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Abstract

Using a multisector dynamic spatial integrated assessment model (S-IAM), we ar-
gue that a carbon tax introduced by the European Union (EU) and rebated locally
can, if not too large, increase the size of Europe’s economy by concentrating eco-
nomic activity in its high-productivity non-agricultural core and by incentivizing
immigration to the EU. The resulting change in the spatial distribution of eco-
nomic activity improves global efficiency and welfare. A carbon tax introduced
by the US generates similar effects. This stands in sharp contrast with standard
models that ignore trade and migration in a world shaped by economic geography
forces.
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1 Introduction

Global carbon taxes have long been heralded as the best solution to combat climate

change. The logic is straightforward: they help bridge the gap between the private

and the social cost of carbon, caused by the negative effects of carbon-induced climate

change. Unfortunately, global agreements on climate policy have not been easy to forge.

Instead, climate policy has mostly progressed through local, national, and sometimes

regional unilateral initiatives. Unilateral policy, however, has the obvious drawback of

generating economic and carbon leakage by shifting production and emissions to areas

where carbon is taxed less, or not at all. Unilateral carbon taxes therefore seem, at first

glance, costly in the short run due to the implied distortion, and ineffective in the long

run due to the implied leakage.

In this paper, we argue that this reasoning is incomplete and misleading because

it ignores how unilateral carbon taxes interact with the forces that shape the economic

geography of the world. We show that the spatial response to a unilateral carbon tax can

lead to a local expansion of the region introducing the tax and to global welfare gains.

Politicians typically worry that a unilateral carbon tax might lead to a shrinking of their

economy or a dislocation of their industrial sector. In our quantitative evaluation of a

unilateral carbon tax introduced by either the European Union or the United States,

we show not only that these worries are exaggerated, but that global efficiency may be

enhanced in the wake of such a tax.

Carbon taxes affect primarily industries that use energy intensively. For example,

firms in the manufacturing sector tend to be more energy-intensive than in agriculture.

Hence, because sectoral specialization exhibits large variation across space, a uniform

tax within a region will affect some locations significantly more than others. This het-

erogeneity in the size of the effective tax will naturally lead to reallocation across space.

In an economy with trade and migration where the spatial distribution of economic ac-

tivity is driven by agglomeration economies and other externalities, this reallocation can

trigger a host of indirect effects. In particular, it can improve the efficiency of the spa-

tial allocation and result in overall welfare gains. Hence, under certain circumstances,

unilateral carbon taxes can improve global welfare by bringing the spatial distribution

of economic activity closer to the efficient equilibrium. This positive effect occurs even

in the short run, when the impact on climate change is negligible.

Because global warming has different effects across locations, sectors, and time,
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evaluating the effects of a carbon tax requires a high-resolution multi-sector dynamic

spatial integrated assessment model (S-IAM). Our quantitative model, based on Conte

et al. (2021), features a realistic world economy divided into more than 17,000 locations

with positive land mass. Firms in multiple sectors can improve their technology by

innovating, and sell their products around the world subject to trade costs. Agents work,

consume a basket of products, and have the possibility of migrating between locations

subject to moving costs. Production uses energy that leads to carbon emissions, which

accumulate in the atmosphere, causing global warming. As temperatures rise, they

affect firm productivity differentially across sectors. In this model, a carbon tax affects

the geography of absolute and comparative advantage, because sectors differ in their

energy intensity and because it mitigates global warming. The rebating of the revenue

of a carbon tax further impacts relative income across space. In response, migration

and trade patterns adjust. Locations that gain population benefit from both static and

dynamic agglomeration economies. As the economic geography changes due to a carbon

tax, the spatial equilibrium may become more or less efficient, hence impacting welfare

positively or negatively.

Our quantitative policy analysis focuses mainly on the European Union (EU),

though we show very similar results for a carbon tax introduced by the US. From a policy

point of view, the EU is a natural choice, because it is perhaps the region of the world

that has been most active in introducing a region-wide tax on carbon (or, equivalently,

a carbon trading system). Our evaluation predicts that a hypothetical uniform carbon

tax of 40 US$/tCO2 introduced by the EU and rebated locally can increase the size

of the EU economy by further concentrating economic activity in its high-productivity

non-agricultural core and by attracting more immigrants to Europe. This, in turn, leads

to a more efficient global distribution of population, so that world welfare improves.

Understanding this result requires exploring the spatially heterogeneous effects of a

carbon tax on local sectoral specialization and on the spatial distribution of economic

activity.

Because non-agriculture is more intensive in energy than agriculture, we might

have expected an EU carbon tax to weaken Europe’s comparative advantage in non-

agriculture, leading to a relative drop in non-agricultural output.1 If carbon tax revenues

1The higher incidence of a carbon tax in non-agriculture depends on it being limited to CO2. If
we were to take into account emissions from other greenhouse gases, such as methane (CO4) and
nitrous oxide (N2O), agriculture would face a greater incidence than non-agriculture. We return to this

3



were lost, this is indeed what would happen: the increase in the relative price of non-

agricultural goods would cause a relative decline of non-agriculture in Europe. The EU

would shrink, and global welfare would decline. However, when carbon tax revenue is

locally rebated, the results are reversed. Because output is traded, the higher relative

tax burden in non-agriculture is only partly passed on to wages. Once local rebating is

added, regions specializing in non-agriculture experience a relative gain in income. We

formally prove how the introduction of a carbon tax in a single location can generate

a positive income effect on its economy. In the case of the EU, this type of income

effect generates migration from agricultural to non-agricultural regions, causing non-

agricultural output to increase relative to agricultural output. This effect is further

amplified by agglomeration forces.

As Europe’s non-agricultural core grows, the EU attracts more immigrants, and its

economy becomes larger. Although real income per capita in the EU drops, the reallo-

cation of population and economic activity improves global efficiency and welfare. This

suggests that in the absence of a carbon tax there is too little geographic concentration

in the EU core and there are too few people in Europe. As such, an EU carbon tax with

local rebating acts as a place-based policy that subsidizes Europe’s non-agricultural core

and attracts more people to move to the European Union. The importance of these re-

sults cannot be overstated: not only does a unilateral EU carbon tax lower global carbon

emissions, thus mitigating the warming of the planet, it also increases Europe’s weight

in the world economy and it improves global welfare and efficiency. When carbon taxes

increase above ∼55 US$ per tCO2, the distortions generated by the tax start to domi-

nate and the EU economy shrinks, although global welfare gains continue for relatively

high levels of carbon taxes. Regardless, even for higher carbon taxes, the contraction of

the EU economy would be smaller than when ignoring spatial forces.

These findings show that using a spatial integrated assessment model (S-IAM) is

essential if we want to correctly quantify the economic effects of a carbon tax. Rather

than simply imposing a distortionary cost, an EU carbon tax with local rebating corrects

a pre-existing spatial inefficiency that would be ignored in a model without the forces

that determine the geography of economic activity. One could argue that changes in

migration policy would be a more direct way of improving global welfare, or that first-

best taxes and subsidies that are heterogeneous across space would be more effective

discussion in the quantification section.
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at strengthening Europe’s non-agricultural core. However, in practice, no such spatially

heterogeneous tax and subsidy scheme is currently on the table, while an EU-wide carbon

tax is. In that sense, our contribution should be viewed as a policy-relevant evaluation

where we show that a modest unilateral carbon tax can be globally welfare-improving,

while locally expanding the size of the economy.

In addition to this key result, our assessment provides comprehensive and detailed

insights into how an EU carbon tax with local rebating reshapes the world’s economic

geography. Apart from reinforcing the EU’s non-agricultural core, we see southern Eu-

rope, Scandinavia, and southeastern Europe move more into agriculture. Over time,

these patterns are reinforced in southern Europe, where future agricultural productivity

is enhanced by a carbon tax that limits global warming. The opposite occurs in Scandi-

navia, where less warming depresses agricultural yields. Regions bordering the EU, such

as Great Britain, benefit from an industrial revival, as the EU grows and its periphery

specializes in agriculture. Outside the EU, the developed world expands, whereas the

developing world shrinks, as more people move to high-income countries.

A consequential policy choice in our model is how the revenue of a carbon tax

is rebated. A key driver of the welfare-improving effect of a unilateral carbon tax is

that it acts as a subsidy to the spatial agglomeration of economic activity in Europe.

That result depends crucially on the local rebating scheme generating a positive income

effect in the EU core. To see how sensitive our results are to this type of rebating, in

the Appendix we consider several alternatives.2 First, if revenues of a carbon tax are

rebated to the EU population on a per-capita basis, the income effect in the EU core

is smaller, and the global welfare gains are more limited. A carbon tax of 40 US$ per

tCO2 no longer expands the size of the EU economy, though a lower carbon tax still

does. Second, if revenues are rebated to the developing world, fewer migrants move to

Europe, and its economy shrinks. By keeping more people in low-productivity places,

global efficiency and welfare drop. In contrast, spatial inequality across the globe falls,

as income per capita drops in Europe and rises in sub-Saharan Africa.

The mechanisms we uncover are not specific to the EU case. We illustrate this

by considering what would happen if the unilateral carbon tax of 40 US$/tCO2 were to

be introduced in the US, rather than in the EU. Both qualitatively and quantitatively,

2The initial allocation of emission allowances in the context of the EU Emissions Trading Scheme
(ETS) was similar to local rebating: by basing the allocation on historic emissions, it amounted to
redistributing the value of these allowances to the most carbon-intensive locations.
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the results are similar, once we account for each region’s unique specialization patterns

in space. This should probably not come as a surprise: the economies of the US and

the EU are similar in size and productivity, and both have comparative advantage in

non-agriculture. We know that a carbon tax with local rebating redistributes income to

the regions specialized in the energy-intensive non-agricultural sector. In both the US

and the EU, this implies that income is redistributed toward dense, high-productivity

areas. Since this attracts migrants toward high-efficiency locations, we see the same

type of global welfare gains when the US introduces a carbon tax.

Our work is related to a large literature on the climate and welfare effects of

carbon taxes. Because carbon emissions cause a global externality, a central result of

this literature is that carbon taxes are most effective if adopted by a large part of the

world. That is why many models have focused on quantifying the optimal global carbon

tax (Nordhaus, 2010; Golosov et al., 2014; Hassler et al., 2016, 2018). However, those

papers ignore the complex forces that shape the world’s economic geography. Our paper

shows that taking these forces into account is key, hence the need for introducing space

into standard integrated assessment models. Weisbach et al. (2022) and Kortum and

Weisbach (2021) do consider carbon leakage and other forces when analyzing unilateral

carbon policy in a multi-country economy, but they do not allow for geographic factor

mobility, nor do they incorporate agglomeration economies.

An important question within the optimal carbon tax literature deals with the

possible presence of other distortionary taxes. In a first-best world, standard Pigouvian

logic implies that carbon should be taxed to compensate for its social cost (Golosov

et al., 2014). However, in a second-best world where there are other distortionary taxes,

the introduction of a carbon tax tends to compound pre-existing distortions, implying

an optimal carbon tax below the Pigouvian level (Bovenberg and van der Ploeg, 1994;

Bovenberg and de Mooij, 1994; Bovenberg and Goulder, 1996; Barrage, 2020). Although

our paper does not focus on the optimal level of carbon taxes, it has the presence of

pre-existing inefficiencies in common with this literature.

Our central finding that carbon taxes may improve global efficiency is reminiscent

of the double-dividend hypothesis in the environmental taxation literature. If the rev-

enues from carbon taxes are used to lower other pre-existing distortionary taxes, rather

than simply being rebated lump-sum, there might be a double gain: not only does pol-

lution decline, but efficiency also improves. However, because a carbon tax typically

magnifies pre-existing distortions, this double dividend has generally proven to be elu-
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sive. Although using revenues to lower other taxes does reduce the cost of a carbon tax,

it typically does not turn that cost into a benefit (Goulder, 1995; Goulder et al., 1997).3

In our paper, we do get a double dividend, not from reducing pre-existing distortionary

taxes, but from correcting a pre-existing inefficient spatial allocation.

Our result that carbon taxes redistribute income toward energy-intensive non-

agricultural regions is also related to policies aimed at affecting the terms of trade. In

this context, Costinot et al. (2015) show that optimal export taxes are increasing in

the degree of comparative advantage. The intuition is straightforward: if comparative

advantage is strong, then raising the price of the exported good need not lead to a large

decrease in the quantity exported, and hence benefits local producers. In our paper, a

carbon tax has a similar effect of raising the local income in regions that export energy-

intensive goods.4 However, in contrast to standard trade models, this may improve the

efficiency of the spatial equilibrium, leading to global welfare gains.

Our paper also speaks to the literature on the redistributive effects of carbon

taxes. Because the poor tend to spend a larger share of their income on energy-intensive

goods, a carbon tax tends to be regressive from the consumption side (Pizer and Sexton,

2019; Goulder et al., 2019). From the income side, the picture is more complex, as the

redistributive effects of a carbon tax depend on the sector people work in, the way

in which revenue is rebated, and the effect on the relative price of different factors of

production (Rausch et al., 2011; Fullerton and Monti, 2013; Känzig, 2022). In addition

to its redistributive effects on income groups, the literature has also studied how carbon

taxes redistribute income across generations (Leach, 2009; Fried et al., 2018). In our

paper, the redistributive effects of carbon taxes also play a central role, but the focus is

on how it reallocates income across space.5

Our work further expands the growing literature that uses dynamic spatial inte-

grated assessment models (S-IAM) to evaluate the economic impact of climate change.

