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A PHASE SHIFT DEEP NEURAL NETWORK FOR HIGH
FREQUENCY APPROXIMATION AND WAVE PROBLEMS\ast 

WEI CAI\dagger , XIAOGUANG LI\ddagger , AND LIZUO LIU\dagger 

Abstract. In this paper, we propose a phase shift deep neural network (PhaseDNN), which
provides a uniform wideband convergence in approximating high frequency functions and solutions
of wave equations. The PhaseDNN makes use of the fact that common deep neural networks (DNNs)
often achieve convergence in the low frequency range first, and constructs a series of moderately sized
DNNs trained for selected high frequency ranges. With the help of phase shifts in the frequency
domain, each of the DNNs will be trained to approximate the function's specific high frequency
range at the speed of learning for low frequency. As a result, the proposed PhaseDNN is able to
convert high frequency learning to low frequency learning, allowing a uniform learning of wideband
functions. The PhaseDNN is then applied to learn solutions of high frequency wave problems in
inhomogeneous media through the least squares residual of either differential or integral equations.
Numerical results have demonstrated the capability of the PhaseDNN as a meshless method in
general domains in learning high frequency functions and oscillatory solutions of interior and exterior
Helmholtz problems.
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1. Introduction. Deep neural networks (DNNs) have shown greater potential in
approximating high dimensional functions than traditional approximations based on
Lagrangian interpolations or spectral methods. Recently, it has been found [20, 21, 16]
that some common neural networks (NNs), including fully connected and convolution
neural networks (CNNs) with tanh and ReLU activation functions, demonstrate a
frequency-dependent convergence behavior. Namely, the DNNs during the training
are able to approximate the low frequency components of the targeted functions first,
before higher frequency components. This phenomenon is defined as the F-principle
of DNNs [20]. The stalling of DNN convergence in the later stage of training could be
mostly related to learning the high frequency components of the data. The F-principle
behavior of DNNs is the opposite of that of the traditional multigrid method (MGM)
[2] in approximating the solutions of PDEs where the convergence occurs first in the
higher frequency end of the spectrum, as a result of smoothing operators employed
in the MGM. The MGM takes advantage of this fast high frequency error reduction
in the smoothing iteration cycles and restricts the original solution on a fine grid to
a coarser grid, and then it continues the smoothing iteration on the coarse grid to
reduce the higher frequency end of the spectrum in the context of the coarse grid. This
downward restriction can be continued until errors over all frequencies are reduced by
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a small number of iterations on each level of the coarse grids.
There are many scientific computing problems which involve high frequency solu-

tions in complex domains, such as high frequency wave equations in inhomogeneous
media, arising from electromagnetic wave propagation in turbid media, rough sur-
face scattering, seismic waves, and geophysical problems. Finding efficient solutions,
especially in random environments, poses great computational challenges due to the
highly oscillatory natures of the solutions. To compute the high frequency waves in in-
homogeneous media, high order methods such as spectral methods for the differential
equations or wideband fast multipole methods [7], [6], [19] for the integral equations
are often used. These traditional numerical methods for solving PDEs are well un-
derstood and can provide very accurate results for various scientific and engineering
applications. However, one of the well-known issues for these types of methods is the
cost of mesh generation in order to discretize differential or integral operators. In
this paper, we will develop meshless DNN-based numerical methods to handle high
frequency functions and solutions of high frequency wave equations in inhomogeneous
media in complex domains. These DNN-based methods may not produce as highly
accurate numerical results as finite element methods, but they do have the advantage
of easy implementation and avoiding the tremendous mesh generation cost while still
giving satisfactory accuracy for many engineering applications. To improve the capa-
bility of usual DNNs for learning highly oscillatory functions in the physical spatial
variables, we propose a phase shift DNN (PhaseDNN) with wideband learning ca-
pabilities in error reductions in the approximation for all frequencies of the targeted
function by taking advantage of the faster convergence in the low frequencies of the
DNN during its training. To learn a function of specific frequency range, we employ
a phase shift in the k-space to translate its frequency to a range | k| < K0; then the
phase-shifted function with a low frequency content can be learned by common DNNs
with a small number of training epochs. The resulting series of DNNs with phase
shifts will make a phase shift deep neural network (PhaseDNN).

To achieve uniform wideband approximation of a general function, we can imple-
ment the PhaseDNN in a parallel manner where original data is decomposed into data
of a specific frequency range, which, after a proper phase shift, is learned quickly. This
approach can be implemented in a parallel manner; however, frequency extractions of
the original training data have to be done using convolutions with a frequency selection
kernel numerically, which could become very expensive or not accurate for scattered
training data. Alternatively, we can implement the PhaseDNN in a nonparallel man-
ner where original data consisting of information from all ranges of frequencies are
learned together with phase shifts included in the makeup of the PhaseDNN, resulting
in a coupled PhaseDNN. Although the coupled PhaseDNN lacks parallelism, it avoids
the costly convolutions used in the parallel PhaseDNN to extract the frequency com-
ponent from the original training data. This feature will be shown to be important
when higher dimensional data are involved in the training. Thanks to this property,
the coupled PhaseDNN can be used to solve high frequency wave problems where we
seek solutions in a space of PhaseDNNs by minimizing the residuals of the differential
or integral equation in a least squares approach. We should note that the idea of using
frequency shifts to speed up the convergence of the DNN is similar to an approach in
the wave-ray MGM [15] for high frequency problems where phase factors set at some
frequency lattices together with smooth slowly variant amplitude functions are used
in the wave-ray MGM framework. More recently, Fang et al. [11] introduced a ray-
finite element method based on geometric optics where phase functions are adaptively
learned to improve the effectiveness of the finite element method for high frequency

D
ow

nl
oa

de
d 

11
/2

4/
20

 to
 1

29
.1

19
.6

7.
75

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PhaseDNN FOR HIGH FREQUENCY PROBLEMS A3287

waves. Also, the proposed coupled PhaseDNN can be viewed as a Fourier-expansion--
like neural network acting as a spectral method for general domains without a mesh.
Neural networks which mimic other types of approximations such as wavelets [8] have
been studied in [3], [5], [10].

The rest of the paper is organized as follows. In section 2, we will review the fast
low frequency convergence for neural networks and present the parallel version phase
shift deep neural network (PhaseDNN). Based on the properties of the PhaseDNN, a
coupled PhaseDNN is introduced in section 3 to reduce the cost of learning in train-
ing the DNN for approximations. Then, the coupled PhaseDNN is used to find the
solutions of wave problems in inhomogeneous media using either differential equation
or integral equation formulations. Section 4 contains various numerical results of the
PhaseDNN for approximations and solutions of wave problems. A conclusion and
discussion for future work will be given in section 5. Appendix A will include an
analysis of the equivalence between the parallel PhaseDNN and coupled PhaseDNN,
providing the theoretical basis for the accurate results of the coupled PhaseDNN.

2. A parallel phase shift DNN (PhaseDNN) for high frequency approx-
imation. A deep neural network (DNN) is a sequential alternative composition of lin-
ear functions and nonlinear activation functions. Givenm,n \geq 1, let \Theta (\bfitx ) : \BbbR n \rightarrow \BbbR m

be a linear function with the form \Theta (\bfitx ) = \bfitW \bfitx + \bfitb , where \bfitW = (wij) \in \BbbR m\times n and
\bfitb \in \BbbR m are called weights and biases, respectively. The nonlinear activation function
\sigma (u) : \BbbR \rightarrow \BbbR . By applying \sigma (u) componentwisely, we can extend the activation
function to \sigma (u) : \BbbR n \rightarrow \BbbR n. A DNN with L+1 layers can be expressed in a compact
form as

(2.1)
T (\bfitx ) = TL(\bfitx ),

T l(\bfitx ) = [\Theta l \circ \sigma ](T l - 1(\bfitx )), l = 1, 2, . . . L,

with T 0(\bfitx ) = \Theta 0(\bfitx ), or equivalently,

(2.2) T (\bfitx ) = \Theta L \circ \sigma \circ \Theta L - 1 \circ \sigma \cdot \cdot \cdot \circ \Theta 1 \circ \sigma \circ \Theta 0(\bfitx ).

Here, \Theta l(\bfitx ) = \bfitW l\bfitx + \bfitb l : \BbbR nl \rightarrow \BbbR nl+1

are linear functions. This DNN is also said
to have L hidden layers, and its lth layer has nl neurons.

In approximating a function f(x) by a DNN through training, we minimize the
least squares loss function
(2.3)

L(\bfitW 0, \bfitb 1,\bfitW 1, \bfitb 1, . . . ,\bfitW L, \bfitb L) = \| f(\bfitx ) - T (\bfitx )\| 22 =

\int +\infty 

 - \infty 
| f(\bfitx ) - T (\bfitx )| 2 dx.

For simplicity, we denote all the parameters in DNN by a parameter vector \theta , i.e.,

\theta = (\bfitW 0
11, . . . ,\bfitW 

0
n0n1 , \bfitb 01 . . . \bfitb 

0
n1 ,\bfitW 1

11, . . . ,\bfitW 
1
n1n2 , \bfitb 11 . . . \bfitb 

1
n2 . . . ) \in \BbbR p.

