
Homework 8 (due on Tuesday, April 24 in class)

Directions:

• You are strongly encouraged to work in groups and discuss your assignments with your fellow students,
but to make sure that you gain a good understanding of the material and to avoid slipping from
collaborating to copying, you should write up your solutions on your own. Also make sure to give
credit to all sources (books, websites, or people) that you consult.

• No late homework assignments will be accepted, but as compensation I will drop your lowest homework
score.

• LATEX use is encouraged (but not required) for writing up solutions for homework assignments. See
the “Files” folder on Canvas for a short manual on LATEX.

• Please leave at least one inch of blank space at the end of your solution for each problem (or each part
of a problem when applicable).

Notes on Writing Proofs:

• Clearly state any assumptions you are making.

• Clearly reference any results that you are using (e.g., by Dirichlet’s Theorem, or Theorem 3.2) and
carefully show each step you are taking.

• Conclude your proof.

And finally read over each sentence of your proof. Does it make sense? Is each sentence complete? Are there
any steps left out?

1 Reading assignment

Review the statement of Green’s theorem from Calculus III.

2 Hand in solutions to the following problems

1. Let u(x, y) be a function with continuous second partial derivatives. Use the chain rule to show the
following relation:

uxx + uyy = uss + utt

where

s = x cosα+ y sinα

t = −x sinα+ y cosα

for some angle α.

Educational Note: This exercise shows that the Laplacian is “rotation invariant.”

2. Solve the first-order PDE 3ux + 2uy = 0 with the condition u(x, 0) = sinx.

3. Consider the one-dimensional wave problem

utt = uxx, 0 < x < 1/2, t > 0,

u(0, t) = 0, u(1/2, t) = 0,

u(x, 0) = 2 sin(6πx)− 3 sin(22πx),

ut(x, 0) = sin(4πx)
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(a) Solve this PDE using d’Alembert’s formula.

(b) Solve this PDE by a separation of variables (or using the Fourier series form of the solution from
class).

(c) (Optional) Check that the answers from both parts are in fact equal.

4. (Adapted from Problem 3, page 132 of the textbook) For a natural number N and 0 ≤ r < 1, define

p(x) =

N∑
n=−N

r|n|e2πinx.

(a) Write p in the form
0∑

n=−N
+

N∑
n=1

to discard the absolute value sign in the definition of p. Then use

the formula for the geometric progression on page 2 of your textbook to find a closed form for each
summation.

(b) For 0 ≤ r < 1, the Poisson kernel of period 1 is defined by

Pr(x) =
∞∑

n=−∞
r|n|e2πinx = 1 + 2

∞∑
n=1

rn cos 2πnx.

Use the previous part to show that

Pr(x) =
re2πix

1− re2πix
+

1

1− re−2πix
.

(c) Deduce that

Pr(x) =
1− r2

1− 2r cos 2πx+ r2
.

(d) (2 points) (Optional Bonus Problem) Show that Pr(x) > 0 for all x.

Educational Note: The Poisson kernel appears naturally in the process of solving the steady-state
heat equation for the disc.

As r → 1−, the functions Pr(x) form an approximate identity for the convolution operation. It is clear

that
∫ 1

0
Pr(x) dx = 1. The Poisson kernel of period 2π which is used very frequently is defined by

Pr(x) =

∞∑
n=−∞

r|n|einx =
1− r2

1− 2r cosx+ r2
.

Note that in this case the “average” 1
2π

∫ π
−π Pr(x) dx = 1 as in the previous case.

3 Practice problems (will not be collected/marked)

1. (Problem 4, page 220) Suppose that f is a continuously differentiable function of period 1. Show that∫ 1

0

|f(x)|2 dx ≤
∣∣∣∣∫ 1

0

f(x) dx

∣∣∣∣2 +
1

4π2

∫ 1

0

|f ′(x)|2 dx.

Suggestion: Modify the proof of Wirtinger’s inequality.

2. Suppose f(z) =
∞∑
n=0

anz
n where an are complex numbers. Write f(z) = u(z) + iv(z) where u and v are

real-valued functions of the variable z = x+ iy. Thus,

u(x+ iy) + iv(x+ iy) =

∞∑
n=0

an(x+ iy)n.
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(a) Differentiate the above series term-by-term and conclude that

∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x
(1)

(b) Show that Equation (1) implies ∆u = 0 and ∆v = 0.

Educational Note: Any complex function f which can be expressed as a power series around a point p,
say p = 0, is called analytic (or holomorphic) at p. The first part of this problem shows that analytic
functions satisfy the Cauchy–Riemann equations (1). The second part of the problem says that the
real and imaginary parts of analytic functions satisfy the Laplace equation, and hence are harmonic
functions. This result has a partial converse that we shall not discuss here. The interested student who
wants to study these facts in depth is encouraged to take a course in complex variables.

3. Let h ∈ C([0, 1]) be a given continuous function and consider the boundary value problem{
f ′′ = h

f(0) = f(1) = 0.

Show that f = Kh where K is the operator defined by

K(h)(s) =

∫ 1

0

G(s, t)h(t) dt

for the Green function on [0, 1]× [0, 1]

G(s, t) =

{
s(t− 1) for 0 ≤ s ≤ t ≤ 1

t(s− 1) for 0 ≤ t ≤ s ≤ 1.
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