An early S-IAM in one-dimensional space is Desmet and Rossi-Hansberg (2015). Later

3The double-dividend concept has also been applied to other contexts, such as the use of anti-sprawl
development taxes to lower pre-existing distortionary property taxes (Bento et al., 2011).

4Because carbon taxes act as a policy that restricts trade, this raises the possibility that governments
might use carbon taxes as disguised protectionism. For a discussion, see Copeland (2000) and Maggi
(2016).

5In a very different context, one paper that also deals with the spatial effects of a carbon tax is
Khanna et al. (2021). They empirically show that in China skilled workers emigrate more in response
to pollution than unskilled workers. In their setting, reducing pollution increases aggregate productivity
by keeping the high-skilled in high-productivity cities.
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S-IAMs in two-dimensional space include Desmet et al. (2018), Conte et al. (2021), Cruz

and Rossi-Hansberg (2021) and Cruz (2021). Other papers in that vein are Nath (2020)

and Conte (2022), though they are static. In addition, both ignore innovation, and the

former ignores migration, as key adaptation strategies to climate change. Also note-

worthy is Rudik et al. (2022) who use a multi-sector dynamic spatial model to analyze

adaptation through trade and labor market reallocation in the US. Balboni (2021) is

another relevant paper that looks at the specific case of flooding and infrastructure in-

vestment in Vietnam. Most of these papers do not focus on carbon taxes and policy. An

exception is Cruz and Rossi-Hansberg (2021), though that model does not have multiple

sectors and does not consider the possibility of unilateral carbon taxes implemented by

a subset of the world economy. Cruz and Rossi-Hansberg (2022) do study unilateral

carbon policy and the impact of the pledges in the Paris Agreement, but also ignore

multiple sectors and the role of different rebating schemes.

The rest of the paper is organized as follows. Section 2 describes our model,

discusses the local effects of carbon taxes, and summarizes the quantification. Section 3

presents the quantitative analysis of the EU carbon policy when the revenue of the tax is

discarded. Section 4 shows that local rebating of the carbon tax can lead to an increase

in the size of the EU economy and to global welfare gains. Section 5 analyzes the effects

of a unilateral carbon tax in the US. Section 6 concludes. An Appendix gives the proof

of our lemma, discusses alternative rebating schemes, provides additional tables and

figures, and gives further details on solving the model.

2 Model, Data and Calibration

2.1 Model

We extend the dynamic spatial model of Desmet et al. (2018) and Conte et al. (2021) to

allow for carbon taxes. This section gives a brief overview of the main elements of the

model. We refer the reader to those papers for additional details.

Endowments and preferences. The economy occupies a two-dimensional surface

S. A location is a point r ∈ S, with land density H (r). Each of the L̄ agents in the

economy supplies one unit of labor.

An agent j who resides in location r ∈ S in period t, and in locations {r0, ..., rt−1}
in the past, has utility
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U j
t (r0, ..., rt−1, r) = at (r)

I∏
i=1

[∫ 1

0

cωit (r)
ρ dω

]χi
ρ

εjt (r)
t∏

s=1

m (rs−1, rs)
−1 (1)

in period t, where at (r) is the level of local amenities, cωit (r) is the consumption of

variety ω of good i, 1/(1− ρ) is the elasticity of substitution between different varieties

of the same good, χi is the share of good i in the agent’s expenditure, εjt (r) is a location

preference shock drawn from a Fréchet distribution with shape parameter 1/Ω, and

m (rs−1, rs) is the flow cost of moving from rs−1 to rs in period s.

This setup is characterized by two dispersion or congestion forces. First, locational

preference heterogeneity implies that not everyone prefers the same location. The higher

the value of Ω, the greater this preference heterogeneity, and hence the stronger this first

spatial dispersion force. Second, local amenities are subject to local congestion. More

specifically, at (r) = ā (r)
(
L̄t (r) /H (r)

)−λ
, where L̄t (r) denotes the agents residing in

r. The higher the value of λ, the stronger this second dispersion force.

The cost of moving from r to s is the product of an origin-specific cost, m1 (r),

and a destination-specific cost, m2 (s), so that m (r, s) = m1 (r)m2 (s). Remaining

in the same place is costless, and so m (r, r) = m1 (r)m2 (r) = 1. This implies that

the cost of leaving a location is the inverse of the cost of entering that location, i.e.,

m2(r) = m1(r)
−1. As a result, an immigrant only pays the flow utility while residing

in the host location. This makes the decision to migrate fully reversible, simplifying an

agent’s forward-looking migration decision to a static one.

In addition to earning income from work, wt (r), an agent residing in r at time

t gets a proportional share of local land rents, Rt (r)H (r) /L̄t (r), as well as a propor-

tional share of global profits from the resource extraction sector, Πt/L̄, and possibly a

carbon tax rebate, bt(r). We can then define ut(r), the utility level associated with local

amenities and real income as

ut (r) = at (r)
wt (r) + Πt/L̄+Rt (r)H (r) /L̄t (r) + bt(r)∏I

i=1 Pit (r)
χi

, (2)

where Pit is the price index of sector i in location r, which we specify below. We use ut(r)

as a measure of social welfare, though it does not include the idiosyncratic preferences

of agents for a location nor any mobility costs agents might have incurred. The total

nominal income of agents in a location can be written as

yt(r) = wt (r) L̄t(r) +
(
Πt/L̄

)
L̄t(r) +Rt (r)H (r) + bt(r)L̄t(r). (3)
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Technology. A firm producing variety ω in sector i in location r at time t uses a

production function given by

qωit (r) = Lω
ϕ,it (r)

γi zωit (r)L
ω
it (r)

µi Eω
it (r)

σi Hω
it (r)

1−γi−µi−σi , (4)

where qωit (r) denotes the firm’s output, Lω
ϕ,it (r) is innovation labor, Lω

it (r) is production

labor, Eω
it (r) is energy use, Hω

it (r) is land use, and zωit (r) is an idiosyncratic productivity

shifter drawn from a Fréchet distribution with c.d.f. Pr [zωit (r) ≤ z] = e−(Zit(r)/z)
θ

and

θ > 0. The average productivity of good i in location r at time t, Zit (r), is given by

Zit (r) = τit (r) gi (Tt (r))
(
L̄it (r) /Hit (r)

)αi , (5)

where τit (r) denotes the location’s fundamental productivity in sector i at time t, gi(·)
is a sector-specific temperature productivity discount factor, Tt (r) denotes temperature

in r at time t, and L̄it (r) is total sectoral employment, Lϕ,it (r) + Lit (r). We assume

that αi > 0 so average productivity is increasing in local density, L̄it (r) /Hit (r). Hence,

sectoral productivity benefits from local agglomeration economies. The higher the value

of αi, the stronger these sectoral agglomeration economies. A location’s fundamental

productivity in sector i evolves according to

τit (r) = Lϕ,i,t−1 (r)
γi

[∫
S

e−ℵdist(r,s)τi,t−1 (s) ds

]1−δ

τi,t−1 (r)
δ , (6)

where dist (r, s) denotes the geographic distance between locations r and s. A location’s

fundamental productivity in sector i depends on local past sectoral innovation, local

past sectoral productivity, and the spatial diffusion of past sectoral productivity from

all other locations. Note that there is a dynamic agglomeration effect whereby more

innovation today leads to more population and a larger market, and therefore more

innovation tomorrow. The sector-specific temperature discount factor is bell-shaped in

temperature, so

gi (Tt (r)) = exp

[
−1

2

(
Tt (r)− gopti

gvari

)2
]

(7)

where gopti denotes the optimal temperature in sector i, and gvari is a parameter that

determines the variance of the bell-shaped relationship between temperature and pro-

ductivity in sector i.

Firms pay an ad-valorem tax Υt(r) on energy expenditure. Because there is a

fixed relationship between energy use and carbon emissions, this tax can be interpreted
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as a carbon tax. Firms are perfectly competitive. Taking all prices and the carbon tax

rate as given, a firm producing variety ω of good i chooses its inputs, and therefore its

innovation rate, to maximize its static profits

pωit (r, r) q
ω
it (r)− wt (r)

[
Lω
ϕ,it (r) + Lω

it (r)
]
− (1 + Υt(r)) etE

ω
it (r)−Rt (r)H

ω
it (r) (8)

subject to the production function (4), where et denotes the global price of energy and

pωit (r, r) is the price of variety ω of good i produced and sold in r. Firms maximize static

profits because land markets are competitive and any local investment in innovation be-

comes available to all potential entrants next period. In order to win the competition for

land, they optimally choose to innovate, leading to growth in local technology (Desmet

and Rossi-Hansberg, 2014; Desmet et al., 2018). All rents from innovation then go to

land, which is the only fixed local factor of production.

Energy supply. The world supply of energy is exogenously given by Et = eφt , where

φ ∈ (0, 1). We ignore resource extraction costs, so that profits are equal to revenue in

the energy sector, Πt = etEt = e1+φ
t .

Carbon cycle and temperature. Carbon emissions caused by the use of energy add

to the atmospheric stock of carbon according to

Kt = ε1Kt−1 + ε2Et−1, (9)

where ε1 ≤ 1 determines how the carbon stock decays over time, and ε2 determines how

energy use generates carbon emissions that are added to the stock of carbon. Global

temperature Tt at time t then evolves with the carbon stock according to

Tt = Tt−1 + ν (Kt −Kt−1) , (10)

where ν > 0. Changes in global temperatures have heterogeneous effects across space,

Tt (r) = Tt−1 (r) + (Tt − Tt−1) ξ (r) , (11)

where ξ (r) are location-specific downscaling parameters that map changes in global

temperature into changes in local temperatures.

Jurisdictions and governments. A jurisdiction J is a set of locations r ∈ J with

a government that sets carbon taxes. Each location r belongs to one jurisdiction and
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therefore has one government that collects carbon taxes. Government revenues from

carbon taxes in location r are

At(r) =
I∑

i=1

Υt(r)etEit(r) =
I∑

i=1

Υt(r)et
σi

γi + µi

wt(r)

(1 + Υt(r)) et
L̄it(r) (12)

where the second equality comes from the firm’s profit maximization problem in sec-

tor i and location r. We consider two main schemes for how the government of ju-

risdiction J rebates carbon tax revenues. First, carbon tax revenues may be lost, in

which case bt(r) = 0. Second, carbon tax revenues may be rebated on a per-capita

basis to the location that paid them, so bt(r) = At(r)/L̄t(r). In the Appendix, we

discuss two additional rebating schemes. A first consists of carbon tax revenues of

the jurisdiction being rebated on a per-capita basis to the jurisdiction’s population, so

bt(r) =
∑

r∈J At(r)/
∑

r∈J L̄t(r). A second consists of carbon tax revenues from juris-

diction J being paid out on a per-capita basis to a set of jurisdictions J that may or

may not include J , so bt(r) =
∑

s∈J At(s)/
∑

R∈J
∑

r∈R L̄t(r).

Prices and export shares. Under perfect competition, the price of a variety pro-

duced and consumed at r equals its marginal cost, pωit (r, r) =
mcit(r)
zωit(r)

where

mcit (r) = γ−γi
i µ−µi

i σ−σi
i (1− γi − µi − σi)

γi+µi+σi−1

×wt (r)
γi+µi eσi

t (1 + Υt(r))
σi Rt (r)

1−γi−µi−σi . (13)

The iceberg trade cost from r to s is denoted by ς (s, r). As in Eaton and Kortum

(2002), trade is balanced location by location, so the spending of location s on sector-i

varieties of location r as a share of its spending on sector-i varieties is given by

πit (s, r) =
Zit (r)

θ [mcit (r) ς (s, r)]
−θ∫

S
Zit (u)

θ [mcit (u) ς (s, u)]
−θ du

. (14)

The price index of sector i at location s is Pit (s) = p̄
[∫

S
Zit (r)

θ [mcit (r) ς (s, r)]
−θ dr

]− 1
θ

where p̄ = Γ(1− ρ
(1−ρ)θ

)−
1−ρ
ρ with Γ(·) denoting the Gamma function.

Market clearing and equilibrium. Market clearing implies that the revenue of the

firms producing varieties of good i at location r equals total spending on these vari-

eties in the entire world. Market clearing for energy requires that worldwide revenues
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of the energy sector, e1+ϕ
t , equals worldwide spending on energy net of carbon taxes,

et
∑I

i=1

∫
S
Eit(r)dr. Hence, et =

[∑I
i=1

∫
S

σi

γi+µi

wt(r)L̄it(r)
1+Υt(r)

dr
] 1

1+φ
. Competitive labor and

land markets also clear at all locations.

For a given period t and a given distribution of fundamental amenities ā (r), pro-

ductivities τit (r), temperatures Tt (r), carbon tax rates Υt(r), and carbon revenue rebate

schemes, utility maximization of agents, profit maximization of firms, and market clear-

ing conditions determine the world price of energy et, profits in the energy sector Πt,

the distribution of population L̄t (r), utility ut (r), amenities at (r), land rents Rt (r),

wages wt (r), and carbon tax rebates bt (r) across locations, as well as the distribution

of price indices Pit (s) and employment L̄it (r) across sectors and locations. The equi-

librium conditions of period t, together with (6), yield the distribution of fundamental

productivities in period t + 1, τi,t+1 (r). To update the distribution of temperature in

t+ 1, Tt+1 (r), we use equations (9) to (11).

2.2 The Local Effect of Carbon Taxes

Our goal is to characterize the effect of carbon taxes on the distribution of economic

activity and the resulting aggregate effect. To do so, it is useful to understand the direct

and indirect effects that a carbon tax has on a particular location.

Consider first the case of a carbon tax Υt(r) on location r, where we throw away

the tax revenue, so bt(r) = 0. Given local wages and rents, equation (13) implies that the

marginal cost of producers at r increases with an elasticity of σi with respect to the tax.