Here, p = (n0 + 1) \times n1 + (n1 + 1) \times n2 + (n2 + 1) \times n3 + . . . (nL + 1) is the total
number of the parameters. Numerically, with N training data \{ x1, x2, . . . , xN\} , the
numerical loss function is defined as

(2.4) LN (\theta ) =

N\sum 
i=1

| f(xi) - T (xi, \theta )| 2 .
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A3288 WEI CAI, XIAOGUANG LI, AND LIZUO LIU

We can study the loss function in the frequency space and first define the Fourier
transform and its inverse of a function f(\bfitx ) by

(2.5) \scrF [f ](k) = 1\surd 
2\pi 

\int +\infty 

 - \infty 
f(x)e - ikx dx, \scrF  - 1[ \^f ](x) =

1\surd 
2\pi 

\int +\infty 

 - \infty 
\^f(k)eikx dk.

Assuming the Fourier transforms of f(x) and T (x, \theta ) exist, by Parseval's equality,
we have

(2.6) L(\theta ) =

\int +\infty 

 - \infty 
| f(x) - T (x)| 2 dx =

\int +\infty 

 - \infty 
| \^f(x) - \^T (x)| 2 dk.

Let L(k, \theta ) = | \^f(x)  - \^T (x)| 2 denote the k-frequency component of L(\theta ). The
following result was obtained in [21].

Theorem 1. Consider a DNN of one hidden layer with a tanh activation func-
tion. For any frequencies k1 and k2 such that | \^f(k1)| > 0, | \^f(k2)| > 0, and | k2| >
| k1| > 0, there exist positive constants c and C such that for sufficiently small \delta , we
have
(2.7)

\mu 
\Bigl( \Bigl\{ 

\bfitW 0 :
\bigm| \bigm| \bigm| \partial L(k1)

\partial \theta j

\bigm| \bigm| \bigm| > \bigm| \bigm| \bigm| \partial L(k2)
\partial \theta j

\bigm| \bigm| \bigm| for all j = 1, 2, . . . , p
\Bigr\} 
\cap B\delta 

\Bigr) 
\mu (B\delta )

> 1 - C exp( - c/\delta ),

where B\delta is a ball with radius \delta centered at the origin of the \bfitW 0-parameter space and
\mu (\cdot ) is the Lebesgue measure.

Theorem 1 states that when the gradient decent method is applied to the loss
function L(\theta ), for most of the \bfitW 0-parameter space, the low frequency component
of the loss function decays faster than the high frequency component. Although the
result is only proved for a DNN with one hidden layer, this phenomenon has also
been observed in higher dimensional experiments for DNNs with different depths and
structures [21], [18]. Similar results have been proved for the ReLU network [18].
Therefore, as in [4], to speed up the learning of higher frequency contents of a target
function f(x), we can employ a phase shift technique to translate the higher frequency

spectrum \^f(k) to a frequency range of [ - K0,K0] with some small frequency K0. Such
a shift in frequency is a simple phase factor multiplication on the training data in the
physical space.

2.1. Frequency selection kernel \bfitphi \vee 
\bfitj (\bfitx ). For a given frequency increment \Delta k,

say, \Delta k = 2K0, let us assume that for some integer M > 0,

supp \^f(k) \subset [ - M\Delta k,M\Delta k].

We first construct a mesh for the interval [ - M\Delta k,M\Delta k] by

(2.8) \omega j = j\Delta k, j =  - M, . . . ,M.

Then, we introduce a partition of unit (POU) \{ \phi j(k)\} Mj= - M for the interval
[ - M\Delta k,M\Delta k] associated with the mesh as

(2.9) 1 =

M\sum 
j= - M

\phi j(k), k \in [ - M\Delta k,M\Delta k].
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The simplest choice of \phi j(k) is \phi j(k) = \phi (
k - \omega j

\Delta k ), and \phi (k) is just the characteristic
function of [ - 1

2 ,
1
2 ], i.e., \phi (k) = \chi [ - 1

2 ,
1
2 ]
(k). The inverse Fourier transform \scrF  - 1 of

\phi (k), indicated by \vee , is \phi \vee (x) = 1\surd 
2\pi 

sin x
2

x
2
.

With the POU in (2.9), we can decompose the target function f(x) in the Fourier
space as follows:

(2.10) \^f(k) =

M\sum 
j= - M

\phi j(k) \^f(k) \triangleq 
M\sum 

j= - M

\^fj(k),

which will give a corresponding decomposition in x-space as

(2.11) f(x) =

M\sum 
j= - M

fj(x),

where
fj(x) = \scrF  - 1[ \^fj ](x).

The decomposition (2.11) involves 2M +1 functions fj(x), whose frequency spec-
trum is limited to [\omega j  - \Delta k

2 , \omega j +
\Delta k
2 ]. Therefore, a simple phase shift could translate

its spectrum to [ - \Delta k/2,\Delta k/2], and it could be learned quickly by a relatively small
DNN Tj(x) with a few training epochs.

Specifically, as the support of \^fj(k) is [\omega j  - \Delta k
2 , \omega j +

\Delta k
2 ], then \^fj(k+ \omega j) is sup-

ported in [ - \Delta k/2,\Delta k/2], and its inverse Fourier transform \scrF  - 1[ \^fj(k+ \omega j)], denoted
as

(2.12) f shiftj (x) = \scrF  - 1
\Bigl[ 
\^fj(k  - \omega j)

\Bigr] 
(x),

can be learned quickly by a DNN Tj(x, \theta ) by minimizing a loss function

(2.13) Lj(\theta ) =

\int \infty 

 - \infty 
| f shiftj (x) - Tj(x, \theta )| 2 dx

in an n0-epoch of training.
Moreover, we know that

(2.14) f shiftj (xi) = e - i\omega jxifj(xi), 1 \leq i \leq N,

which provides the training data for f shiftj (x). Equation (2.14) shows that once

f shiftj (x) is learned, fj(x) is also learned by removing the phase factor:

(2.15) fj(x) \approx ei\omega jxTj(x, \theta 
(n0)).

Now with all fj(x) for  - M \leq j \leq M learned after n0 steps of training each, we have
an approximation to f(x) over all frequency ranges [ - M\Delta k,M\Delta k] as follows:

(2.16) f(x) \approx 
M\sum 

j= - M

ei\omega jxTj(x, \theta 
(n0)),

where \theta (n0) is the value of parameters after n0 steps of training.
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2.2. Training data for parallel phase shift DNN (PhaseDNN) algo-
rithm. In practice, we only know the value of f(x) at some locations, which will
be used to train the PhaseDNN; namely, our goal is to learn the function f(x) using
a training data set

(2.17) \{ xi, fi = f(xi)\} Ni=1.

In order to apply the decomposition (2.11) to f(x), when carrying out the sub-
training problem (2.13), we need to compute the training data for f shiftj (x) based on
original training data (2.17). This procedure can be done in x-space through the
following convolution:

(2.18)

f shiftj (xi) = e - i\omega jxifj(xi) = e - i\omega jxi\phi \vee j \ast f(xi) =
\int \infty 

 - \infty 
\phi \vee j (xi  - s)f(s)ds

\approx 2\delta 

Ns

\sum 
xs\in (xi - \delta ,xi+\delta )

e - i\omega jxi\phi \vee j (xi  - xs)f(xs),

where \delta is chosen such that the kernel function | \phi \vee (k)| is small enough outside ( - \delta , \delta ).
Note that the generation of training data for f shiftj (xi) and the subsequent training

of each DNN Tj(x, \theta ) to approximate f shiftj (x) can be done in parallel. For this reason,
this approach will be termed a parallel PhaseDNN, which will consist of the following
steps: (1) select the phase frequency \omega j ; (2) for each j, construct the training data
f shiftj (xi); (3) train all DNN Tj(x, \theta ); and (4) combine all individual DNNs Tj(x, \theta )
with a shift backward to get an approximation for the function f(x).

3. A coupled PhaseDNN.

3.1. Approximating functions. In the previous section, we use the frequency
selection kernel \phi \vee j (x) to decompose the training data into different frequency com-
ponents; each of them, after being phase-shifted, can be represented by a small DNN.
This method can be implemented in parallel. This strategy is required to use convo-
lution in (2.18) to construct the training data for each small DNN. In principle, the
computation cost of this part can be reduced to O(N log(N)) by using the FFT; here
N is the number of samples, provided that the distribution of the data is close to
uniform and covers the whole domain where the approximation is sought. However,
for randomly distributed and scattered samples with many regions missing data, the
FFT technique will not be applicable or efficient, and computing the convolution di-
rectly via a matrix multiplication thus requires a storage and computation of O(N2).
As a result, this convolution process strongly restricts the performance of PhaseDNN
for higher dimensions and larger data sets.

