.

(2) Any vector space possesses a basis. The proof of this fact for arbitrary
vector spaces requires a tool from set theory called Zorn’s lemma.

(3) It can be shown that any two bases of a vector space have the same car-
dinality (size). This common cardinality is called the dimension of the
vector space.

(4) Let V be a finite dimensional vector space of dimension n. Fix an ordered
basis B = {b1, . . . , bn} for V . Then to any v ∈ V , we can associate a column
vector [v]B called the coordinate vector of v relative to B as follows:

v = c1b1 + · · ·+ cnbn ←→ [v]B =

c1...
cn


(5) Let V and B be as in the previous part. Then to any linear function

T : V → V we can associate an n× n matrix [T ]B called the matrix of T
relative to B with the following property:

[T ]B [v]B = [T (v)]B .

Letting v = bi, for i = 1, . . . , n, this shows in particular that the matrix [T ]B
can be constructed column by column by applying T to the basis elements
in B and then expressing the outputs as coordinate vectors relative to B:

[T ]B =

[
[T (b1)]B

... · · ·
...[T (bn)]B

]
(6) Let B1 = {b1, . . . , bn} and B2 = {b′1, . . . , b′n} be two ordered bases for the

same vector space V . Then there exists a unique matrix PB1→B2 called the
transition matrix from B1 to B2 with the property that for for any v ∈ V

PB1→B2
[v]B1

= [v]B2
.
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One can construct this matrix column by column by writing basis vectors
in B1 relative to B2:

PB1→B2
=

[
[b1]B2

... · · ·
...[bn]B2

]
.

Note that P−1B1→B2
= PB2→B1 .

Proposition 1. Let V be a vector space with bases B1 and B2. Then for any
v ∈ V , the following diagram commutes:

[v]B1 [v]B2

[T (v)]B1
[T (v)]B2

PB1→B2

[T ]B1
[T ]B2

PB1→B2

That is,
[T ]B2PB1→B2 [v]B1 = PB1→B2 [T ]B1 [v]B1

or equivalently
[T ]B1

= P−1B1→B2
[T ]B2

PB1→B2
.

(1) Two matrices A and B are said to be similar if there exists a matrix P
such that A = PBP−1.

(2) Similarity is an equivalence relation on the set of all n× n matrices.

(3) The proposition above shows that two complex n × n matrices M and N
are similar if and only if there exists a linear transformation T : Cn → Cn
such that M = [T ]B1

and N = [T ]B2
for two bases B1 and B2 of Cn.

2 Eigenvalues and Eigenvectors

(1) Let A be a complex n × n matrix. Then λ ∈ C is called an eigenvalue of
A if there exists a nonzero vector x ∈ Cn such that Ax = λx. Such a vector
x is called an eigenvector for λ.

(2) We define the characteristic polynomial of a matrix A by χA(λ) =
det(λI −A).

(3) χA is a monic polynomial of degree n and λ is an eigenvalue of A if and
only if it is a root of χA. It follows, by the fundamental theorem of algebra,
that A has n complex eigenvalues (counting multiplicities).

(4) The constant term in χA, namely χA(0), equals (−1)n detA and the coeffi-
cient of λn−1 equals − trA.

(5) detA = λ1 · · ·λn where λi are eigenvalues of A counting with multiplicity.
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(6) trA = λ1 + · · ·+ λn.

(7) Suppose χA(λ) = (λ − λ1)n1 · · · (λ − λk)nk where λi are distinct complex
numbers. Then we call ni the (algebraic) multiplicity of λi.

(8) The geometric multiplicity of an eigenvalue λi is defined to be the di-
mension of its eigenspace Eλi :

Eλi
= {x | Ax = λix}.

(9) It can be shown that the algebraic multiplicity of any eigenvalue is larger
than or equal to its geometric multiplicity.

Proposition 2. Any two similar matrices have the same characteristic polyno-
mials, and hence the same eigenvalues, determinant, and trace.

3 Diagonalization

A square matrix A is said to be diagonalizable if there exist a diagonal matrix
D and an invertible matrix P such that A = PDP−1. It follows that

D =

λ1 . . .

λn

 P = [v1
... · · ·

...vn]

where λi are eigenvalues of A with eigenvectors vi, that is, Avi = λivi.

Proposition 3 (Necessary and Sufficient Condition). An n×n matrix is diag-
onalizable if and only if it has n linearly independent eigenvectors.

Equivalently, a matrix A is diagonalizable if and only if the algebraic multi-
plicity of each eigenvalue of A equals its geometric multiplicity.

Proposition 4 (Sufficient Condition). An n × n matrix is diagonalizable if it
has n distinct eigenvalues.

Theorem 1 (Spectral Theorem–Real Version). If A is a (real) symmetric ma-
trix, then all eigenvalues of A are real. Moreover, A is orthogonally diago-
nalizable in the sense that there exist a diagonal matrix D and an orthogonal
matrix P such that A = PDP−1. Conversely, if a matrix is orthogonally diag-
onalizable, then it is symmetric.
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