According to equation (14), total expenditures on goods produced in r then decrease with

an elasticity of θ relative to the increase in the marginal cost. The reduction in revenues,

together with our Cobb-Douglas production function, implies that total income of agents

in location r must decline. That is, local wages and rents fall. This partly offsets the

increase in the marginal cost.6 Because local income is lower, location r experiences out-

migration. The magnitude of this out-migration depends on the elasticity of population

to real income which is governed by Ω, the dispersion in idiosyncratic preferences (which

is the inverse of the elasticity of migration to income). The lower Ω, the greater the

out-migration, and the larger the drop in output. The falling population leads to smaller

static and dynamic agglomeration effects on productivity, which amplify the effect, and

6If it were fully offset, then total demand for goods produced in r would be the same as before.
However, because of the distortionary effects of the tax, production in r drops. With excess demand
for goods produced in r, the marginal cost would increase above its original level.
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smaller congestion forces which attenuate it. The end result is a smaller economy, with

less people and less output.

Consider now the more complicated case when we rebate the carbon tax locally, so

bt(r) = At(r)/L̄t(r). The same logic applies to this case, except that the decline in wages

and rents does not necessarily lead to lower income and out-migration. Instead, since

agents are getting the tax revenue as a rebate, the decline in wages and rents can be

less than the rebate, leading to increases in income and in-migration. Whether income

increases or not depends on the magnitude of the tax, as well as on the parameter values,

in particular, θ and Ω. If the tax is large, its distortionary effect is large too, so that

local wages and rents drop substantially. The magnitude of the decline depends on the

trade elasticity, θ. The greater its value, the larger the reduction in local revenue. If the

fall in income is big, it is not compensated by the tax rebate. This rebate amounts to

the fraction of energy expenditures that are taxed rather than paid to energy producers

outside the region. If local income drops even when considering the rebate, the location

experiences out-migration, leading to a smaller population and a further reduction in

output. The lower Ω, the larger this effect.

In contrast, if the tax is sufficiently small, the distortionary effect of the tax will

be small. And if θ is low, the drop in income will be small. The rebate, which shifts

income from energy suppliers to the local population, compensates this drop and leads

to an increase in local income per capita. This attracts an inflow of workers, which

attenuates the increase in the marginal cost induced by the carbon tax. Again, this last

effect is stronger, the lower is the value of Ω. Hence, if the tax or θ are low enough,

local population and output will grow, and these effects will be larger if Ω is small. As

before, the expansion of the local economy is amplified by agglomeration effects, and

attenuated by congestion forces. In sum, the effect of the tax on the local economy is

positive but close to zero when the tax is negligible, grows as the tax increases, and then

starts to decline, eventually turning negative, when the tax becomes large enough. The

following lemma shows that a small carbon tax in a point in space generates an increase

in local income and a corresponding rise in population.7

7Two technical conditions simplify the proof. First, the region implementing a carbon tax is “small”
in the sense of not being able to affect the income of other regions and the price indices of any region
(including its own). Second, the proof requires αi to be sufficiently small. Since a carbon tax leads
to a reallocation of factors of production across sectors, the relative productivity of sectors can change
because of the existence of sector-specific agglomeration economies. Because this can have complex
effects on wages and rents, assuming that αi is sufficiently small effectively switches off this additional
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Lemma 1 Suppose the local government of a small region r imposes a carbon tax that

is rebated lump-sum to the local population. If θ > 1 and αi is sufficiently small, there

exists a strictly positive carbon tax that raises local income, and attracts migrants to the

region.

Proof. See Appendix A.

Perhaps surprisingly, the reasoning above implies that a local tax on carbon, if

locally rebated, can have positive effects on local output and population. Intuitively,

the incidence of the tax falls on all the trading partners of a location, including energy

suppliers, but the rebate is only distributed among locals.8 Hence, if the tax is not too

distortionary, locals can command a higher total income, leading to in-migration and

an expansion of the local economy. This is reminiscent of arguments on optimal tariffs.

As in that literature, a location can change its terms of trade in a way that is beneficial

to the local economy. Naturally, if we rebate the revenue in alternative ways that are

not local, the effect on the local economy might go from positive with local rebating, to

negative if the tax revenue is lost or redistributed uniformly everywhere. Furthermore,

if the tax leads to a larger population and GDP, it will lead to higher productivity and

more innovation. These static and dynamic agglomeration effects result in even larger

increases in the size of the local economy.

Finally, note that a tax on carbon is effectively larger in industries that are intensive

in energy; namely, industries with high σi. Because of local comparative advantage, this

will lead to differences in the effective tax rate across locations. As such, a similar carbon

tax leads to larger changes in population and output in regions that are more specialized

in industries intensive in energy.

2.3 Data and Calibration

Data. We partition the world into 64,800 1◦ × 1◦ cells, and focus on two sectors,

agriculture and non-agriculture. At that level of spatial resolution, our quantification

mechanism. To understand the positive income effect of a carbon tax for a given local population size,
this simplifying assumption is not consequential. Of course, once we consider the migratory response to
a positive local income shock, αi does play a role. In fact, the greater the strength of the agglomeration
economies, the more the migratory response gets magnified.

8This is similar to the case for an export tax in Costinot et al. (2015): exporters pass on the price
increase to foreigners so the local economy gains. The effect is larger, the stronger is comparative
advantage.
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uses initial distributions of population, total output, agricultural output, temperature,

and land. These data come from Nordhaus et al. (2006), IIASA and FAO (2012) and

IPCC (2020). We also use estimates of bilateral transport costs between any two cells

(Desmet et al., 2018).

Parameter values. The parameter values are given in Appendix Table B1 and come

mostly from Conte et al. (2021). The carbon cycle parameters are calibrated to emissions

consistent with the relatively pessimistic business-as-usual Representative Concentration

Pathway (RCP) 8.5. More specifically, we set parameter values so that in the absence of

carbon taxes, we get a 1200 GTC increase in the stock of carbon by the end of the 21st

century and an increase in global temperature of 3.7◦C by 2100. To parameterize the

bell-shaped temperature discount function in agriculture, we rely on agronomy studies to

estimate an optimal growing season temperature of 21.1◦C (or an optimal average annual

temperature of 19.9◦C). We set the variance parameter of the agriculture discount so that

only 0.1% of world agricultural production takes place in locations with a temperature

discount factor below 0.01.9 For non-agriculture, we calibrate the temperature discount

to the observed relation between temperature and the model-generated non-agricultural

productivity across grid-cells. This gives us an optimal temperature in non-agriculture of

10.5◦C. Appendix Figure B1 shows the sectoral temperature discounts. As can be seen,

productivity in non-agriculture is less sensitive to temperature relative to agriculture.

A few other parameter values are worth mentioning. First, global warming is

heterogeneous across space. We use the location-specific downscaling parameters from

Conte et al. (2021) which tell us how much temperature goes up in location r for a one-

degree global increase in temperature. Second, our results depend crucially on energy

use by sector. For agriculture, Schnepf (2004) estimates direct energy use as share of

overall expenditure to be 5.2%. Figures of the Australian Bureau of Statistics for the

period 1995-2010 report a figure of 3.4% (Australian Bureau of Statistics, 2021). Taking

an average, we use 4%. For non-agriculture, we start with two estimates of the energy

share of total GDP: 8% according to Grubb et al. (2018) based on data of 32 OECD

countries for the period 1971-2012, and 5.6% according to King et al. (2015) based

on data of 44 countries covering almost 95% of world GDP for the period 1980-2010.

Combining these two estimates with our parameter values for the share of agriculture in

9We use this criterion since otherwise regions that produce some agriculture but have a large tem-
perature discount given their currently low temperatures experience an implausibly large boom when
temperatures rise.
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world GDP (5.1%) and the energy share in agriculture (4%) yields an energy expenditure

share in non-agriculture of, respectively, 8.2% and 5.7%. Taking an average, we use

7%.10 This makes non-agriculture relatively more intensive in CO2 emissions compared

to agriculture.11

In the model simulations our baseline exercise investigates the impact of a hypo-

thetical European Union-wide carbon tax of 40 US$/tCO2. As a reference, the average

carbon tax in the four largest economies of the European Union is around 20 US$/tCO2.

More specifically, it stands at 27 US$/tCO2 in Germany, 48 US$ in France, 0 US$ in

Italy, and 16 US$ in Spain (World Bank, 2022).12 One unit of energy corresponds to

emissions equal to ε2 GTC, so that one ton of CO2 corresponds to 1/(3.664 ∗ ε2 ∗ 109)
units of energy. Hence, Υ(r)e0/(3.664 ∗ ε2 ∗ 109 ∗ numéraire) = 40, where the model’s

numéraire is the level of average nominal wages in US$ PPP of 2000. This gives us

Υ(r) = 40
e0
× 3.664∗ε2109

numéraire
= 0.863. This is the tax rate on energy spending that corresponds

to a carbon tax of 40 US$/tCO2 in the first period of our simulation. We maintain this

tax rate constant over time.

Solving and simulating the model. Using the initial distributions of land, total

population, total output and agricultural output, together with the parameter values

and the trade costs, we can back out the distributions of the initial fundamental pro-

ductivities in agriculture and non-agriculture. We then use data on population and

subjective well-being to determine the distribution of fundamental amenities. Moving

costs are then set to match the model-predicted changes in population between 2000

10Alternatively, we could define non-agriculture to be industry. For the energy expenditure share in
industry, Grave et al. (2016) estimate a weighted average of 7.7% across 14 manufacturing sectors for
the year 2011, whereas the Australian Bureau of Statistics estimates an energy share in manufacturing
of 6.4% for the period 1995-2010 (Australian Bureau of Statistics, 2021). This also gives an average of
around 7%.

11Our focus is on a carbon tax on emissions coming from the use of fossil fuels. If we were to take
into account emissions from other greenhouse gases, such as methane (CH4) or nitrous oxide (N2O),
agriculture would become a relatively larger contributor to greenhouse gas emissions compared to non-
agriculture. Following our logic, a more general greenhouse gas tax would act as a place-based policy
that subsidizes Europe’s agricultural periphery. When considering expanding the carbon tax to other
types of emissions, policy makers should take into account that this might reverse some of our results,
potentially increasing the cost of introducing a more general greenhouse gas tax.

12Until the beginning of 2021, the EU Emissions Trading System (ETS) also priced carbon at around
20 US$/tCO2. In general, any carbon tax is complementary to the ETS in the sense that sectors
covered by the ETS are exempt from any additional carbon tax. Since the beginning of 2021, ETS
carbon permits have soared to around 80 US$/tCO2. While we take 40 US$/tCO2 to be our baseline,
we also show results for higher carbon taxes.
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and 2005. Using the equilibrium allocation in period t, we can determine fundamental

productivities and local temperatures in period t+1. This allows us to solve for sectoral

employment levels, wages, and prices in t+1. Using this algorithm, we can simulate the

model forward for as many periods as needed.

3 Carbon Taxes without Rebating

Starting in the year 2000, we simulate our model forward for 100 periods, until the year

2100. For the first 20 periods, there is no carbon tax anywhere. In 2021, the European

Union introduces a unilateral tax rate on energy spending of Υ(r) = 0.863, equivalent

to a carbon tax of 40 US$/tCO2. In this section, we assess the spatial effects and the

welfare impact of this carbon tax in the absence of rebating. While in practice it is

unlikely that carbon tax revenues will be lost, we start with this evaluation because it

will facilitate the understanding of our findings when we introduce alternative rebating

schemes.13

Sectoral specialization. Figure 1 depicts, for different European countries, the per-

centage difference in agricultural and non-agricultural nominal output between the base-

line with a carbon tax and a counterfactual exercise without such a tax. Upon impact,

in 2021, the carbon tax has two effects. On the one hand, in the absence of rebating, the

EU economy shrinks, leading to a drop in output across the board. On the other hand,

the lower energy intensity of agriculture implies that comparative advantage in the EU

shifts towards agriculture. Taking the two effects together, for the EU as a whole we

see a larger output drop in non-agriculture (-3.44%) than in agriculture (0.86%). As

for the UK, a border country outside the EU, the changing comparative advantage of

its neighbor causes a drop in agricultural output and an increase in non-agricultural

output. After the initial shock to comparative advantage, innovation allows countries to

over time regain part of the lost output.

Figure 2 displays the change in sectoral output due to the carbon tax on a map

of Europe and its neighbors in 2021 (top row) and 2100 (bottom row).14 Upon impact,

13Of course, this exercise could also be interpreted as an analysis of the effect of an increase in a
region’s carbon price due to outside factors such as restrictions in world supply.

14In Panels (b) and (d) that display the change in non-agricultural output, a few cells exhibit very
large percentage changes. These cells are characterized by discontinuities in the underlying data, either
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Figure 1: Change in Sectoral Output Due to Carbon Taxes (No Rebating), Select Coun-
tries

(a) % ∆ Agriculture, no rebating (b) % ∆ Non-agriculture, no rebating

Note: Figure displays for different countries the log difference (*100) in nominal sectoral output between the baseline

with carbon taxes (and no rebating) and a counterfactual without a carbon tax. Formally, for country C and sector

i, it measures the difference in 100 ∗ log
(∑

r∈C̄ wt(r)L̄it(r)
)
(which is a fixed share of nominal output) with and

without carbon taxes. Panel (a) refers to agricultural nominal output, and Panel (b) to non-agricultural nominal

output.

carbon taxes lower EU nominal output in both sectors, especially in non-agriculture,

but there are some notable differences across regions (Panels (a) and (b)). Agriculture

declines relatively less in the EU periphery than in its core. In fact, in Ireland, Sweden,

Finland and Bulgaria, some areas see an increase in agricultural activity. Conversely,

non-agriculture drops across the EU, but slightly less in the core. By the year 2100, Panel

(c) shows that agriculture expands in the EU, especially in the southernmost peripheral

regions, but not so in the northernmost peripheral regions. As the carbon tax limits

the rise in temperature, this benefits more southern latitudes and hurts more northern

latitudes. Non-agriculture partly recovers from the initial shock, though output is still

lower than in a world without carbon taxes (Panel (d)).