To avoid this problem, based on the construction of the parallel PhaseDNN (2.16),
we would like to consider a coupled weighted phase-shifted DNN as an ansatz for a
coupled PhaseDNN,

(3.1) T (x) =

M\sum 
m=1

ei\omega mxTm(x),

to approximate f(x), x \in \BbbR d, where Tm(x) are relatively small complex-valued DNNs,

i.e., Tm(x) = T
(real)
m (x)+ iT

(imag)
m (x). T

(real)
m (x) and T

(imag)
m (x) are two independent

DNNs. \{ \omega m\} Mm=1 are frequencies of interest in the target function.
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We will minimize the following least squares loss function:

(3.2) L(\theta ) =

\int +\infty 

 - \infty 
| f(x) - T (x)| 2 dx,

or, numerically,

(3.3) LN (\theta ) =

N\sum 
i=1

| f(xi) - T (xi)| 2 =

N\sum 
i=1

\bigm| \bigm| \bigm| \bigm| \bigm| f(xi) - 
M\sum 

m=1

ei\omega mxiTm(xi)

\bigm| \bigm| \bigm| \bigm| \bigm| 
2

.

Remark 1. This method is similar to an expansion with Fourier modes of selected
frequency with variable coefficients defined by DNNs. When f(x) is a real function, it
is equivalent to use real ``Fourier"" series rather than complex ``Fourier"" series. Namely,
we will consider the sine and cosine expansions

(3.4) T (x) =

M\sum 
m=1

Am cos(\omega mx) +Bm sin(\omega mx)

to approximate f(x), where Am, Bm are DNNs while \omega = 0 will always be included.

It can be shown that under the condition that the weight of the input layer for each
Tm is small, the coupled PhaseDNN is equivalent to the parallel PhaseDNN, and an
analysis of this fact is given in Appendix A. In practical applications, the condition
that the weight of the input layer for each Tm is small holds at the beginning of
training, since we always use small random values to initialize the network. As a
matter of fact, to encourage this condition in the training process, we can add a
weight regularization in the loss function, namely,

(3.5) LR
N (\theta ) =

N\sum 
i=1

| f(xi) - T (xi)| 2 + \beta 
\sum 
m,l

\bigm\| \bigm\| \bigm\| \bfitW m,l
\bigm\| \bigm\| \bigm\| 2
F
,

where xi are training data, \bfitW m,l is the weight matrix of the lth layer of sub DNN
Tm, and \beta is a regularization parameter. This weight regularization can also restrain
some training disasters such as the gradient blowing up [12].

Compared with the previous approach using the phase selecting kernel, the main
advantage of the coupled PhaseDNN is that there is no need for computing convo-
lutions, without the additional quadrature errors, to generate training data for the
training of a selected frequency range. This allows us to deal with a large data set
and higher dimensional problems. However, the coupled PhaseDNN cannot be paral-
lelized, and we must choose the frequencies \omega m before training and then build DNN
T (x) using these \omega m frequencies. If coupled PhaseDNN does not contain enough
frequencies, we can modify the coupled phaseDNN with additional frequencies to
improve the result.

3.2. Solving differential equations through least squares residual min-
imization. The coupled PhaseDNN (3.1) will be taken as an ansatz for finding the
solution of differential equations by minimizing the least squares of the differential
equation's residual, similar to the least squares finite element method [13], [1] and the
physics-informed neural network [17]. DNNs have also been used to solve differential
equations by a variational method [9].
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The coupled PhaseDNN will approximate the solution of the following high fre-
quency Helmholtz equation:

(3.6) \scrL [u] \triangleq u\prime \prime + (\lambda 2 + c\omega (x))u = f(x),

where \lambda > 0, c\omega (x) can be viewed as a perturbation modeling the inhomogeneity of
the otherwise homogeneous media.

The PhaseDNN solution, in the form of (3.1) or (3.4), for (3.6) with different
boundary conditions can be sought by minimizing the following loss function:

(3.7) LN (\theta ) = Lode(\theta ) + \rho Lbc(\theta ),

where

(3.8) Lode(\theta ) =

N\sum 
i=1

| \scrL [T ](\cdot , \theta )(xi) - f(xi)| 2 ,

\{ xi\} Ni=1 \in [ - 1, 1] are preselected locations to evaluate the residual of the DE by the
DNN, and Lbc is the boundary condition regularization term with \rho as the regular-
ization parameter.

We consider two typical kinds of boundary value problems. One is the Dirichlet
boundary condition for an interior Helmholtz problem,

(3.9)

\Biggl\{ 
u\prime \prime + (\lambda 2 + c\omega (x))u = f(x),

u(a) = u1, u(b) = u2,

where the media perturbation c\omega (x) will be specified in the numerical tests. For this
case, the Lbc term is chosen naturally as

(3.10) Lbc = (T (a, \theta ) - u1)2 + (T (b, \theta ) - u2)2.

Remark 2. For 1D Dirichlet boundary value problems, we can also deal with the
boundary condition using a slight modification of the coupled PhaseDNN by replacing
the coupled PhaseDNN T (x, \theta ) in (3.8) with

(3.11) \~T (x, \theta ) = T (x, \theta ) + P (\theta )x+Q(\theta ),

where P (\theta ) = (u2  - u1 + T (a, \theta ) - T (b, \theta ))/(b - a), Q(\theta ) = (u1(b - T (a, \theta )) - u2(a - 
T (b, \theta )))/(b - a). With this modification, \~T (x, \theta ) will be a coupled PhaseDNN which
satisfies the Dirichlet boundary condition naturally, and we can then use LN (\theta ) =
Lode(\theta ) as the loss function.

In the following 1D numerical tests, we use both (3.7) and (3.11) to deal with the
Dirichlet boundary conditions, and they perform similarly, though the latter approach
will be difficult to apply to problems in complex 3D domains.

The second type is an outgoing radiation condition for an exterior Helmholtz
problem for the wave scattering of a finite inhomogeneity described by a compact
supported function \omega (x),

(3.12)

\Biggl\{ 
u\prime \prime + (\lambda 2 + c\omega (x))u = f(x),

u\prime \pm \lambda u\rightarrow 0, (x\rightarrow \mp \infty ).

D
ow

nl
oa

de
d 

11
/2

4/
20

 to
 1

29
.1

19
.6

7.
75

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PhaseDNN FOR HIGH FREQUENCY PROBLEMS A3293

For the exterior problem, we assume both the perturbation \omega (x) and resource
function f(x) are compactly supported in [ - 1, 1], and we are only interested in the
solution in [ - 1, 1]. To solve the differential equation on the unbounded domain, we
need to truncate the domain to a finite one with an absorbing boundary condition,
which in this case is the same as the radiation condition. So, we will consider the
following Robin problem of the Helmholtz equation:

(3.13)

\Biggl\{ 
u\prime \prime + (\lambda 2 + c\omega (x))u = f(x),

u\prime ( - a) + \lambda u( - a) = 0, u\prime (a) - \lambda u(a) = 0,

where a constant a \geq 2 is chosen. It can be shown that with \omega (x) and f(x) supported
in [ - 1, 1], boundary value problems (3.12) and (3.13) have the same solution in [ - 1, 1].
The Lbc is chosen as

Lbc = | T \prime ( - a, \theta ) + i\lambda T ( - a, \theta )| 2 + | T \prime ( - a, \theta ) - i\lambda T ( - a, \theta )| 2.

Note that the solution is complex-valued, T (x, \theta ) here should use the form (3.1), and
each Tm in (3.1) should also be complex-valued.

3.3. Solving integral equations for exterior Helmholtz problems. For
exterior scattering problem, a more convenient approach is converting (3.12) into an
integral equation via a Green's function.

When c = 0, the Green's function of problem (3.12) is simply

(3.14) G(x, x\prime ) =
1

2i\lambda 
ei\lambda | x - x\prime | .

We can write the solution to (3.12) with c > 0 in terms of G(x, x\prime ) by an integral
equation:

(3.15)

u(x) =

\int \infty 

 - \infty 
f(x\prime )G(x, x\prime ) dx\prime  - 

\int \infty 

 - \infty 
c\omega (x\prime )u(x\prime )G(x, x\prime ) dx\prime 

=

\int 1

 - 1

f(x\prime )G(x, x\prime ) dx\prime  - 
\int 1

 - 1

c\omega (x\prime )u(x\prime )G(x, x\prime ) dx\prime 

\triangleq fG(x) - \scrK [u].

The second equality holds because f(x) and \omega (x) are supported in [ - 1, 1]. The term
fG(x) can be calculated by a Gaussian quadrature before training.

In order to apply PhaseDNN to approximate the solution of the integral equation
(3.15), we will first discretize the integral operator in a finite dimensional space by
considering a finite element mesh \{ \xi j\} Mj=1 for the interval [ - 1, 1] and a finite element

nodal basis \{ \phi j(x)\} Mj=1 with the Kronecker property, i,e.,

(3.16) \phi j(\xi k) = \delta jk.