As for regions neighboring the EU, they are affected by both the shrinking EU

market and the gain in EU comparative advantage in agriculture. Both forces lead

to a drop in agricultural activity in neighboring regions. In contrast, the two forces

have opposite effects on non-agricultural output in neighboring regions. The maps show

because they have almost no population or almost no non-agricultural output. The same discontinuities
show up in some other maps, such as Figures D1 and D2.
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Figure 2: Change in Sectoral Output Due to Carbon Taxes (No Rebating), Europe

(a) % ∆ Agriculture, no rebating, 2021 (b) % ∆ Non-agriculture, no rebating, 2021

(c) % ∆ Agriculture, no rebating, 2100 (d) % ∆ Non-agriculture, no rebating, 2100

Note: Map displays for different countries the log difference in nominal sectoral output between the baseline with

a carbon tax (and no rebating) and a counterfactual without a carbon tax. Panels (a) and (c) refer to agricultural

nominal output, and Panels (b) and (d) to non-agricultural nominal output. Panels (a) and (b) are for 2021, whereas

Panels (c) and (d) are for 2100.

that the shift in comparative advantage is more important: neighboring regions mostly

experience an increase in non-agricultural output. For regions further afield, Appendix

Figures D1 and D2 display similar maps for the entire world. The model-predicted

numbers for different regions of the world are given in Appendix Table D1. Because

of lower carbon emissions, global warming slows down. Focusing on 2100, this hurts

agricultural output in regions that benefit from climate change, such as Siberia and

Canada, and it helps agricultural output in regions that gain from less warming, such

as South and East Asia.
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Figure 3: Effect of Carbon Tax on EU Economy (No Rebating), 2021

(a) % ∆ real income and population, 2021 (b) % ∆ real income pc and welfare, 2021

Note: For different EU variables, Figure displays the log difference (*100) in 2021 between the baseline with carbon

taxes (and no rebating) and a counterfactual without carbon taxes. Panel (a) shows EU real income and population

and Panel (b) shows EU real income per capita and welfare.

Real income, population and welfare for different tax levels. Figure 3 Panel

(a) displays the change in real income and population in the EU in 2021 as a function

of the level of the carbon tax. As expected, the higher the carbon tax, the more the

EU economy shrinks. For a carbon tax of 40 US$/tCO2, the drop in EU real income

is 4.96% in 2021. This drop is due partly to the revenues of the carbon tax not being

rebated, partly to the distortionary effects of the carbon tax, and partly to the drop in

population. Panel (b) shows that a carbon tax makes the EU worse off at impact: real

income per capita and welfare decline in 2021. For a carbon tax of 40 US$/tCO2, the

reduction in real income per capita in the EU is 3.3% in 2021 (Appendix Table D1). At

a sectoral level, the shrinking of the EU economy is reflected in a decline in output in

both agriculture and non-agriculture (Appendix D3 Panel (a)). Because EU comparative

advantage is shifting toward agriculture, that drop is greater in non-agriculture. The

change in comparative advantage also explains why in per capita terms, there is an

increase in agricultural output and a drop in non-agricultural output (Appendix D3

Panel (b)).

Panels (a) and (b) of Figure 4 map the effect of carbon taxes on real income across

the world for the years 2021 and 2100. As we already know, real income declines in the

EU. Two forces determine which other regions of the world lose and which ones gain.

On the one hand, regions with stronger comparative advantage in agriculture, such as

21



Figure 4: Effect of Carbon Tax on Real Income and Population across the Globe (No
Rebating)

(a) Change in real income, 2021 (b) Change in real income, 2100

(c) Change in real income per capita, 2100 (d) Change in population, 2100

Note: Map displays for different variables the log difference (*100) between the baseline with carbon taxes (and no

rebating) and a counterfactual without carbon taxes. Panel (a) shows real income in 2021, Panel (b) shows real

income in 2100, Panel (c) shows real income per capita in 2100, Panel (d) shows population in 2100.

Brazil and sub-Saharan Africa, are more likely to lose, because the EU experiences a

relative shift into agriculture. In contrast, regions that specialize in non-agriculture,

such as North America, Australia and Japan, tend to gain. On the other hand, carbon

taxes limit global warming over the next century, hurting areas closer to the poles and

helping areas closer to the Equator. Consistent with this, in 2100 higher EU carbon

taxes are expected to hurt northern Canada and northern Siberia, but benefit Mexico.

Panel (c) of the same figure shows which regions gain and which regions lose in

terms of real income per capita in 2100 due to carbon taxes. North America, Australia,

Argentina and Japan gain, whereas Europe, most of sub-Saharan Africa, parts of Brazil,

and many regions of East Asia lose. Because carbon taxes mitigate global warming,

northern Siberia and northern Canada also lose. More specifically, real income per

capita in 2100 increases by 0.17% in the US and by 0.09% in Japan, and it declines by

2.36% in sub-Saharan Africa and by 1.35% in South and East Asia (see Appendix Table

D1). Overall, the winners do not compensate for the losers: in the absence of rebating,

global real income per capita declines by 0.63% in 2100. Population changes mirror real

income per capita changes, as migration patterns adjust to changes in real income per
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capita (Panel (d)). Compared to a world without an EU carbon tax, in 2100 population

is predicted to fall by 1.2% in the EU, by 3.56% in sub-Saharan Africa and by 0.2% in

South and East Asia, whereas population is predicted to increase by 2.97% in the US

(Appendix Table D1).

Emissions. Figure 5 shows a global map of the changes in emissions in 2021. We see

that a carbon tax in the EU leads to a reduction in emissions in the EU, especially in

the non-agricultural core and less so in the periphery. The overall drop in EU emissions

in 2100 is 41%. Globally, emissions drop by almost 3% in 2100. The small drop of

global emissions is partly the result of the size of the EU in the global economy but also

of carbon leakage, by which production is shifted to other regions. The model predicts

emissions in 2021 to increase by 12% in both the US and Japan. Though less apparent

in the map due to the low base, emissions are also set to increase in sub-Saharan Africa

(by 9%).

Figure 5: Effect of Carbon Tax on Emissions around the World (No Rebating), 2021

Note: Maps display differences in emission levels (in tCO2) between the baseline with a carbon tax (and no rebating)

and a counterfactual without a carbon tax. Figure D4 shows the equivalent European map.

At the sectoral level, emissions in the EU drop in both agriculture and non-

agriculture, because of the overall shrinking of the EU economy (Appendix Figure D5,

Panel (a)). However, at the global level, emissions increase in agriculture but decrease in

non-agriculture (Appendix Figure D5, Panel (b)). Given that Europe becomes more spe-

cialized in agriculture, we might have expected the carbon leakage in non-agriculture to

be greater. However, several forces work in the other direction. First, non-agriculture is

being displaced towards high-productivity regions, with therefore relatively low emissions
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per unit of output. Second, carbon taxes limit global warming, and reduce agricultural

production in places such as Siberia that would acquire high agricultural productivity

in the absence of carbon taxes. Instead, agriculture expands in less efficient areas, such

as sub-Saharan Africa and parts of Asia.

4 Carbon Taxes with Local Rebating

We now proceed to analyze the case where the carbon tax revenue is rebated on a

per-capita basis to the cell that paid the tax. Because the combination of taxes and

rebates changes the spatial distribution of income, it has an impact on migration. And

since the initial spatial distribution of economic activity is not efficient due to static and

dynamic externalities, there is a possibility that this policy improves overall efficiency.

In addition, since the carbon tax slows down global warming, it obviously also impacts

output and welfare through that channel.

Figure 6: Change in Sectoral Output Due to Carbon Taxes (Local Rebating), Select
Countries

(a) Agriculture, rebating (b) Non-agriculture, rebating

Note: Figure displays for different countries the log difference (*100) in nominal sectoral output between the baseline

with carbon taxes (and local rebating) and a counterfactual without a carbon tax. Panel (a) refers to agricultural

nominal output, and Panel (b) to non-agricultural nominal output.

Sectoral specialization. Non-agriculture is more energy-intensive, so it is harder hit

by a carbon tax than agriculture. Because the direct effect of such a tax is a reduction of

the EU’s comparative advantage in non-agriculture, we would expect a relative drop in

non-agricultural output. In fact, this is precisely what we saw in Figure 1. However, once
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we introduce local rebating, this result is reversed: Figure 6 shows that EU output in

non-agriculture grows relative to agriculture. So how and why does local rebating change

the result? Carbon taxes increase the relative price of non-agricultural goods, so that

the higher carbon tax incidence in non-agriculture is not fully passed on to lower wages

in regions specialized in non-agriculture. Once carbon tax revenue is rebated locally,

these non-agricultural regions experience an increase in income per capita relative to

the rest of the EU if the distortionary effect of the tax is not too strong (as we discussed

in Section 2.2). This income effect generates migration from the agricultural regions to

the non-agricultural regions of the EU. This effect is further magnified by agglomeration

forces and moderated by congestion forces. As a result, we observe an increase in non-

agricultural output, and a decrease in agricultural output.

Because local rebating benefits the non-agricultural regions of the EU, it strength-

ens the core region of the union, in particular, the area covering Germany, the Benelux,

northern and eastern France, and northern Italy (Figure 7). This roughly coincides with

an area sometimes called Europe’s “blue banana”, in reference to the shape of the region

and the color of the European Union flag. As such, the carbon tax causes a recentraliza-

tion of the EU, and a strengthening of its non-agricultural base. Because the increased

density of the core enhances its comparative advantage, it leads to a drop in agricultural

output in those regions.

In contrast, agriculture expands in countries and regions of the EU periphery, such

as Sweden, Finland, southern Spain, Romania, Bulgaria, and Greece. By the year 2100,

these patterns get further magnified in southern Europe, where carbon taxes keep tem-

peratures lower, thus enhancing the region’s comparative advantage in agriculture. In

Scandinavia, the opposite happens: lower temperatures erode its agricultural produc-

tivity. In regions bordering the EU, we see a clear decline in agricultural activity and

an increase in non-agricultural activity. This shift is expected, given their proximity

to the EU periphery which shifts increasingly into agriculture. Taken together, we see

that carbon taxes with local rebating have rich and spatially heterogenous effects on

specialization across the EU and its bordering regions.

Real income, population and welfare for different tax levels. While it would be

natural to expect the EU economy to shrink by less if the carbon tax is rebated locally,

Figure 8 Panel (a) shows that the EU economy actually expands at impact. For a carbon

tax of 40 US$/tCO2, EU real income increases by 0.46% in 2021 (Appendix Table D2).
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Figure 7: Change in Sectoral Output Due to Carbon Taxes (Local Rebating), Europe

(a) % ∆ Agriculture, local rebating, 2021 (b) % ∆ Non-agriculture, local rebating, 2021

(c) % ∆ Agriculture, local rebating, 2100 (d) % ∆ Non-agriculture, local rebating, 2100

Note: Map displays the log difference (*100) in nominal sectoral output between the baseline with a carbon tax

(and local rebating) and a counterfactual without a carbon tax. Panels (a) and (c) refer to agricultural nominal

output, and Panels (b) and (d) to non-agricultural nominal output. Panels (a) and (b) are for 2021, whereas Panels

(c) and (d) are for 2100.

The EU economy expands partly because people move to Europe. Under the baseline

carbon tax, population in the EU goes up by 1.1% in 2021. Welfare in the EU falls, and

this loss is increasing in the level of the carbon tax (Panel (b)). However, output per

capita in non-agriculture increases, even for large carbon taxes (Appendix Figure D6).

This, again, illustrates the strengthening of the EU core as a non-agricultural production

hub.

World real income per capita and welfare improve due to the EU carbon tax, with

world output increasing in both sectors (Figure 9). With local rebating, the carbon tax

leads to a more efficient distribution of economic activity across the globe. Although

26



Figure 8: Effect of Carbon Tax on EU Economy (Local Rebating), 2021

(a) % ∆ real income and population, 2021 (b)% ∆ real income pc and welfare, 2021

Note: For different EU variables, Figure displays the log difference (*100) in 2021 between the baseline with carbon

taxes (and local rebating) and a counterfactual without carbon taxes. Panel (a) shows EU real income and population

and Panel (b) shows EU real income per capita and welfare.

Figure 9: Effect of Carbon Tax on World Economy (Local Rebating), 2021

(a) % ∆ real income pc and welfare, 2021 (b) % ∆ nominal sectoral output, 2021

Note: For different world variables, Figure displays the log difference (*100) in 2021 between the baseline with

carbon taxes (and local rebating) and a counterfactual without carbon taxes. Panel (a) shows world real income

per capita and welfare, Panel (b) shows world nominal sectoral output per capita.

for the baseline tax real income per capita in 2021 declines in all major regions (-0.63%

in the EU, -0.22% in the US, -0.97% in sub-Saharan Africa, and -1.13% in Asia), world

real income per capita increases by 0.73%. This global gain occurs because more people

move to the productive areas of the world. For a carbon tax of 40 US$/tCO2, population
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in 2021 increases in the EU, the U.S., and Japan, and drops in sub-Saharan Africa and

South and East Asia. By 2100, some of the major regions, such as the U.S., gain in terms

of real income per capita. For the world as a whole, in 2100 real income per capita is

predicted to increase by 1.29% in response to the carbon tax. Population changes follow

real income per capita changes. Figure 10 depicts this on a world map. Appendix Figure

E1 shows that the global efficiency and welfare effects of the EU carbon tax are robust

to changes in θ and Ω.

Figure 10: Effect of Carbon Tax on Real Income per Capita and Population across the
Globe (Local Rebating)

(a) %∆ real income pc, 2100 (b) %∆ population, 2100

Note: Map displays log difference (*100) in 2100 between the baseline with carbon taxes (and local rebating) and

a counterfactual without carbon taxes. Panel (a) shows real income per capita and Panel (b) shows population.

The overall gain in real income per capita and the greater weight of the EU economy

point to carbon taxes and rebates correcting pre-existing inefficiencies. In the baseline

without a carbon tax, there is not enough economic activity in the EU non-agricultural

core and there is insufficient migration to the EU. The carbon tax with local rebating

acts as a place-based policy that subsidizes the non-agricultural core and incentivizes

people to move to the EU. As Europe’s weight in non-agriculture increases, regions such

as sub-Saharan Africa and South and East Asia increasingly revert back to agriculture.

As this increases income per capita differences, there is out-migration from those regions

to the EU and other developed regions across the globe. These flows improve global real

income per capita and welfare. This suggests that an EU carbon tax may lead to a

double win for the world: it increases global welfare and it reduces emissions and global

warming. From the point of the EU, it increases the weight of its economy and it

reinforces its non-agricultural core.

However, these positive effects come at the cost of greater spatial inequality. Ap-

pendix Table D2 shows larger real income per capita losses in 2100 in low-income regions,

such as sub-Saharan Africa (-2.37%) and South and East Asia (-1.26%), than in high-
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income regions, such as the European Union (-0.44%) and the US (+0.13%). Welfare

effects in these regions follow similar patterns.

Which pre-existing inefficiencies might a carbon tax with local rebating correct?

The world’s economic geography is shaped by agglomeration and congestion externali-

ties, and carbon emissions constitute a global externality that affects temperature and

welfare. In principle, a carbon tax might reduce the inefficiency stemming from any of

these externalities. As can be seen in Appendix Table D2, the effects on global welfare

are already present in 2021, when the carbon tax is first introduced. This is before any

possible effect on global warming. As such, this points to the carbon tax correcting

inefficiencies coming from agglomeration and congestion externalities. By 2100, the wel-

fare effect of the carbon tax is magnified, so that in the long run its impact on global

warming might also play a role in reducing certain inefficiencies.

Carbon emissions. Going from no rebating to local rebating does not change EU and

global emissions much. With local rebating, EU emissions drop slightly less than in a

scenario with no rebating, by around 40% instead of by around 43% in 2021 (Appendix

Figure D7 and Table D2). This small difference can be understood as a consequence

of the EU economy expanding with local rebating. Because the tax revenues from the

carbon tax are not lost, the EU attracts more population. By shifting more people into

the more productive regions, emissions per unit of output produced drop. When focusing

on global emissions, overall emissions drop by around 2% with or without rebating.

Effect of trade elasticity and preferences heterogeneity. Recall the argument

for why a unilateral carbon tax may expand the EU economy. The higher tax burden in

non-agriculture is only partly passed on to wages, so once local rebating occurs, relative

income per capita in locations specialized in non-agriculture increases. This attracts

migrants to the EU core, and the economy expands. As explained in Section 2.2, the

size of this effect depends crucially on the trade elasticity, θ, and on the degree of

preference heterogeneity, Ω.

If the trade elasticity θ is low, the increase in the relative price of non-agricultural

goods due to the carbon tax has a smaller negative effect on local revenue and local

income. Because of this, once we add the rebate, the overall positive effect on local

income will be greater. As a result, more people will move to the EU core, and the

economy of the European Union will expand by more. Hence, for low values of θ we

should see a greater expansion of the EU. Figure 11 Panel (a) show the effects on
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Figure 11: Effect of Different θ and Ω on EU Outcomes with Local Rebating, 2021

(a) % ∆ EU real income, 2021 (θ) (b) % ∆ EU real income, 2021 (Ω)

Note: Figure displays the effect of EU carbon taxes in the case of local rebating on EU real income for different

values of θ (Panel (a)) and for different values of Ω (Panel (c)).

real income for values of θ that are 50% higher and 50% lower than the baseline.15

Appendix Figure D8 Panel (a) shows a similar picture for population. Consistent with

our argument, we indeed find larger positive effects on EU real income and EU population

for smaller values of θ.

If locational preference heterogeneity Ω is low, the elasticity of migration to income

differences is large. In that case, the relative increase in income in the EU core induced

by the carbon tax attracts more migrants, both from within and from outside the EU.

The concentration of more people in the most productive areas of the EU leads to a

larger expansion of EU output. The lower the value of Ω, the greater these effects

should be. Figure 11 Panel (b) plots the effects on real income for both higher (+50%)

and lower (-50%) values of Ω. Appendix Figure D8 Panel (b) shows a similar picture

for population. In line with our argument, the EU grows more in terms of population

and real income for smaller values of Ω.

Migration barriers. The negative welfare effect within the EU in response to the

carbon tax is partly the result of the migratory response that increases its population.

15In this exercise, we are keeping the baseline economy in 2020 unchanged. Taking the alternative
parameter value for θ and without recalculating trade and migration costs, we re-invert the model using
the data that come out of the baseline simulated model of 2020. As such, our economy in 2020 with
the alternative parameter value will be identical to the simulated baseline economy in 2020 in terms of
the spatial distribution of total population, total output and agricultural output.
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To gauge the importance of this mechanism, suppose we made it harder to move to

the European Union. With fewer people entering the EU, we would expect the lower

labor supply and congestion to limit EU welfare losses. At the same time, with less

reallocation from less productive places to the EU, we would expect global welfare gains

to be lower.

Figure 12: Effect of Carbon Tax on EU for Different Migration Costs (Local Rebating),
2021

Note: Figure displays the % change in EU population, EU welfare and global welfare in 2021 between the baseline

with carbon taxes (and local rebating) and a counterfactual without carbon taxes for different percentage increases

in the cost of entering the EU.

Figure 12 depicts the effect of the carbon tax for different increases in the cost of

entering the EU. The horizontal axis represents the percentage increase in m2(r) for all

cells r that are within the EU,16 the left vertical axis shows the percentage change in the

EU population, and the right vertical axis represents the percentage change in either

global or local welfare. As expected, when migration barriers increase, fewer people

enter the EU, the global welfare gains from the EU carbon tax weaken, and the local

welfare losses in the EU drop.

One noticeable finding is that even when migratory barriers are raised to a level

that keeps the European Union’s population constant, the welfare losses in the EU do

not turn into gains. If there are no welfare gains, why would lower barriers attract

16Note that such increases do not affect the cost of moving within the European Union. Recall that
the cost of entering a cell r is the inverse of the cost of leaving cell r, i.e., m2(r) = m1(r)

−1. Hence, if
someone migrates between two cells r and s of the EU, the cost m(r, s) = m1(r)m2(s) = m2(r)

−1m2(s)
is invariant to a proportional increase in m2(r) and m2(s).
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Figure 13: Effect of Carbon Tax with Increased Migratory Barriers in EU (Local Re-
bating), 2021

(a) %∆ population World, 2021 (b) %∆ population Europe, 2021

Note: Maps display log population difference (*100) in 2021 between the baseline with carbon taxes (and local

rebating) and a counterfactual without carbon taxes. Migration barriers m2(r) in the EU are set so that EU

population remains unchanged compared to the no carbon tax case.

migrants to the EU? There are at least two answers to this question. On the one hand,

the EU carbon tax causes economic leakage that benefits developed countries and hurts

the developing world. This explains why we see people move from sub-Saharan Africa

and South Asia to the developed world even if Europe is closed (Figure 13, Panel (a)).

These same forces push people from developing countries to the EU when migratory

barriers are lowered. On the other hand, there are heterogeneous effects within the EU.

Even if the EU population is constant, we see reallocation from the periphery to the core

(Figure 13, Panel (b)). The same forces that make the EU core attractive to migrants

from the EU periphery also make it attractive to migrants from developing countries

when migratory barriers are lowered.

Other rebating schemes. Appendix C discusses two alternative rebating schemes:

EU-wide rebating, where the EU carbon tax revenue is rebated on a per-capita basis to

the whole EU population, and developing countries rebating, where the EU carbon tax

is rebated on a per-capita basis to lower-income countries. Compared to local rebating,

EU rebating benefits the EU periphery more and the EU core less. As a result, the

expansionary impact on the EU economy is smaller. World welfare still increases, but

less than under local rebating. As for developing countries rebating, it slows down

out-migration from the world’s lower-income regions. World welfare drops, but spatial

inequality is mitigated.
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5 Carbon Taxes in the United States

The impact of carbon taxes that we have uncovered using the example of the EU are

not specific to that region. To illustrate this, in this section we analyze the impact of a

unilateral carbon tax in the United States. The policy is exactly the same as before, with

the only difference that the tax is introduced by the US, rather than by the European

Union. That is, we simulate the model for 100 years, from 2000 to 2100, and introduce

a carbon tax in the United States of 40US$/tCO2 from 2021 onward. We consider what

happens when revenues from the US carbon tax are rebated locally on a per-capita basis

to the cells that paid the tax. The case of no rebating is discussed in detail in Appendix

D.

Figure 14: Change in Sectoral Output due to US Carbon Tax (Local Rebating), Select
Countries

(a) Agriculture, rebating (b) Non-agriculture, rebating

Note: Figure displays for different countries the log difference (*100) in nominal sectoral output between the baseline

with carbon taxes (and local rebating) and a counterfactual without a carbon tax. Panel (a) refers to agricultural

nominal output, and Panel (b) to non-agricultural nominal output.

As in the case of the EU, the higher tax incidence on non-agricultural goods is

not fully passed on to lower wages, so that once we account for local rebating, regions

specialized in non-agriculture experience relative gains in income. This attracts migrants

to those areas, causing an overall expansion of non-agricultural output (Figure 14).

This strengthens the non-agricultural regions of the country, in particular the industrial

Midwest, the Northeast, parts of the South and coastal California. Within these regions,

especially the urban centers, such as Chicago, San Francisco, New York and St. Louis
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gain. Agriculture expands in the non-coastal western part of the country, parts of the

Midwest and Alaska. Because the carbon tax slows down warming, by 2100 Alaska’s

advantage in agriculture erodes, whereas the West’s and the Southwest’s advantage

strengthens (Figure 15).

Figure 15: Change in Sectoral Output due to US Carbon Tax (Local Rebating), USA

(a) % ∆ Agriculture, local rebating, 2021 (b) % ∆ Non-agriculture, local rebating, 2021

(c) % ∆ Agriculture, local rebating, 2100 (d) % ∆ Non-agriculture, local rebating, 2100

Note: Map displays the log difference (*100) in nominal sectoral output between the baseline with a carbon tax

(and local rebating) and a counterfactual without a carbon tax. Panels (a) and (c) refer to agricultural nominal

output, and Panels (b) and (d) to non-agricultural nominal output. Panels (a) and (b) are for 2021, whereas Panels

(c) and (d) are for 2100.

The mechanism at work is the same as in the case of an EU carbon tax: there is

added concentration of population and economic activity in the regions with a strongest

comparative advantage in non-agriculture. While in the European Union this shows up

as a reallocation from the continent’s periphery to its core, in the US this shows up as

a reallocation towards the densest areas of the Northeast, the Midwest and the West
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Coast. In other words, once we do the appropriate mapping in terms of the geography

of specialization between the US and the EU, the effects of a unilateral carbon tax are

very similar in both places.

Because of the migratory response, population and real income in the US expands

(Appendix Figure F5). For a carbon tax of 40 US$/tCO2, US population increases by

1.24% and its real income goes up by 0.59% in 2021. Part of the US expansion is due

to in-migration from the rest of the world and part is due to internal migration, from

less dense, less productive regions to more dense, more productive regions. Per capita

real income in the US declines by 0.64% and welfare drops by 1.14% in 2021 (Appendix

Table F2).

Figure 16: Effect of US Carbon Tax on World Economy (Local Rebating), 2021

(a) % ∆ real income pc and welfare, 2021 (b) % ∆ nominal sectoral output, 2021

Note: Figure displays the 2021 log difference (*100) in world real income per capita and welfare (Panel (a)) and

nominal sectoral output per capita (Panel (b)) between the baseline with carbon taxes (and local rebating) and a

counterfactual without carbon taxes.

The global reallocation of population and economic activity generates global wel-

fare gains (Figure 16). As in the case of the EU carbon tax, welfare in 2021 declines in all

major regions of the world (EU -0.47%, sub-Saharan Africa -2.37%, Japan -0.85%), but

the migration of people from less productive to more productive regions improves overall

welfare (+0.21%). By 2100, the global welfare gains grow to 0.49%. At the end of the

21st century, population in sub-Saharan Africa is predicted to be 2.58% lower, whereas

in the EU the population is predicted to grow by 1.5%, compared to a world without

a US carbon tax (Figure 17 and Appendix Table F2). As we already saw in the EU,
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Figure 17: Effect of US Carbon Tax on Real Income per Capita and Population across
Globe (Local Rebating)

(a) %∆ real income pc, 2100 (b) %∆ population, 2100

Note: Map displays log difference (*100) in 2100 between the baseline with carbon taxes (and local rebating) and

a counterfactual without carbon taxes. Panel (a) shows real income per capita and Panel (b) shows population.

the introduction of a carbon tax in the US corrects a pre-existing spatial inefficiency. In

the absence of a carbon tax, there is not enough economic activity in the world’s most

productive places. As emphasized before, these global gains already materialize upon

impact in 2021, before additional benefits in the form of reduced emissions.