For a function u(x) expressed in terms of the basis function \phi j(x),

(3.17) u(x) =

M\sum 
j=1

uj\phi j(x), uj = u(\xi j),

the application of integral operator \scrK [u] gives

(3.18) \scrK [u](x) =
M\sum 
j=1

uj

\int 1

 - 1

G(x, \xi )\omega (\xi )\phi j(\xi )d\xi \triangleq 
M\sum 
j=1

uj\psi j(x),

D
ow

nl
oa

de
d 

11
/2

4/
20

 to
 1

29
.1

19
.6

7.
75

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A3294 WEI CAI, XIAOGUANG LI, AND LIZUO LIU

where

(3.19) \psi j(x) =

\int 1

 - 1

G(x, \xi )\omega (\xi )\phi j(\xi )d\xi .

Substituting (3.17) and (3.19) into (3.15), we have

(3.20)

M\sum 
j=1

uj\phi j(x) = fG(x) - c
M\sum 
j=1

uj\psi j(x).

We will find a DNN T (x, \theta ) approximation for solution u(x) by minimizing the loss
function of the residual of (3.20) at N -locations \{ xi\} Nj=1 with uj replaced by T (\xi j , \theta ),

(3.21) LN (\theta ) = \| \bfitA \bfitT (\theta ) + c\bfitB \bfitT (\theta ) - \bfitf \bfitG \| 2 ,

where \bfitT (\theta ) = [T (\xi 1, \theta ), T (\xi 2, \theta ), . . . , T (\xi M , \theta )] \in RM , \bfitf \bfitG = [(fG)(x1), . . . (fG)(xN )] \in 
RN , and \bfitA ij = \phi j(xi), \bfitB ij = \psi j(xi), 1 \leq i \leq N, 1 \leq j \leq M . The matrix \bfitB can also
be calculated by a Gaussian quadrature before training.

The integral equation method also applies to other types of homogeneous bound-
ary conditions. Provided that one can write down the Green's function for (3.6) with
the corresponding boundary condition, the corresponding matrix \bfitB can be computed
by Gaussian quadrature similarly.

Remark 3. The residual of the integral equation formulation can also be viewed as
a preconditioned version of that of the differential equation. If we write \scrL = \scrL 1+c\scrL 2,
where \scrL 1[u] = u\prime \prime + \lambda 2u, \scrL 2[u] = \omega (x)u(x), the operator G \ast (\cdot ) can be regarded as
the inverse operator of \scrL 1. Thus (3.15) is just (I + c\scrL  - 1

1 \scrL 2)u = \scrL  - 1
1 f . When c is

small, this preconditioned residual is expected to give a better performance than the
PhaseDNN with least squares residual of the differential equation, and our numerical
results later will confirm this.

In the next section, we will apply both the parallel PhaseDNN and the coupled
PhaseDNN methods to approximation problems and solve differential equations with
the coupled PhaseDNN only. All problems in this paper are done on a NVIDIA
Tesla V100 GPU with TensorFlow and PyTorch. We use TensorFlow 1.13 to solve
differential equations and PyTorch to solve the integral equations. All the training
processes are carried out by the Adam algorithm [14] with the default parameters of
Adam except the learning rate, which will be clarified for specific examples.

4. Numerical results.

4.1. Approximation of functions with PhaseDNN.

4.1.1. Parallel PhaseDNN. In this section, we will present numerical results
to demonstrate the capability of PhaseDNN to learn high frequency content of target
functions. In practice, we could sweep over all frequency ranges with a prescribed
frequent increment \Delta k = 5. For the test function for which we have some rough idea
about the range of frequencies in the data, only a few frequency intervals are selected
for the phase shift.

We choose a target function f(x) in [ - \pi , \pi ]:

(4.1) f(x) =

\Biggl\{ 
10(sinx+ sin 3x) if x \in [ - \pi , 0],
10(sin 23x+ sin 137x+ sin 203x) if x \in [0, \pi ].
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Because the frequencies of this function are well separated, we need not sweep all
the frequencies in [ - \infty ,+\infty ]. Instead, we choose \Delta k = 5 and use the functions

\phi 1(k) = \chi [ - 205, - 200](k), \phi 2(k) = \chi [ - 140, - 135](k),

\phi 3(k) = \chi [ - 25, - 20](k), \phi 4(k) = \chi [ - 5,0](k),

\phi 5(k) = \chi [0,5](k), \phi 6(k) = \chi [20,25](k),

\phi 7(k) = \chi [135,140](k), \phi 8(k) = \chi [200,205](k)

to collect the frequency information in the corresponding frequency intervals and
shift the center of the interval to the origin by a phase factor. For each fj(x) =

\scrF  - 1[ \^f\phi j ](x), we construct two DNNs to learn its real part and imaginary part sep-
arately. Every DNN has 4 hidden layers, and each layer has 40 neurons. Namely,
the DNN has a structure 1-40-40-40-40-1. The training data is obtained by 10,000
samples from the uniform distribution on [ - \pi , \pi ], and the testing data is 10000 evenly
spaced points in [ - \pi , \pi ]. We train these DNNs with 1000 epochs by the Adam op-
timizer with training rate 0.002. The batchsize is 2000 for each DNN. The result is
shown in Figure 4.1 while the details of the training result are shown in Figure 4.2.
These figures clearly show that PhaseDNN can capture the various high frequencies,
from low frequency \pm 1, \pm 3 to high frequency \pm 203, quite well. The training times of
PhaseDNN are collected in Table 4.1

Fig. 4.1. The fitting result for f(x) using the parallel PhaseDNN. Left panel: The blue solid
line is f(x), and the data marked by red dots are the predicted value by PhaseDNN at testing data
set. Right panel: The error plot. (Color available online.)

Table 4.1
The training time statistics. For each j, the training time is the sum of training time of real

and imaginary parts. Each DNN is trained by 1, 000 epochs with batchsize 2, 000.

Frequency Convolution Training Total time
interval time(s) time(s) (s)

[ - 205, - 200] 11.32 15.05 26.38
[ - 140, - 135] 11.32 15.18 26.51
[ - 25, - 20] 11.46 14.99 26.45
[ - 5, 0] 10.70 14.97 25.67
[0, 5] 11.22 14.98 26.21

[20, 25] 11.26 15.00 26.27
[135, 140] 11.32 15.13 26.45
[200, 205] 11.32 15.03 26.36
Total 89.94 120.37 210.32
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(a) (b) (c)

(d) (f)(e) (f)

Fig. 4.2. The detailed results of training in different intervals. The subfigures (a)--(f) show
the results in intervals [ - \pi , 0], [ - \pi /10, \pi /10], [\pi /3  - \pi /10, \pi /3 + \pi /10], [\pi /2  - \pi /10, \pi /2 + \pi /10],
[2\pi /3 - \pi /10, 2\pi /3 + \pi /10], and [\pi  - \pi /10, \pi ], correspondingly. The blue solid line is f(x), and the
data marked by red dots are the value of PhaseDNN at testing data set. (Color available online.)

It is shown that the convolution calculus for preparing data for f shiftj (x) costs
about 40\% of the total computing time. It is quite a large portion and inefficient.
Because, in different intervals, fj(x) can be trained in parallel, PhaseDNN is ideal
to take advantage of parallel computing architectures. Although the total computing
time is 210 seconds, in practice, the computation can be done in 27 seconds with
parallelization. In comparison, a normal single fully connected 24 layer DNN with
640 neurons per hidden layer shows nonconvergence in Figures 4.3(c)--(d) after over
5 hours of training.

4.1.2. Coupled PhaseDNN. 1D problem. We apply the coupled PhaseDNN
method to the same test problem (4.1). The frequencies \{ \omega m\} are selected to be
0, 5, 25, 135, 200. For each Am and Bm, we also set it as a 1-40-40-40-40-1 DNN.

The training parameters are set to be the same as before. Testing data is 10000
evenly spaced points in [ - \pi , \pi ]. The testing result is shown in Figure 4.3(a). The
average L2 relative training error and testing error are both 1.4\times 10 - 3. The pointwise
testing error is shown in Figure 4.3(b). It is clear that the error is concentrated in
the neighborhood of 0, where the derivative of f(x) is discontinuous. Outside of this
neighborhood, the relative maximum error is 8\times 10 - 3.

To show the accuracy and efficiency of the coupled PhaseDNN, we try to learn
f(x) by a single fully connected DNN. The DNN is set to have 24 hidden layers and
640 neurons in each layer. The training is also carried out with 10000 random training
samples, batchsize 2000, and learning rate 0.001. After 50000 epochs during 5 hours
of training, the result with a total loss of 100 is shown in Figures 4.3(c)--(d) (blue
line). (Color available online.)

One can see that a single fully connected DNN cannot learn this highly oscillated
function even with such a large network and a very long training time. The conver-
gence behaviors of a single DNN and a coupled PhaseDNN are shown in Figure 4.3(d).
It is shown that the training loss of coupled phaseDNN reduces quickly to O(10 - 1) af-
ter 1000 epochs, while the loss of a single DNN stays O(102) even after 10000 epochs.
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(b)

(c) (d)

(a)

Fig. 4.3. Fitting result for f(x) using coupled PhaseDNN and a single fully connected DNN.
(a) Fitting result of couple phase DNN after 10, 000 epochs of training. We select frequency \{ \omega m\} =
\{ 0, 5, 25, 135, 200\} . The blue solid line is real data, while the red dots are the predicted value of
couple PhaseDNN. The subplot at the upper left is the local detail plot for interval [0.9, 1.6]. (b)
The pointwise error of coupled PhaseDNN. (c) Fitting result of a fully connected DNN after 50, 000
epochs of training. The DNN has 24 layers and 640 neurons in each layer. (d) The convergence
properties of coupled phase DNN and single fully connected DNN in log scale. The blue line is the
training error of fully connected DNN. The red line is the training error of coupled phase DNN.
(Color available online.)