One concern with local rebating is that it might increase global emissions. By

benefiting the more energy-intensive non-agricultural sector, local rebating reduces US

emissions by less than in the absence of rebating. However, in terms of magnitude, the

effect is small: in 2021, emissions in the US drop by 40.5% when tax revenues are locally

rebated, only slightly less than the 43.66% decline when there is no rebating. Moreover,

there is a compensating effect: by keeping more non-agriculture in the US, there is less

leakage to other parts of the world (Appendix Figure F6). With local rebating, emissions

in the EU increase by 10.03%, whereas in the absence of rebating EU emissions grow

by 11.58% (Appendix Table F2). Globally, the change in emissions between rebating

schemes is a wash. With local rebating, global emissions decline by 2.06% in 2021,

essentially the same as the 2.04% decline in the case of no rebating (Appendix Figure

F7).

Overall, the introduction of a unilateral carbon tax in the US has very similar

effects to the introduction of a unilateral carbon tax in the EU. This is not surprising:

the US and the EU are similar, in terms of both their economic size and their comparative

advantage in non-agriculture. A carbon tax with local rebating redistributes income to

the regions specialized in the energy-intensive non-agricultural sector. In both the US

and the EU, this tax acts as a place-based policy that benefits high-productivity non-

agricultural locations. As this generates a migratory response, there are global efficiency
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and welfare gains due to pre-existing distortions in the spatial distribution of economic

activity.

6 Conclusion

Unilateral carbon policy has an effect on the spatial distribution of economic activity

and its efficiency. Understanding this impact can help design better carbon policy and

minimize, and even revert, the short-run negative local effects of the policy. This paper

uses a dynamic spatial integrated assessment model (S-IAM) to evaluate the economic

effects of a unilateral carbon tax implemented by either the European Union or the

United States. With local rebating, we find that such a carbon tax would expand the

size of the economy that introduces the tax and improve global welfare. Local rebating

of the tax acts as a place-based policy that subsidizes non-agricultural regions and

incentivizes people to move to either the EU or the US. With a greater share of the

world population residing in the developed world, global efficiency and global welfare

improve. Alternative rebating schemes lead to different results. In particular, rebating

the revenues of the EU carbon tax to developing countries improves the lot of lower-

income countries. This slows down migration to the EU, leading to a less efficient spatial

distribution of population and economic activity. As a result, global welfare declines.

Our analysis underscores the importance of taking into account the spatial effects of

carbon taxes. Because the initial spatial equilibrium need not be efficient, carbon taxes

have the potential of improving efficiency, though this depends on how tax revenues are

rebated, as well as on their size.
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A Appendix: Proof of Lemma

Proof. The proof consists of three parts. Part 1 shows how the introduction of a small

carbon tax in region r affects firm revenues, wages, and land rents in the region. Part

2 proves that a small carbon tax with local rebating leads to an increase in the region’s

income. Part 3 shows that the region’s population expands.

Part 1

The introduction of a carbon tax affects the marginal cost of firms. This impacts their

revenues, and hence the wages and land rents they pay. We start by writing down an

expression of how local firm revenues change with a change in marginal cost. We then

show how a change in firm revenues affects local wages and land rents. The goal is to

get expressions for how local wages and land rents change with the introduction of a

carbon tax.

The revenue of firms producing varieties of good i in location r equals total spend-

ing on these varieties in the entire world. Following Conte et al. (2021), this implies that

the revenue of sector i in period t and location r, denoted by ξit(r), can be written as

ξit(r) = Γiϱit(r)
∫
S
Pit(s)

θy(s), where

Γi = χiκi

ϱit(r) = τit(r)
θgi (Tt(r))

θ ẽ−σiθ
t wt(r)

−(αi+γi+µi)θRt(r)
(αi−ζi)θ

κi = p̄−θγγiθi µµiθ
i σσiθ

i (γi + µi)
αiθ (1− γi − µi − σi)

(1−αi−γi−µi−σi)θ

ẽt = et(1 + Υt)

ζi = 1− γi − µi − σi.

Given that region r is small, a change in its marginal cost does not affect the price index

in any location, so dPit(s) = 0 ∀ s. Income in other locations is also unaffected, whereas

any change in the own region’s income does not affect local firm revenues because the

own region is small. Totally differentiating the above expression then gives

dξit(r) = −θσiΓiẽ
−σiθ−1
t τit(r)

θgi (Tt(r))
θ
wt(r)

−(αi+γi+µi)θRt(r)
(αi−ζi)θ

∫
S

Pit(s)
θy(s)ς(s, r)−θds dẽt

− (α+ γi + µi)θΓiẽ
−σiθ
t τit(r)

θgi (Tt(r))
θ
wt(r)

−(αi+γi+µi)θ−1Rt(r)
(αi−ζi)θ

∫
S

Pit(s)
θy(s)ς(s, r)−θds dwt

− (ζi − αi)θΓiẽ
−σiθ
t τit(r)

θgi (Tt(r))
θ
wt(r)

−(αi+γi+µi)θRt(r)
(αi−ζi)θ−1

∫
S

Pit(s)
θy(s)ς(s, r)−θds dRt

= −θσiξit(r)
dẽt
ẽt

− (αi + γi + µi)θξit(r)
dwt

wt
− (ζi − αi)θξit(r)

dRt

Rt
.
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Because location r is small, it does not affect the world energy price. Hence, dẽt = ẽtdΥ,

so that

dξit(r) = −θσiξit(r)dΥ− θ(αi + γi + µi)ξit(r)
dwt

wt

− θ(ζi − αi)ξit(r)
dRt

Rt

. (15)

The introduction of a carbon tax, dΥ, has a direct effect on the marginal cost of firms

by raising the cost of energy. However, because the higher marginal cost lowers firm

revenues, it will also indirectly impact wages and land rents. As such, the changes in

revenues, wages and land rents induced by the carbon tax are jointly determined. In

what follows, we write down expressions for the changes in wages and land rents that

make this explicit. Total spending on land is a fixed share of firm revenues, Rt(r)H(r) =∑
i ζAξit(r). Totally differentiating land rents yields:

d (Rt(r)H(r)) = ζAdξAt(r) + ζMdξMt(r)

= −θ
∑
i

ζiξit(r)

[
σidΥ + (αi + γi + µi)

dwt(r)

wt(r)
+ (ζi − αi)

dRt(r)

Rt(r)

]
.

Rewriting this expression gives

dRt =
−θdΥ

∑
i σiζiξit(r)−

θdwt(r)
wt(r)

∑
i(αi + γi + µi)ζiξit(r)[

H(r) + θ
∑

i ζiξit(r)
(ζi−αi)
Rt(r)

] . (16)

By analogy, we can derive an expression for the change in wages:

dwt(r) =
−θdΥ

∑
i ((µi + γi)σiξit(r))− θdRt(r)

Rt(r)
((µi + γi)(ζi − αi)ξit(r))[

L̄t(r) + θ
∑

i

(
(µi + γi)ξit(r)

(αi+γi+µi)
wt(r)

)] . (17)

Equations (16) and (17) form a system of two linear equations: dRt(r) = −A−Bdwt(r)

and dwt(r) = −C −DdRt(r). Solving for these equations yields

dRt(r) = ΛrdΥ (18)

dwt(r) = ΛwdΥ. (19)

where Λr =
Φr

Ψr
, Λw = Φw

Ψw
,
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Φr = θ

{∑
i

(αi + γi + µi)ζiξit(r)

}{∑
i

(µi + γi)σiξit(r)

}

−

{∑
i

ζiσiξit(r)

}{
L̄t(r)wt(r) + θ

∑
i

(µi + γi)(αi + γi + µi)ξit(r)

}

Ψr =

{
H(r) +

θ

Rt(r)

∑
i

(ζiξit(r)(ζi − αi))

}{
L̄t(r)wt(r)

θ
+
∑
i

(µi + γi)(αi + γi + µi)ξit(r)

}

− θ

Rt(r)

{∑
i

(αi + γi + µi)ζiξit(r)

}{∑
i

(γi + µi)(ζi − αi)ξit(r)

}
.

and analogous expressions for Φw and Ψw. Equations (18) and (19) clarify how a change

in carbon taxes affects local land rents and wages.

Part 2

To see how a carbon tax affects local income, we need to include the tax rebate. Tax

revenue earned, and rebated, by the government is At(r) = ΥetEt(r). Totally differ-

entiating this expression gives dAt(r) = etEt(r)dΥ + Υd(etEt(r)). Given that we are

assessing the effect of dΥ starting at Υ = 0, the relevant tax rebate is:

dAt(r)|Υ=0 = etEt(r)dΥ|Υ=0 =
∑
i

σiξit(r)dΥ. (20)

Total local income is the sum of wage income, land rents, profits, and rebate income:

yt(r)L̄(r) = wt(r)L̄(r) +Rt(r)H(r) + Πt +
At(r)

L̄(r)
,

where in equilibrium Πt = 0. We now analyze the change in total local income following

the introduction of a carbon tax, dΥ:

L̄(r)
dyt(r)

dΥ
|Υ=0 =

dAt(r)

dΥ
|Υ=0 + L̄(r)

dwt(r)

dΥ
+H(r)

dRt(r)

dΥ

=
∑
i

σiξit(r) + L̄(r)Λw +H(r)Λr. (21)

Note that for now we are analyzing the impact on local income before the possibility of

any migration. Hence, we are keeping L̄(r) constant. If α = 0, the change in total local

income (21) is proportional to the reduction in total revenues of local firms. Starting

with (15), the change in total revenues of local firms can be written as
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∑
i

dξit(r) = −θ
∑
i

(
σiξit(r)dΥ + (αi + γi + µi)ξit(r)

dwt

wt

+ (ζi − αi)ξit(r)
dRt

Rt

)
.

Using the first order conditions, (γi + µi)ξit(r) = wt(r)L̄it(r) and ζiξit(r) = Rt(r)Hi(r),

as well as (18), (19), and the assumption α = 0, the above expression simplifies to∑
i

dξit(r) = −θ
∑
i

(
σiξit(r) + ΛwL̄t(r) + ΛrH(r)

)
, (22)

which is proportional to (21). We know that total revenues of local firms must decrease

upon the introduction of a carbon tax. Suppose total revenues were to go up instead.

Then the total revenues going to land and labor would increase.17 For a given endowment

of labor and land, this implies that local wages and local land rents must go up. Because

the local energy price has also increased (due to the carbon tax), the marginal cost of

firms must have increased. However, this would lower the quantity demanded, and

therefore lower total revenue if the demand is elastic. Thus, this would be inconsistent

with total revenue increasing. We can therefore conclude that total revenues of local

firms must decrease, so that (22) is negative:

− θ
∑
i

(
σiξit(r) + ΛwL̄t(r) + ΛrH(r)

)
< 0. (23)

This implies that the change in total income (21) is positive, and therefore the change

in per capita local income is positive too:

dyt(r)

dΥ
|Υ=0 > 0. (24)

This proves that local per capita income increases following the introduction of a small

carbon tax.

Part 3

Consider the proportion of population living in region r:

L̄t(r) =
ut(r)

1/Ωm2(r)
−1/Ω∫

S
ut(s)1/Ωm2(s)−1/Ωds

L̄

where ut(r) = at(r)
yt(r)∏I

i=1 Pit(r)χi
and Pit(r) =

[∫ 1

0
pωit(r)

ρ
ρ−1 dω

] ρ−1
ρ
. As such, when yt(r)

17In a model with one sector, this is straightforward. In a model with two sectors that have different
levels of energy intensity, but the same trade elasticity θ, production would shift toward the least
energy-intensive sector. This would increase the share of total revenues going to land and labor, and
hence magnify the total revenue going to land and labor.
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increases, there is an increase in the proportion of L̄ living in region r since:

dL̄t(r) =
1

Ω

ut(r)
(1−Ω)/Ωm2(r)

−1/Ω∫
S
ut(s)1/Ωm2(s)−1/Ωds

L̄dut(r)

=
1

Ω
L̄t(r)

dut(r)

ut(r)

=
1

Ω
L̄t(r)

dyt(r)

yt(r)
> 0 for dyt(r) > 0,Ω > 0. (25)
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Online Appendix

B Appendix: Calibration

Table B1: Parameter Values

Parameter Target/Comment
1. Preferences
β = 0.96 Annual discount factor
ρ = 0.75 Elasticity of substitution of 41

λ = 0.32 Relation between amenities and population1

Ω = 0.5 Elasticity of migration flows with respect to income1

ψ = 1.8 Subjective well-being parameter1

χA = 0.051 Data on agricultural and total output
χM = 0.949 Data on agricultural and total output
2. Technology
αA = 0 No agglomeration externality in agriculture
αM = 0.01 Agglomeration externality in non-agriculture1

θ = 6.5 Trade elasticity1

µA = µM = 0.6 Labor share in agriculture and non-agriculture2

γA = 0.001 Growth rate of agricultural productivity3

γM = 0.0002 Growth rate of non-agricultural productivity3

σA = 0.04 Energy share in agriculture (Schnepf, 2004; Australian Bureau of Statistics, 2021)
σM = 0.07 Energy share in non-agriculture (Grubb et al., 2018; King et al., 2015)
δ = 0.993 Technology diffusion1

ℵ = 0.004 Spatial decay of diffusion4

ϕ = 0.25 Energy supply elasticity2

3. Temperature and carbon cycle
goptA = 19.9◦C Optimal temperature in agriculture2

gvarA = 7.28◦C 0.1% of world agricultural production at locations below discount factor 0.01
goptM = 10.5◦C Relationship between non-agricultural productivity and temperature
gvarM = 11.0◦C Relationship between non-agricultural productivity and temperature
ε1 = 0.9975 Decay of carbon stock2

ε2 = 0.29 1200 GTC increase in global carbon stock by 2100
ν = 0.0031 3.7◦C increase in global temperature by 2100
1Desmet et al. (2018), 2Desmet and Rossi-Hansberg (2015), 3Duarte and Restuccia (2010), 4Comin et al. (2012). Note that αM in the

current paper is equal to αM divided by θ in Desmet et al. (2018).

46



Figure B1: Temperature Discount in Agriculture and Non-Agriculture
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C Appendix: Alternative Rebating Schemes

In this section we consider two additional rebating schemes: EU rebating, where the EU

carbon tax revenue is rebated on a per-capita basis to the whole EU population, and

developing countries rebating, where the EU carbon tax is rebated on a per-capita basis

to lower-income countries, defined as countries with an income per capita below that of

the poorest EU country.

Figure C1: Change in Sectoral Output Due to Carbon Taxes: EU Rebating vs Local
Rebating

(a) % ∆ agr., EU – local rebating, 2021 (b) % ∆ non-agric., EU – local rebating, 2021

Note: Maps display log difference (*100) in nominal agricultural and non-agricultural output in 2021 between the

case with a carbon tax and EU rebating and the case with a carbon tax and no rebating.

Compared to local rebating, EU rebating benefits the EU periphery more and the

EU core less. Because the richer non-agricultural core contributes more on a per-capita

basis to carbon tax revenues, EU rebating amounts to a transfer from the EU core to the

EU periphery. As a result, the positive impact of the carbon tax on the non-agricultural

EU core is smaller (Figure C1). Real income in the EU expands less than under local

rebating (Figure C2 Panel (a)). World welfare and real income per capita continue to

increase, but less so than under local rebating (Panels (b) and (d)).

Developing countries rebating, instead, benefits lower-income countries. From the

point of view of the EU, the revenue from the carbon tax is lost. It is therefore not

surprising that the EU shrinks, both in terms of real income and population (Figure C2,

panels (a) and (b)). In fact, the drop in income and population in the EU is greater

than when the proceeds of the tax are thrown away. The reason is simple: developing
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Figure C2: Effect of Different Rebating Schemes on EU and World Economy, 2021

(a) % ∆ EU real income, 2021 (b) % ∆ world welfare, 2021

(a) % ∆ EU population, 2021 (b) % ∆ world real income pc, 2021

Note: Figure displays the effect of EU carbon taxes under different rebating schemes (no rebating, local rebating,

EU rebating, and developing countries rebating) in 2021 on EU real income (Panel a), world welfare (Panel b), EU

population (Panel c), and world real income per capita (Panel d).

countries rebating keeps more people in low-income regions (Figure C3 Panel (a)). For

the baseline carbon tax of 40 US$/tCO2, population in sub-Saharan Africa increases by

0.66% in 2021, compared to a drop of 2.14% under no rebating and a drop of 2.47%

under local rebating. Slowing down out-migration from Africa and South East Asia also

has global efficiency effects. For the baseline carbon tax, developing countries rebating

lowers world real income per capita in 2021 by 1.38%, compared to an increase of 0.73%

in the case of local rebating (Table C1). Spatial inequality is mitigated though: in 2100

real income per capita is 2.08% lower in the EU and 2.22% higher in sub-Saharan Africa.
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Table C1: Effect of Carbon Tax on Different Regions of the World (EU and Developing
Countries Rebating)

World EU US Japan SSA Asia

2021 2100 2021 2100 2021 2100 2021 2100 2021 2100 2021 2100

Panel A: EU rebating

%∆ Real GDP 0.61 1.15 0.13 0.9 1.69 2.68 1.49 2.46 -3.48 -6.28 -1.52 -1.79
%∆ Real GDP pc 0.61 1.15 -1.75 -1.43 -0.19 0.16 -0.28 0.09 -0.95 -2.36 -1.12 -1.25
%∆ Welfare 0.13 0.51 -2.51 -2.6 -0.8 -0.62 -0.85 -0.67 -2.38 -3.24 -1.53 -1.82
%∆ Population 0 0 1.92 2.37 1.88 2.51 1.78 2.37 -2.55 -4.01 -0.4 -0.54
%∆ Agricultural Output 1.22 2.51 -2.85 -1.8 2.25 5.16 2.75 6.64 1.37 10.62 2.24 4.05
%∆ Non-agric. Output 1.26 2.54 1.42 2.14 1.33 2.8 0.45 2.21 -0.56 -0.07 -0.68 0.36
%∆ Emissions -2.16 -2.69 -40.62 -38.86 10.59 14.67 9.63 14.01 8.66 11.5 8.75 12.51

Panel B: Developing countries rebating

%∆ Real GDP -1.38 -1.78 -6.37 -6.33 0.53 1.03 0.39 0.85 1.45 3.41 1.25 2.35
%∆ Real GDP pc -1.38 -1.78 -2.59 -2.08 0.55 1.3 0.48 1.24 0.79 2.22 0.81 1.68
%∆ Welfare -0.67 -0.68 -1.32 -0.71 0.54 1.41 0.5 1.36 0.8 2.11 0.74 1.8
%∆ Population 0 0 -3.88 -4.35 -0.01 -0.26 -0.09 -0.39 0.66 1.17 0.44 0.66
%∆ Agricultural Output -1.47 -1.23 -1.05 2.43 -0.33 -1.08 0.15 -0.11 -1.85 5.98 -1.23 -0.29
%∆ Non-agric. Output -1.45 -1.19 -6.29 -5.78 -0.02 0.83 -0.19 0.71 0.89 2.75 0.75 2.25
%∆ Emissions -2.57 -3.27 -44.15 -42.22 10.93 15.16 10.75 15.02 11.74 17.37 11.54 16.38

Note: For different variables and regions of the world, Table displays log difference (*100) between the baseline with a carbon tax and a counterfactual without a
carbon tax. Panel (a) shows results for a carbon tax with EU rebating (where the EU carbon tax revenue is rebated on a per-capita basis to the EU population),
and Panel (b) shows results for a carbon tax with developing countries rebating (where the EU carbon tax revenue is rebated on a per-capita basis to developing
countries). SSA refers to Sub-saharan Africa, and S. & E. Asia refers to South and East Asia, which includes Bangladesh, Brunei, China, Indonesia, India,
Cambodia, Laos, Sri Lanka, Myanmar, Malaysia, Philippines, Thailand, and Vietnam.

Figure C3: Effect of Carbon Tax across the Globe (Developing countries vs Local Re-
bating)

(a) %∆ population, 2021 (b) %∆ non-agric., 2021
(dev. countries – local rebating) (dev. countries – local rebating)

Note: Maps display the log difference (*100) in population and nominal non-agricultural output between a carbon

tax with developing countries rebating and a carbon tax with local rebating.

When looking at the impact on the carbon stock and temperature, we notice that

developing countries rebating reduces emissions and lowers temperature more than other

rebating schemes (Figure C4). This is due to developing countries rebating lowering

world production more than other rebating arrangements. The effects are still small in
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Figure C4: Effect of Different Rebating Schemes on Global CO2 Stock and Temperature

(a) % ∆ global CO2 stock (b) ∆ global temperature (◦C)

Panel (a) displays change in global CO2 stock under different rebating schemes, and Panel (b) displays change in

global temperature (◦C) under different rebating schemes.

magnitude: by 2100 the stock of carbon declines by 2-2.5% compared to a world without

carbon taxes, and global temperatures go down by almost 0.1◦C. Recall, of course, that

we are considering a carbon tax implemented only by the EU. To have larger effects on

global temperatures, either the carbon tax would have to be substantially larger, or the

carbon tax would have to be implemented by more countries.18

18See Cruz and Rossi-Hansberg (2022) for a related finding on the small effect of the unilateral pledges
in the Paris Agreement.
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D Appendix: Additional Figures and Tables

D.1 Additional Tables

Table D1: Effect of Carbon Tax on Different Regions of the World (No Rebating)

World EU US Japan SSA S. & E. Asia

2021 2100 2021 2100 2021 2100 2021 2100 2021 2100 2021 2100

%∆ Real GDP -0.65 -0.63 -4.96 -4.29 2.02 3.14 1.88 2.93 -3.1 -5.84 -1.34 -1.55
%∆ Real GDP pc -0.65 -0.63 -3.3 -3.12 -0.2 0.17 -0.27 0.09 -0.98 -2.36 -1.19 -1.35
%∆ Welfare -0.62 -0.52 -2.75 -2.79 -0.93 -0.77 -0.96 -0.81 -2.5 -3.39 -1.71 -2.02
%∆ Population 0 0 -1.72 -1.2 2.22 2.97 2.15 2.84 -2.14 -3.56 -0.15 -0.2
%∆ Agricultural Output -0.07 0.74 -0.86 2.86 -0.08 0.49 -0.08 1.87 -0.22 8.63 0.59 1.94
%∆ Non-agric. Output 0.74 1.81 -3.44 -2.04 2.75 4.54 2.41 3.97 0.17 0.46 0.62 1.82
%∆ Emissions -2.16 -2.72 -43.42 -41.27 12.11 16.75 11.75 16.11 9.29 12.22 9.81 13.73

Note: For different variables and regions of the world, Table displays log difference (*100) between the baseline with a carbon tax and no rebating and a
counterfactual without a carbon tax. SSA refers to Sub-saharan Africa, and S. & E. Asia refers to South and East Asia, which includes Bangladesh, Brunei,
China, Indonesia, India, Cambodia, Laos, Sri Lanka, Myanmar, Malaysia, Philippines, Thailand, and Vietnam.

Table D2: Effect of Carbon Tax on Different Regions of the World (Local Rebating)

World EU US Japan SSA Asia

2021 2100 2021 2100 2021 2100 2021 2100 2021 2100 2021 2100

%∆ Real GDP 0.73 1.29 0.46 1.19 1.71 2.71 1.52 2.5 -3.42 -6.19 -1.46 -1.72
%∆ Real GDP pc 0.73 1.29 -0.63 -0.44 -0.22 0.13 -0.3 0.06 -0.97 -2.37 -1.13 -1.26
%∆ Welfare 0.32 0.81 -1.01 -1.02 -0.84 -0.66 -0.89 -0.71 -2.41 -3.27 -1.56 -1.86
%∆ Population 0 0 1.1 1.63 1.93 2.58 1.83 2.44 -2.47 -3.91 -0.33 -0.46
%∆ Agricultural Output 1.34 2.63 -3.07 -2 2.39 5.31 2.9 6.76 1.5 10.66 2.36 4.14
%∆ Non-agric. Output 1.38 2.65 1.79 2.4 1.34 2.83 0.46 2.26 -0.5 -0.01 -0.64 0.42
%∆ Emissions -2.14 -2.68 -40.45 -38.74 10.53 14.62 9.58 13.99 8.65 11.49 8.73 12.5

Note: For different variables and regions of the world, Table displays log difference (*100) between the baseline with a carbon tax and local rebating and a
counterfactual without a carbon tax. SSA refers to Sub-saharan Africa, and S. & E. Asia refers to South and East Asia, which includes Bangladesh, Brunei,
China, Indonesia, India, Cambodia, Laos, Sri Lanka, Myanmar, Malaysia, Philippines, Thailand, and Vietnam.
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D.2 Additional Figures

Figure D1: Effect of Carbon Tax on Sectoral Ouput (No Rebating), 2021

(a) Agricultural output, no rebating, 2021 (b) Non-agricultural output, no rebating, 2021

Note: Maps display log differences in nominal sectoral output in agriculture (Panel a) and non-agriculture (Panel

b) in 2021 between the case with a carbon tax (and no rebating) and the case without a carbon tax.

Figure D2: Effect of Carbon Tax on Sectoral Ouput (No Rebating), 2100

(a) Agricultural output, no rebating, 2100 (b) Non-agricultural output, no rebating, 2100

Note: Maps display log differences in nominal sectoral output in agriculture (Panel a) and non-agriculture (Panel

b) in 2100 between the case with a carbon tax (and no rebating) and the case without a carbon tax.
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Figure D3: Effect of Carbon Tax on EU Economy (No Rebating), 2021

(a)% ∆ nominal sectoral output, 2021 (b) % ∆ nominal sectoral output pc, 2021

Note: For different EU variables, Figure displays the log difference (*100) in 2021 between the baseline with carbon

taxes (and no rebating) and a counterfactual without carbon taxes. Panel (a) shows EU nominal sectoral output,

and Panel (b) shows EU nominal sectoral output per capita.

Figure D4: Change in Emissions in the EU Due to Carbon Tax (No Rebating), 2021

Note: Maps display differences in emissions levels (tCO2) between the case with a carbon tax (and no rebating) and the case

without a carbon tax.
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Figure D5: Effect of Carbon Tax on Global and EU Emissions (No Rebating)

(a) % Change in EU emissions (b) % Change in global emissions

Note: Figure displays log difference (*100) in emissions between the baseline with carbon taxes (and no rebating)

and a counterfactual without carbon taxes. Panel (a) shows EU emissions and Panel (b) shows global emissions.