Coupled PhaseDNN is proved efficient in learning high frequency functions.
In fact, 10000 samples are too much for this example. It turns out that 1000

samples can lead to a good approximation of (4.1). Even with 500 samples, which
is a much too small a data set for the frequency 203, we can still get a ``reasonable""
result. The results with 10000 evenly spaced points in [ - \pi , \pi ] are shown in Figure 4.4.

Shift frequency adaptivity. In general, there is no prior knowledge of the distribu-
tion of frequency content in the target function; it will be difficult to prefix the shift
frequencies in the PhaseDNN. However, we can adopt an adaptive approach where
the shift frequencies \omega m are dynamically added in the buildup of the PhaseDNN.

Let us assume we start with a coupled PhaseDNN T (x) =
\sum M

m=1Am cos(\omega mx)
+Bm sin(\omega mx) with some preselected frequencies based on the best knowledge of the
target function and assume it has a loss LM . We continue to train the DNN for
another n0 epochs. If the new loss L\prime 

M does not decrease sufficiently enough, say,
L\prime 
M > \eta LM for some constant \eta , then we conclude that the coupled PhaseDNN as

it is does not contain enough frequencies to learn the target function well. Then,
to improve the coupled PhaseDNN, we can add a new frequency \omega M+1 to T (x) so
T (x) \leftarrow T (x) + AM+1 cos(\omega M+1x) + BM+1 sin(\omega M+1x) and train the new coupled
PhaseDNN for another n0 epochs. If the loss decreases significantly, we can continue
the training; otherwise we can add another new (higher) frequency again.
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Fig. 4.4. Fitting result for f(x) using less data. We select frequency wn \in \{ 0, 5, 25, 135, 200\} .
Left panel: Training with 1, 000 random samples. Right panel: training with 500 random samples.
The subplots at the upper left in each panel are local detail plots for interval [0.9, 1.6].

The additional \omega M+1 should be bigger than all existing \omega m, m = 1, 2, . . .M ,
where \omega m can be simply set as \omega m = (m - 1)\Delta K. The decay parameter \eta is chosen
in [0.8, 0.9]. The adaptive phase shift frequency strategy is summarized as follows:

1. Set T (x) = T0(x) with an initial loss L = L0, m = 0.
2. Train the coupled PhaseDNN for n0 epochs; denote the current loss as L\prime .
3. If L\prime > \eta L, 0 < \eta < 1, then choose a new \omega m+1 > max1\leq i\leq m \omega i; set T (x)\leftarrow 
Am+1 cos(\omega m+1x) +Bm+1 sin(\omega m+1x).

4. m\leftarrow m+ 1; back to step 2.
5. Repeat the process until the loss is small enough or \omega m is sufficiently large.

This strategy is tested on the problem in section 4.2.2 with the same training
parameters, and \omega m = 20m,m = 1, 2, . . . , 12. The decay parameter \eta = 0.9 while
n0 = 500. The loss curve of training is shown in Figure 4.5

Fig. 4.5. The loss curve in log scale for fitting f(x) using the adaptive phase range strategy.
We use frequency wm = 20m, m = 1, 2, . . . , 12, sequentially and \eta = 0.9. The steps on the curve
correspond to the adding of frequency 20, 140, and 200.

One can see that there are three abrupt drops on the loss curve, indicating the
significant decrease of loss due to the adaptive procedure; i.e., these three drops at
epoch 500, 3500, and 5000 correspond to adding frequency 20, 140, and 200, respec-
tively. We should note that adding more frequencies will lead to larger DNNs and
thus more computing cost. Therefore, how to identify the most relevant frequencies
so that the coupled PhaseDNN can be most efficient is an important issue demanding
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further investigations.

Discontinuous functions and frequency sweep. Next we consider discontinuous
functions, and we replace the sin in (4.1) by a square wave function with the same
frequency and learn it by (3.4) with \omega m \in \{ 0, 5, 25, 135, 200\} and \omega m =  - 1600 : 10 :
1600. These two DNNs are trained with 10000 samples and 1000 epochs. The results
are shown in Figures 4.6(a)--(b). It can be seen that the coupled PhaseDNN has a
larger error for a discontinuous function, compared with the smooth sin case. The
sweeping strategy is preferred for discontinuous functions. From the plot of errors
DFT in Figures 4.6(c)--(d), one may find that the sweeping strategy does learn the
information in frequency domain [ - 1600, 1600]. For a frequency larger than 1600,
neither strategy can learn it.

(a) (b)

(c) (d)

Fig. 4.6. Fitting result for square wave function using selecting and sweeping methods. (a)
Fitting result using selecting method with \omega m \in \{ 0, 5, 25, 135, 200\} . (b) Fitting result using sweeping
method. Frequency domain is [ - 1600, 1600]. (c) DFT of error of selecting method. (d) DFT of
error of sweeping method.

2D problem. We use (3.4) to learn 2D and 3D problems. For the 2D test, the
function G(x, y) = g(x)g(y) is used, where g(x) is defined by

(4.2) g(x) =

\Biggl\{ 
sinx+ sin 3x if x \in [ - \pi , 0],
sin 23x+ sin 137x if x \in [0, \pi ].

The function g(x) is the f(x) in (4.1) without the sin 203x component. In this test,
we choose \{ wm\} \in \{ 0, 5, 25, 135\} \times \{ 0, 5, 25, 135\} . Training settings are 640 \times 640 =
409600 samples and 80 epochs with batchsize 100. Testing data is 100 \times 100. The
result is shown in Figure 4.7(left).

The result is good even for the highest frequency region. In this example, the
highest frequency is 137. With more data, we can learn a function of even higher
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Fig. 4.7. Fitting results for 2D problems using coupled PhaseDNN. Left panel: Fitting result
for G(x, y). Right panel: Fitting result for \~G(x, y).

frequency.
Furthermore, we test another problem with \~G(x, y) = sin(\~g(x)\~g(y)) with

(4.3) \~g(x) =

\Biggl\{ 
sinx+ sin 3x if x \in [ - \pi , 0],
sin 23x if x \in [0, \pi ].

The highest frequency of \~G(x, y) is about 200. We use training setups similar to
those in the previous test and choose \omega m \in \{ 10 : 10 : 210\} \times \{ 10 : 10 : 210\} . The
fitting result is shown in Figure 4.7(right). The L2 fitting error is 5.2\times 10 - 3.

3D problem. The test problem for 3D is H(x, y, z) = h(x)h(y)h(z), where

(4.4) h(x) =

\Biggl\{ 
sinx+ sin 3x if x \in [ - \pi , 0],
sin 23x+ sin 32x if x \in [0, \pi ].

The selected frequency is \omega m \in \{ 0, 5, 25, 30\} \times \{ 0, 5, 25, 30\} \times \{ 0, 5, 25, 30\} . Training
uses 250\times 250\times 250 = 1.5625\times 107 random samples and 150 epochs with batchsize
15625. For plotting, we choose hypersurface z = 1 and z = 1

2 (x+y) as test data. Each
Am, Bm is chosen to be 1-20-20-20-20-1. The relative L2 error is 3 \times 10 - 2. Results
are shown in Figure 4.8.

The number of data. Basically, the data set must be big enough that it can
reveal all the frequencies. That means we still need O(Nd) data. For each direction,
N samples must reveal the highest frequency of this direction. This means that, even
though DNN has the advantage that the number of unknowns p increases linearly
with respect to the number of dimensions, we still need an exponentially large data
set. In our 3D test, we use 250 samples to reveal frequency 32 on average; the total
number 1.56\times 107 is really a very big data set.

It is clear that the PhaseDNN approach cannot overcome curse of dimensionality.
If we have no prior knowledge on the frequency distribution, coupled phaseDNN can
be considered as building a mesh in Fourier space. Thus, in general, the number of
\omega m will increase exponentially. In our 3D test problem, there are 172 different \omega m,
which corresponds to 343 sub DNNs. The whole coupled phaseDNN T (x) has a width
over 6000. It is a shallow but very wide DNN. The number of parameters is large.
With a large number of data, the whole training takes about 8 hours.
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Fig. 4.8. Fitting result for H(x, y, z). Left panel: Fitting result on hypersurface z = 1. Right
panel: Fitting result on hypersurface z = 1

2
(x+ y).

4.2. Coupled PhaseDNN for solving PDEs with high frequency solu-
tions.

4.2.1. Helmholtz equation with constant wave numbers. We will solve
the constant coefficient case for (3.9), namely, c = 0 with zero boundary condition
u( - 1) = u(1) = 0 and the following high oscillatory forcing term

(4.5) f(x) = (\lambda 2  - \mu 2) sin(\mu x).

We set \omega m \in \{ 0, \lambda , \mu \} and each Am, Bm to be 1-40-40-40-40-1 DNN. The whole
T (x, \theta ) is trained with 10000 evenly spaced samples, 100 epochs, and batchsize 100.
We choose four special cases: \lambda = 3, \mu = 2; \lambda = 200, \mu = 2; \lambda = 2, \mu = 200; and
\lambda = 300, \mu = 200. The result is shown in Figure 4.9.

The training takes about 5 minutes with a maximum error of O(10 - 4). For
comparison, a single fully connected DNN with a scale similar to that of T (x) cannot
solve the equation at all when the frequency is high. The training results after 1500
epochs for \lambda = 3, \mu = 2 and \lambda = 200, \mu = 2 are shown in Figure 4.10, showing the
nonconvergence for the high frequency solution using a common fully connected DNN
(Figure 4.10(right)).

Next, we will consider the case of a more complicated solution beyond plane waves
with an exact solution u(x) = J0(\mu x) + 0.2 cos(\lambda x), where J0(x) is the 0-order Bessel
function. For this case, the forcing term in (3.9) is f(x) = \mu 2J \prime \prime 

0 (\mu x) + \lambda 2J0(\mu x) with
corresponding nonzero Dirichlet boundary conditions. We choose \omega j \in \{ 0, \lambda , \mu \} in a
coupled PhaseDNN, which gives accurate numerical results for \lambda = 200, \mu = 100 as
shown in Figure 4.11

4.2.2. Helmholtz equation with variable wave numbers. Next we solve
problem (3.9) with u( - 1) = u(1) = 0 and c > 0, and a variable wave number

(4.6) \omega (x) = sin(mx2),

where m > 0 is a constant. As there is no explicit exact solution to this equation,
the numerical solution obtained by a finite difference method with a fine mesh will be
used as the reference solution.

Differential equation formulation. We will first find the solution by solving the
Helmholtz differential equation with a coupled PhasedDNN.

We consider the parameters \lambda = 2, \mu = 200, c = 0.9\lambda 2 = 3.6, and m = 1 in
(3.9), which corresponds to a high frequency external wave source and a low wave
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Fig. 4.9. Numerical and exact solution of problem (3.9) with c = 0 and different \lambda and \mu . (a)
\lambda = 3, \mu = 2. (b) \lambda = 200, \mu = 2. (c) \lambda = 2, \mu = 200. (d) \lambda = 300, \mu = 200. The subplots in figures
(b), (c), and (d) are local detail plots for interval [0.3, 0.5].

Fig. 4.10. Nonconvergence of usual fully connected DNN for high frequency case: Numerical
and exact solutions of problem (3.9) with different \lambda and \mu . Left panel: \lambda = 3, \mu = 2. Right panel:
\lambda = 200, \mu = 2.

number with small background media inhomogeneity. In the coupled PhaseDNN, we
choose wm \in \{ 1, 2, 3, 4, 200\} . Other training parameters are set to be similar to those
in the constant coefficient case. The numerical results of coupled PhaseDNN and the
reference solution are shown in Figure 4.12, and the absolute error is on the order of
O(10 - 3).

Next, we choose \lambda = 100, \mu = 200, c = 0.1\lambda 2 = 1000, and m = 100, which corre-
sponds to a high frequency external wave source and a high wave number with larger
background media inhomogeneity. \omega m is chosen to be \{ 0, 90, 100, 110, 190, 200, 210\} .
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(a) (b)

Fig. 4.11. Numerical and exact solutions of problem (3.9) with exact solution J0(\mu x) +
0.2 cos(\lambda x). We choose \lambda = 200, \mu = 100. (a) Numerical and exact solutions of problem (3.9).
Blue line: Exact solution. Red dots: Numerical solution obtained by coupled PhaseDNN. The sub-
plot at the upper left is the local detail plot for interval [0.3, 0.5]. (b) Error of the numerical solution.
(Color available online.)

Fig. 4.12. Variable coefficient Helmholtz equations (3.9): Numerical and exact solutions using
coupled phaseDNN. \lambda = 2, \mu = 200, c = 3.6, and m = 1. Left panel: The numerical solution and
reference solution obtained by the finite difference method. The subplot at the lower right is the
local detail plot for interval [0.3, 0.5]. Right panel: The absolute value of the difference between the
numerical solution and the reference solution.

Fig. 4.13. Numerical and reference solutions to problem (3.9) using coupled PhaseDNN. \lambda =
100, \mu = 200, c = 0.1\lambda 2, and m = 100. Left panel: The numerical solution obtained by the least
squares based coupled PhaseDNN method and the reference solution. Right panel: The discrete
Fourier transform of the reference solution and the numerical solution. Blue line: DFT of reference
solution. Red line: DFT of PhaseDNN numerical solution. (Color available online.)
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The learning result is shown in Figure 4.13. One can see in the Fourier space for the
solution (the right panel of Figure 4.13) that coupled PhaseDNN with least squares
residual of the differential equation shows the unresolved error at the \pm \lambda frequency
while the \mu frequency converges well. This error is due to the behavior of the Fourier
symbol of the differential operator at the \lambda frequency and turns out to be difficult to
avoid. A theoretical analysis and a remedy for this phenomenon will be carried out
in a future paper.

Discontinuous coefficient---waves in layered media. We apply the PhaseDNN to
the wave propagation in a two layer medium. Let c = 1 in (3.9) and

\omega (x) =

\Biggl\{ 
 - 0.75\lambda 2 if x < 0,

0 if x \geqslant 0.

This equation models a wave in a two layer medium with an interface at x = 0 where
transmission conditions are imposed. On the left of the boundary, the wave number is
\lambda /2, and on the right it is \lambda . With Dirichlet boundary conditions u( - 1) = u(1) = 0,
the numerical result is shown in Figure 4.14. The parameters here are \lambda = 50, \mu = 200.
We choose \omega j \in \{ 0, \lambda /2, \lambda , \mu \} for the coupled PhaseDNN.

Fig. 4.14. Discontinuous coefficient Helmholtz equations (3.9): Numerical and reference so-
lutions to two layer media problem using coupled PhaseDNN. \lambda = 50, \mu = 200. Left panel: The
numerical solution obtained by the least squares based coupled PhaseDNN method and the reference
solution. Right panel: The difference between the numerical solution and the reference solution.

Integral equation formulation. Next, we will apply the integral equation approach
(3.15), (3.21) to this problem. The Green's function to u\prime \prime + \lambda 2u = \delta (x  - x\prime ) with
Dirichlet boundary condition u( - 1) = u(1) = 0 is given by

(4.7) G(x\prime , x) =

\left\{       
( - tan\lambda cos\lambda x

\prime 
+ sin\lambda x

\prime 
)(tan\lambda cos\lambda x+ sin\lambda x)

2\lambda tan\lambda 
, s \leq x,

(tan\lambda cos\lambda x
\prime 
+ sin\lambda x

\prime 
)( - tan\lambda cos\lambda x+ sin\lambda x)

2\lambda tan\lambda 
, s > x.

With the same parameter setting, the numerical solution obtained by integral
equation method is shown in Figure 4.15. The absolute error is on the order of
O(10 - 3). It is clear that coupled PhaseDNN with least squares residual of the inte-
gral equation (3.15), (3.21) gives a much more accurate solution than that with the
differential equation method and does not suffer from high wave number errors as in
Figure 4.13.
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Fig. 4.15. Numerical and reference solutions of problem (3.9) using coupled PhaseDNN and
the integral equation method. \lambda = 100, \mu = 200, c = 1000, and m = 100. Left panel: The numerical
solution with the reference solution. The subplot is the local detail plot for interval [0.3, 0.5]. Right
panel: The difference between the numerical solution and the reference solution.

4.2.3. Solving the elliptic equation. We can also solve the elliptic differen-
tial equation with high frequency external sources using the coupled PhaseDNN. We
consider a test problem

(4.8)

\Biggl\{ 
u\prime \prime  - \lambda 2u =  - (\lambda 2 + \mu 2) sin(\mu x),

u( - 1) = u(1) = 0,

which has an exact solution as

(4.9) u(x) =  - sin\mu 

sinh\lambda 
sinh(\lambda x) + sin(\mu x).

We choose \lambda = 3, \mu = 250 in (4.8). To solve this equation, we set a coupled
PhaseDNN with \omega m \in \{ 0, \mu \} . Each subnetwork is a fully connected DNN with 4
layers and 20 neurons in each layer. An accurate training result is shown in Figure
4.16.