Figure D6: Effect of Carbon Tax on EU Economy (Local Rebating), 2021

(a) % ∆ nominal sectoral output, 2021 (b) % ∆ nominal sectoral output pc, 2021

Note: For different EU variables, Figure displays the log difference (*100) in 2021 between the baseline with carbon

taxes (and local rebating) and a counterfactual without carbon taxes. Panel (a) shows EU nominal sectoral output

and Panel (b) shows EU nominal sectoral output per capita.
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Figure D7: Effect of Carbon Tax on Emissions around the World (Local vs No Rebating)

∆ emissions (local - no rebating), 2021

Note: Maps display differences in emission levels (in tCO2) between the case with a carbon tax (and local rebating)

and the case with a carbon tax (and no rebating).

Figure D8: Effect of Different θ and Ω on EU Outcomes with Local Rebating, 2021

(a) % ∆ EU population, 2021 (θ) (b) % ∆ EU population, 2021 (Ω)

Note: Figure displays the effect of EU carbon taxes in the case of local rebating on EU population for different

values of θ (Panel a) and for different values of Ω (Panel b).
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E Robustness

In this subsection we show that the positive effect of an EU carbon tax on global efficiency

and global welfare is robust to changes in the trade elasticity (θ) and the degree of

locational preference heterogeneity (Ω). Figure E1 shows these results for both higher

(+50%) and lower (-50%) values of θ and Ω. For any of these values, an EU carbon

tax of 40 US$/tCO2 induces improvements in both global real income per capita and

global welfare. This, once again, reflects the EU carbon tax generating a more efficient

distribution of economic activity across the globe.

Figure E1: Effect of Different θ and Ω on World Outcomes with Local Rebating, 2021

(a) % ∆ World real income pc, 2021 (θ) (b) % ∆ World welfare, 2021 (θ)

(c) % ∆ World real income pc, 2021 (Ω) (d) % ∆ World welfare, 2021 (Ω)

Note: Figure displays the effect of EU carbon taxes in the case of local rebating on world’s real income per capita

and welfare for different values of θ (Panels a and b) and for different values of Ω (Panels c and d).
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F Appendix: Additional Analysis for the US

F.1 No Rebating

We first consider the case where the tax revenues from the US carbon tax are lost.

In the absence of rebating, Figure F1 shows that a carbon tax shrinks the US econ-

omy, and more so in agriculture than in non-agriculture, because of the differential tax

incidence across sectors. This shifting comparative advantage of the US in favor of agri-

culture generates a positive shock to non-agriculture in the border countries, Mexico

and Canada.

Figure F1: Change in Sectoral Output Due to Carbon Tax in US (No Rebating), Select
Countries

(a) % ∆ Agriculture, no rebating (b) % ∆ Non-agriculture, no rebating

Note: Figure displays for different countries the log difference (*100) in nominal sectoral output between the baseline

with carbon taxes (and no rebating) and a counterfactual without a carbon tax. Formally, for country C and sector

i, it measures the difference in 100 ∗ log
(∑

r∈C̄ wt(r)L̄it(r)
)
(which is a fixed share of nominal output) with and

without carbon taxes. Panel (a) refers to agricultural nominal output, and Panel (b) to non-agricultural nominal

output.

When displaying the changes on a map of North America, Figure F2 shows that

when the carbon tax is first introduced, agriculture declines more in the industrial Mid-

west and the Northeast of the US, as well as in coastal California. In contrast, regions

that have a smaller presence in non-agriculture, such as Alaska and the Mountain states,

see a stronger shift into agriculture. This is particularly striking in the case of Alaska,

where the expansion is reinforced by Canada’s shifting comparative advantage towards
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non-agriculture. By 2100, the benign effect of the carbon tax on global warming is bene-

ficial to agriculture in the southern and western regions of the US, while it hurts Alaska’s

position. Canada and Mexico, and especially the regions close to the US border, see an

expansion of non-agricultural activity.

Figure F2: Change in Sectoral Output Due to US Carbon Tax (No Rebating), North
America

(a) % ∆ Agriculture, no rebating, 2021 (b) % ∆ Non-agriculture, no rebating, 2021

(c) % ∆ Agriculture, no rebating, 2100 (d) % ∆ Non-agriculture, no rebating, 2100

Note: Map displays for different countries the log difference in nominal sectoral output between the baseline with

a carbon tax (and no rebating) and a counterfactual without a carbon tax. Panels (a) and (c) refer to agricultural

nominal output, and Panels (b) and (d) to non-agricultural nominal output. Panels (a) and (b) are for 2021, whereas

Panels (c) and (d) are for 2100.

The world map in Figure F4 shows that sub-Saharan Africa and parts of South and

East Asia lose in terms of real income and population. The winners of the US carbon tax

are Europe, Japan, and other developed regions. Two forces are at work that explain

this. On the one hand, the economic leakage from the US carbon tax benefits regions
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with comparative advantage in non-agriculture, primarily developed countries. On the

other hand, the shift in comparative advantage in the US hurts regions in the rest of the

world that are specialized in agriculture.

Table F1: Effect of Carbon Tax in US on the World (No Rebating)

World EU US Japan SSA S. & E. Asia

2021 2100 2021 2100 2021 2100 2021 2100 2021 2100 2021 2100

%∆ Income -0.56 -0.17 1.75 1.73 -5.03 -5 1.76 1.91 -3.07 -3.86 -1.38 -1.05
%∆ Income pc -0.56 -0.17 -0.15 0.08 -3.28 -3 -0.22 0.13 -0.92 -1.5 -1.13 -0.84
%∆ Welfare -0.8 -0.5 -0.75 -0.49 -2.73 -2.35 -0.87 -0.44 -2.37 -2.14 -1.61 -1.25
%∆ Population 0 0 1.91 1.66 -1.81 -2.06 1.99 1.77 -2.17 -2.4 -0.26 -0.21
%∆ Agricultural Output 0.13 0.75 0.12 1.26 -1.29 1.55 -0.16 1.22 -0.34 6.63 0.35 1.34
%∆ Non-agric. Output 0.85 1.42 2.78 3.04 -3.36 -3.09 2.54 2.91 0.34 0.63 0.84 1.54
%∆ Emissions -2.04 -1.69 11.58 10.31 -43.66 -44.31 11.33 10.17 8.92 7.75 9.45 8.68

Note: For different variables and regions of the world, Table displays log difference (*100) between the baseline with a carbon tax and no rebating and a
counterfactual without a carbon tax. SSA refers to Sub-saharan Africa, and S. & E. Asia refers to South and East Asia, which includes Bangladesh, Brunei,
China, Indonesia, India, Cambodia, Laos, Sri Lanka, Myanmar, Malaysia, Philippines, Thailand, and Vietnam.

Upon impact, the US carbon tax improves real income in Europe by 1.75%, while

sub-Saharan Africa sees a decline by 3.86% (Table F1). This reflects Europe attracting

more population (+1.91%) and sub-Saharan Africa losing population (-2.17%). In terms

of welfare, the world is worse off, both in 2021 (-0.8%) and in 2100 (-0.5%). Although

migration from poorer regions to richer regions improves efficiency and welfare, the losses

from a carbon tax without rebating dominate. The economic leakage from the US to

other developed countries is accompanied by carbon leakage (Figure F3). In the year

2100, carbon emissions are 44% lower in the US, but 10% higher in the EU and Japan.

Globally, they drop by around 2% (Table F1).

Overall, the impact of a US carbon tax is similar, both qualitatively and quan-

titatively, to that of an EU carbon tax, with of course the difference that the roles of

the US and the EU are reversed. For example, global real income per capita drops by

0.56% after the introduction of a US carbon tax, whereas it drops by 0.65% if the EU

implements a carbon tax. And while a US carbon tax lowers income per capita in the

EU by 0.15%, an EU carbon tax lowers income per capita in the US by 0.20%.
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Figure F3: Effect of US Carbon Tax on Emissions around the World (No Rebating),
2021

Note: Maps display differences in emission levels (in tCO2) between the baseline with a carbon tax (and no rebating) and a

counterfactual without a carbon tax. Figure D4 shows the equivalent European map.

Figure F4: Effect of US Carbon Tax on Real Income and Population across the Globe
(No Rebating)

(a) Change in real income, 2021 (b) Change in real income, 2100

(c) Change in real income per capita, 2100 (d) Change in population, 2100

Note: Map displays for different variables the log difference (*100) between the baseline with carbon taxes (and no

rebating) and a counterfactual without carbon taxes. Panel (a) shows real income in 2021, Panel (b) shows real

income in 2100, Panel (c) shows real income per capita in 2100, Panel (d) shows population in 2100.
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F.2 Local Rebating: Additional Tables and Figures

Table F2: Effect of US Carbon Tax on Different Regions of the World (Local Rebating)

World EU US Japan SSA Asia

2021 2100 2021 2100 2021 2100 2021 2100 2021 2100 2021 2100

%∆ Income 0.73 0.91 1.54 1.53 0.59 0.71 1.51 1.71 -3.34 -4.07 -1.51 -1.19
%∆ Income pc 0.73 0.91 -0.21 0.03 -0.64 -0.34 -0.28 0.1 -0.96 -1.52 -1.13 -0.85
%∆ Welfare 0.21 0.49 -0.75 -0.47 -1.14 -0.71 -0.85 -0.41 -2.37 -2.12 -1.57 -1.23
%∆ Population 0 0 1.75 1.5 1.24 1.05 1.8 1.6 -2.4 -2.58 -0.38 -0.34
%∆ Agricultural Output 1.26 1.84 2.15 4.72 -4.9 -3.77 2.59 3.89 0.77 7.06 1.68 2.33
%∆ Non-agric. Output 1.33 1.86 1.22 1.83 2.04 2.02 1.02 2.02 -0.29 0.31 -0.13 0.82
%∆ Emissions -2.06 -1.7 10.03 9.07 -40.5 -41.36 9.81 9.26 8.45 7.45 8.77 8.2

Note: For different variables and regions of the world, Table displays log difference (*100) between the baseline with a carbon tax and local rebating and a
counterfactual without a carbon tax. SSA refers to Sub-saharan Africa, and S. & E. Asia refers to South and East Asia, which includes Bangladesh, Brunei,
China, Indonesia, India, Cambodia, Laos, Sri Lanka, Myanmar, Malaysia, Philippines, Thailand, and Vietnam.
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Figure F5: Effect of US Carbon Tax on US Economy (Local Rebating), 2021

(a) % ∆ real income and population, 2021 (b) % ∆ nominal sectoral output, 2021

(c) % ∆ real income pc and welfare, 2021 (d) % ∆ nominal sectoral output pc, 2021

Note: For different EU variables, Figure displays the log difference (*100) in 2021 between the baseline with

carbon taxes (and local rebating) and a counterfactual without carbon taxes. Panel (a) shows EU real income and

population, Panel (b) shows EU nominal sectoral output, Panel (c) shows EU real income per capita and welfare,

and Panel (d) shows EU nominal sectoral output per capita.
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Figure F6: Effect of US Carbon Tax on Emissions around the World (Local vs No
Rebating), 2021

∆ emissions (local - no rebating), 2021

Note: Maps display differences in emission levels (in tCO2) between the case with a carbon tax (and local rebating)

and the case with a carbon tax (and no rebating).

Figure F7: Effect of Different Rebating Schemes of US Carbon Tax on Global CO2 Stock
and Temperature

(a) % ∆ global CO2 stock (b) ∆ global temperature (◦C)

Panel (a) displays change in global CO2 stock under different rebating schemes, and Panel (b) displays change in

global temperature (◦C) under different rebating schemes.
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G Appendix: Solving the Model

The solution method of the model follows closely Conte et al. (2021). In particular, the

algorithm to solve for the equilibrium in each period t consists of a 3–level loop that

solves for the distribution of the following 4 endogenous variables: L̄t (r), et, L̄At (r), and

wt (r). Ultimately, the first 3 become explicit (but complex), functions of wt (r), which

is the actual endogenous variable that solves for the period–t equilibrium. The nesting

structure works as follows:

– Outer loop: solves for L̄t (r) and et.

– Middle loop: solves for L̄At (r).

– Inner loop: solves for wt (r) combining sectoral market clearing conditions:

wt (r)
1+θ =

∫
S

f (wt, ·) yt (s) ds ∀r. (26)

For the inner loop, we proceed as in Conte et al. (2021) and retrieve yt(s) as an explicit

function of wt(s) only. That allows us to iterate over (26) and solve for the distribution

of wages. The main difference between Conte et al. (2021) and our method is that,

when doing so, we also retrieve carbon tax revenues as an explicit function of nominal

wages. We achieve this by substituting the carbon tax revenues in equation (12) into

the nominal income in equation (3). As an illustration, in the case of local rebating,

that becomes

yt(s) =

≡g(wt,·)︷ ︸︸ ︷
wt (r) L̄t(s) +

(
Πt/L̄

)
L̄t(s) +Rt (s)H (s)+bt(s)L̄t(s)

= g (wt, ·) +
I∑

i=1

Υt(s)et
σi

γi + µi

wt(s)

(1 + Υt(s)) et
L̄it(s). (27)

Note the equivalence of all but the last elements of the right hand side with the function

(g (wt, ·)) in Conte et al. (2021). Then, with the guesses for sectoral employments

Lit(r) and energy prices et, it is possible to iterate on (26) and retrieve the equilibrium

distribution of wages.
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We then proceed with the middle loop by plugging the solution for wages from the

inner loop into the sectoral market clearing conditions. This yields sectoral employment

levels, L̄At (r), using an analogous iterative procedure. Finally, the outer loop uses the

previous results together with migrations shares and energy market clearing conditions

to obtain an update for the population distribution and energy prices, L̄t (r) and et. We

iterate this 3–level procedure until all conditions hold simultaneously.
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