Fig. 4.16. The numerical solution of (4.8) using coupled PhaseDNN. \lambda = 3, \mu = 250. Left
panel: Numerical solution (in red) and exact solution (in blue) of (4.8). The subplot is the local
detail plot for interval [0.3, 0.5]. Right panel: The error of numerical solution. (Color available
online.)
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4.2.4. Coupled PhaseDNN for solving the exterior wave scattering
problem. We consider problem (3.12) with \lambda = 100, \mu = 200, c = 0.1\lambda 2. The
variable wave coefficient is

(4.10) \omega (x) = \chi [ - 1,1](x) sin(1 - x2),

and the forcing term is

(4.11) f(x) = \chi [ - 1,1](x)(\lambda 
2  - \mu 2)(1 - x2) sin(\mu x).

We first solve the problem with radiation boundary condition (3.13), which is an
exact absorbing boundary condition in this case, by the coupled PhaseDNN for the
differential equation. The real part of the solution is shown in Figure 4.17. We set
each subnetwork in (3.4) to be a 1-20-20-20-20-1 DNN. The training data set is 3000
evenly spaced points in [ - 2, 2]. The training runs 3000 epochs with batchsize 600.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

R
ea

l e
rr(

x)

Fig. 4.17. The result of the exterior problem using coupled PhaseDNN for the differential
equation (3.12) after 3, 000 epochs training. Left panel: The real part of the numerical and reference
solutions to the exterior problem. Blue line: Reference solution. Red dots: Numerical solution. The
subplot is the local detail plot for interval [0.3, 0.5]. Right panel: The error of the real part of the
numerical solution. (Color available online.)

Again, this problem will be solved by the coupled PhaseDNN with the integral
equation (3.15), (3.21), and the result is given in Figure 4.18. The training parame-
ters are set similarly to those for the differential equation method. Training runs 300
epochs. Better performance of the coupled PhaseDNN for the integral equation ap-
proach (3.15), (3.21), requiring much fewer training epochs, is shown, compared with
the differential equation coupled PhaseDNN. Again, we can see that the PhaseDNN
with an integral equation formulation gives much better results than that with a
differential equation formulation.

4.3. PhaseDNN as a meshless solver for 2D Helmholtz equation in a
complex domain. Since the coupled PhaseDNNs based on least squares loss do not
require a mesh, this method is ideal for handling complex domains without expensive
meshing costs as in traditional finite element methods. We consider the following
2D Helmholtz equation in a domain \Omega of an equilateral triangle with a circle inside

removed. The bottom of the triangle is \{ (x, - 
\surd 
3
3 )|  - 1 \leqslant x \leqslant 1\} , the center of the

circle is located at the center of the triangle, and the radius is 1/
\surd 
12.

(4.12)

\Biggl\{ 
\Delta u+ \lambda 2u = f(x, y) if (x, y) \in \Omega ,

u(x, y) = g(x, y) if (x, y) \in \partial \Omega .

D
ow

nl
oa

de
d 

11
/2

4/
20

 to
 1

29
.1

19
.6

7.
75

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PhaseDNN FOR HIGH FREQUENCY PROBLEMS A3307
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Fig. 4.18. The result of the exterior problem using the integral equation method after 300
epochs of training. Left panel: The real part of the numerical and reference solutions to the exterior
problem. Blue line: Reference solution. Red dots: Numerical solution. The subplot is the local detail
plot for interval [0.3, 0.5]. Right panel: The error of the real part of the numerical solution. (Color
available online.)

The exact solution is chosen as u(x, y) = exp(sin(\mu 1x) sin(\mu 2y)). f(x, y), g(x, y) in
(4.12) is chosen according to the differential equation. In the numerical test, the
parameters are \lambda = 100, \mu 1 = 30, \mu 2 = 50. A coupled PhaseDNN with \omega j \in 
\{ 0, \lambda , \mu 1, \mu 2, 2\mu 1, 2\mu 2\} \times \{ 0, \lambda , \mu 1, \mu 2, 2\mu 1, 2\mu 2\} gives an accurate numerical solution
as shown in Figure 4.19

Fig. 4.19. The numerical solution and error of 2D Helmholtz equation (4.12) in a complicated
domain. \lambda = 100, \mu 1 = 30, \mu 2 = 50. Left panel: The color map of the numerical solution. Right
panel: The absolute error of the numerical solution.

5. Conclusion and future work. In this paper, we have proposed a phase
shift DNN to learn high frequency information by using frequency shifts to convert
the high frequency learning to a low frequency one. As shown by various numerical
tests, this approach increases dramatically the capability of the DNN as a viable
tool for approximating high frequency functions and solutions of high frequency wave
differential and integral equations in inhomogeneous media as a meshless numerical
method for PDEs and integral equations.

The optimization problem with the training of DNNs is complex and not well
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understood during the search of parameter spaces of the DNNs for a local or global
minima. The specific structure of the proposed PhaseDNN seems to provide a fa-
vorable parameter structure (inspired by the mathematical or physical properties of
the solutions), within which the optimization can be carried much more efficiently
than the structures of the common fully connected DNNs can allow. Moreover, our
numerical results also show that the PhaseDNN with integral equation formulation
of the high frequency wave problems gives better accuracy than that with differential
equations. All these issues will be the subject of a future theoretical analysis of the
PhaseDNN.

For our future studies, we will explore the generalization capability of the DNNs
to predict high frequency wave solutions for general material property parameters
once the DNNs are trained for some selected parameters and, furthermore, to use this
generalization feature to study high dimensional random material parameter spaces
related to high frequency wave propagations and scattering in terms of the random
media's correlations and other stochastic properties.

Appendix A. In this appendix, we will show that under a condition that the
weight of the input layer for each sub DNN Tm(x) is small enough, coupled PhaseDNN
is approximately equivalent to parallel PhaseDNN in approximating a function during
training.

For simplicity, we only consider the 1D case d = 1 and assume | \omega i - \omega j | = | i - j| \Delta k
for all 1 \leqslant i, j \leqslant M and some \Delta k > 0.

Generally, the Fourier transform of a target function f(x) and DNN function T (x)
may not exist. However, we are only interested in the target function in a compact
domain \Omega \subset \BbbR d. To avoid this technical problem in analysis, we choose a smooth
mollifier function \kappa (x) that satisfies \kappa (x) = 1 for x \in \Omega and \kappa (x) = 0 for x \in \BbbR d\setminus \Omega \prime ,
where \Omega \subset \Omega \prime \subset \BbbR d. We assume f(x)\kappa (x) \in Hr and T (x)\kappa (x) \in Hr for some
r \geq 1. This assumption ensures the existence of a Fourier transform for f(x)\kappa (x) and
T (x)\kappa (x). For simplicity purposes, in the following text, we still use f(x) and T (x)
to indicate f(x)\kappa (x) and T (x)\kappa (x).

Although in practice we usually use the real form of coupled phase DNN (3.4),
in analysis we prefer the complex form (3.1). Recall that Tm(x) in (3.1) is complex-
valued and each DNN Tm in (3.1) can be written as Tm(x) = um(\eta wmx+ bm), where
\eta > 0 is a small parameter, and um(t) are (complex-valued) DNN functions except
the input layer. Again, in general, um(x) is not an \BbbL 2 function; however, as we are
not interested in its behavior at infinity, we can multiply it by a smooth mollifier
function \kappa (x) s.t. \kappa (x) = 1 in a compact domain \Omega \subset \BbbR and \kappa (x) = 0 in \BbbR \setminus \Omega \prime .
Here, the compact domain \Omega \prime satisfies \Omega \subset \Omega \prime \subset \BbbR . We assume the new function
u(x)\kappa (x) \in Hr(\BbbR ), r \geq 1. For simplicity, in the following text, u(x) stands for the
Hr function u(x)\kappa (x). Without losing generality, we can assume wm \not = 0 for all
1 \leqslant m \leqslant M .

We know that um(x, \theta ) \in L2(\BbbR ), where \theta = \theta (t); t stands for the training process.
It is reasonable to assume the following.

Assumption 1. During the training t \in [0, T ], there is a constant H > 0 s.t.

H - 1 < inf
t\in [0,T ]

\| um\| 2 \leqslant sup
t\in [0,T ]

\| um\| 2 < H

holds for any 1 \leqslant m \leqslant M .

This assumption is reasonable because if \| u\| 2 has no upper bound, this means
the training blows up; while if it has no positive lower bound, this means this term
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vanishes. The constant is uniform because M is finite. Furthermore, we can assume
the following.

Assumption 2. For any \epsilon > 0, there is constant A > 0 s.t.\int +\infty 

A

| \^um| 2 dk < \epsilon , and

\int  - A

 - \infty 
| \^um| 2 dk < \epsilon 

holds for any 1 \leqslant m \leqslant M and t \in [0, T ].

It is straightforward to show that the Fourier transform of (3.1) yields

(A.1) \^T (k) =

M\sum 
m=1

\^Tm(k  - \omega m) =

M\sum 
m=1

1

\eta | wm| 
exp

\biggl( 
 - ibm(k  - \omega m)

\eta wm

\biggr) 
\^um

\biggl( 
k  - \omega m

\eta wm

\biggr) 
and

(A.2) L(\theta ) =

\int \infty 

 - \infty 
| \^f  - \^T | 2 dk =

\int \infty 

 - \infty 
| \^f | 2 dk  - 2Re

\int \infty 

 - \infty 
\^T
\=\^f dk +

\int \infty 

 - \infty 
| \^T | 2 dk.

In (A.2),
\int \infty 
 - \infty | \^T | 

2 dk =
\int \infty 
 - \infty 

\sum M
m,n=1

\^Tm(k - \omega m)
\=\^Tn(k - \omega n) dk, we will show that

under Assumptions 1 and 2, when \eta \rightarrow 0, for all m = 1, 2, . . . ,M and n \not = m,

(A.3)

\int \infty 
 - \infty | Tm(k  - \omega m)| | Tn(k  - \omega n)| dk\int \infty 

 - \infty | Tm(k  - \omega m)| 2 dk
\rightarrow 0.

To this end, we first notice that

(A.4)

\int \infty 

 - \infty 
| Tm(k  - \omega m)| 2 dk =

1

\eta 2w2
m

\int \infty 

 - \infty 

\bigm| \bigm| \bigm| \bigm| \^um\biggl( k  - \omega m

\eta wm

\biggr) \bigm| \bigm| \bigm| \bigm| 2 dk
=

1

\eta | wm| 

\int \infty 

 - \infty 
| \^um(t)| 2 dt =

\| um\| 22
\eta | wm| 

>
1

\eta H | wm| 
.

At the same time,
(A.5)\int \infty 

 - \infty 
| Tm(k  - \omega m)| | Tn(k  - \omega n)| dk =

1

\eta 2 | wm| | wn| 

\int \infty 

 - \infty 

\bigm| \bigm| \bigm| \bigm| \^um\biggl( k  - \omega m

\eta wm

\biggr) \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \^un\biggl( k  - \omega n

\eta wn

\biggr) \bigm| \bigm| \bigm| \bigm| dk
=

1

\eta | wn| 

\int \infty 

 - \infty 
| \^um(t)| 

\bigm| \bigm| \bigm| \bigm| \^un\biggl( wm

wn
t+

\omega m  - \omega n

\eta wn

\biggr) \bigm| \bigm| \bigm| \bigm| dt = 1

\eta | wn| 

\Biggl( \int  - A

 - \infty 
+

\int A

 - A

+

\int \infty 

A

\Biggr) 
.

Applying the Cauchy--Schwarz inequality, we can estimate the first integral by
(A.6)\int  - A

 - \infty 
| \^um(t)| 

\bigm| \bigm| \bigm| \bigm| \^un\biggl( wm

wn
t+

\omega m  - \omega n

\eta wn

\biggr) \bigm| \bigm| \bigm| \bigm| dt
\leqslant 

\Biggl( \int  - A

 - \infty 
| \^um(t)| 2 dt

\Biggr) 1/2\Biggl( \int  - A

 - \infty 

\bigm| \bigm| \bigm| \bigm| \^un\biggl( wm

wn
t+

\omega m  - \omega n

\eta wn

\biggr) \bigm| \bigm| \bigm| \bigm| 2 dt
\Biggr) 1/2

\leqslant 

\sqrt{} 
\epsilon 

\bigm| \bigm| \bigm| \bigm| wn

wm

\bigm| \bigm| \bigm| \bigm| \| \^un\| 2 < \epsilon 

\sqrt{} \bigm| \bigm| \bigm| \bigm| wn

wm

\bigm| \bigm| \bigm| \bigm| H.
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Similarly, we can also estimate

(A.7)

\int \infty 

A

| \^um(t)| 
\bigm| \bigm| \bigm| \bigm| \^un\biggl( wm

wn
t+

\omega m  - \omega n

\eta wn

\biggr) \bigm| \bigm| \bigm| \bigm| dt \leqslant \epsilon 

\sqrt{} \bigm| \bigm| \bigm| \bigm| wn

wm

\bigm| \bigm| \bigm| \bigm| H.
For the second integral, we have

(A.8)

\int A

 - A

| \^um(t)| 
\bigm| \bigm| \bigm| \bigm| \^un\biggl( wm

wn
t+

\omega m  - \omega n

\eta wn

\biggr) \bigm| \bigm| \bigm| \bigm| dt
\leqslant 

\Biggl( \int A

 - A

| \^um(t)| 2 dt

\Biggr) 1/2\Biggl( \int A

 - A

\bigm| \bigm| \bigm| \bigm| \^un\biggl( wm

wn
t+

\omega m  - \omega n

\eta wn

\biggr) \bigm| \bigm| \bigm| \bigm| 2 dt
\Biggr) 1/2

\leqslant 

\sqrt{} \bigm| \bigm| \bigm| \bigm| wn

wm

\bigm| \bigm| \bigm| \bigm| \| um\| 2
\Biggl( \int | \omega m - \omega n| 

\eta | wn| +| wm
wn
| A

| \omega m - \omega n| 
\eta | wn|  - | wm

wn
| A
| \^un(t)| 2 dt

\Biggr) 1/2

.

Since n \not = m, \omega m  - \omega n \not = 0. When \eta < | \omega m - \omega n| 
| wm| +| wn| ,\int | \omega m - \omega n| 

\eta | wn| +| wm
wn
| A

| \omega m - \omega n| 
\eta | wn|  - | wm

wn
| A
| \^un(t)| 2 dt <

\int \infty 

A

| \^un(t)| 2 dt < \epsilon .

To choose a uniform \eta , it is sufficient to set

\eta < min
m \not =n

| \omega m  - \omega n| 
| wm| + | wn| 

=
\Delta k

2maxm | wm| 
> 0.

Combining (A.6), (A.7), (A.8), and (A.4), we can conclude that\int \infty 
 - \infty | Tm(k  - \omega m)| | Tn(k  - \omega n)| dk\int \infty 

 - \infty | Tm(k  - \omega m)| 2 dk
\rightarrow 0 (\eta \rightarrow 0)

holds for all 1 \leqslant m \not = n \leqslant M . Thus, when \eta is small enough, we can estimate

(A.9)

\int \infty 

 - \infty 
| \^T | 2 dk =

\int \infty 

 - \infty 

M\sum 
m,n=1

\^Tm(k  - \omega m)
\=\^Tn(k  - \omega n) dk

\approx 
M\sum 

m=1

\int \infty 

 - \infty 

\bigm| \bigm| \bigm| \^Tm(k  - \omega m)
\bigm| \bigm| \bigm| 2 dk.

We can do decomposition of \^f(k) =
\sum M

m=1
\^f(k)\chi m(k) =

\sum M
m=1

\^fm, where \chi m(k)

is the indicator function of interval [\omega m  - \Delta k/2, \omega m +\Delta k/2]. It is easy to see | \^f | 2 =\sum M
m=1 | \^fm| 2 and \int \infty 

 - \infty 
\^T
\=\^f dk =

M\sum 
m,n=1

\int \infty 

 - \infty 
\^Tm(k  - \omega m) \^fn(k) dk.

With the same argument we used in proving (A.3), we can also deduce that if \^fn \not = 0,

(A.10)

\int \infty 
 - \infty 

\bigm| \bigm| \bigm| \^Tm(k  - \omega m)
\bigm| \bigm| \bigm| | \^fn| dk\int \infty 

 - \infty 

\bigm| \bigm| \bigm| \^Tn(k  - \omega n)
\bigm| \bigm| \bigm| | \^fn| dk \rightarrow 0
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for all m = 1, 2, . . . ,M and n \not = m. Thus

(A.11)

\int \infty 

 - \infty 
\^T
\=\^f dk \approx 

M\sum 
m=1

\int \infty 

 - \infty 
\^Tm(k  - \omega m)

\=\^fm.

Substituting approximations (A.9) and (A.11) into loss function (A.2), a good
approximation of loss function, when \eta is small, is

(A.12)

L(\theta ) \approx 
\int \infty 

 - \infty 

M\sum 
m=1

\bigm| \bigm| \bigm| \^fm(k)
\bigm| \bigm| \bigm| 2  - 2Re \^Tm(k  - \omega m)

\=\^fm +
\bigm| \bigm| \bigm| \^Tm(k  - \omega m)

\bigm| \bigm| \bigm| 2 dk

=

M\sum 
m=1

\int \infty 

 - \infty 

\bigm| \bigm| \bigm| \^fm(k) - \^Tm(k  - \omega m)
\bigm| \bigm| \bigm| 2 dk =

M\sum 
m=1

\int \infty 

 - \infty 

\bigm| \bigm| \bigm| \scrF  - 1[ \^fm(k + \omega m)] - Tm(x)
\bigm| \bigm| \bigm| 2 dx

=

M\sum 
m=1

\int \infty 

 - \infty 

\bigm| \bigm| \bigm| e - i\omega mx\scrF  - 1[ \^fm](x) - Tm(x)
\bigm| \bigm| \bigm| 2 dx.

Here, e - i\omega mx\scrF  - 1[ \^fm](x) is exactly the f shiftm (x) in (2.12), whose support in fre-
quency space is [ - \Delta k/2,\Delta k/2]. Hence, the total loss function L(\theta ) is approximately
the sum of M individual DNNs Tm that learn f shiftm (x) separately.
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