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Abstract. In this paper, we study a highly scalable communication-free parallel do-
main boundary decomposition algorithm for the Laplace equation based on a hy-
brid method combining boundary integral equations and walk-on-spheres (BIE-WOS)
method, which provides a numerical approximation of the Dirichlet-to-Neumann
(DtN) mapping for the Laplace equation. The BIE-WOS is a local method on the
boundary of the domain and does not require a structured mesh, and only needs a
covering of the domain boundary by patches and a local mesh for each patch for a lo-
cal BIE. A new version of the BIE-WOS method with second kind integral equations is
introduced for better error controls. The effect of errors from the Feynman-Kac formula
based path integral WOS method on the overall accuracy of the BIE-WOS method is
analyzed for the BIEs, especially in the calculation of the right hand sides of the BIEs.
For the special case of flat patches, it is shown that the second kind integral equation
of BIE-WOS method can be simplified where the local BIE solutions can be given in
closed forms. A key advantage of the parallel BIE-WOS method is the absence of com-
munications during the computation of the DtN mapping on individual patches of
the boundary, resulting in a complete independent computation using a large number
of cluster nodes. In addition, the BIE-WOS has an intrinsic capability of fault toler-
ance for exascale computations. The nearly linear scalability of the parallel BIE-WOS
method on a large-scale cluster with 6400 CPU cores is verified for computing the DtN
mapping of exterior Laplace problems with Dirichlet data for several domains.
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1 Introduction

The prevalence of many-core teraflops computing platforms makes scalability the princi-
pal concerns for developing new numerical algorithms for solving Laplace and Helmholtz
equations, encountered in many engineering and scientific problems. Capacitance ex-
tractions of very large scale integral (VLSI) circuits in a full-chip, for example, solve
the Laplace equation with Dirichlet boundary conditions in an extremely large scale.
Boundary element methods (BEMs) or finite element methods (FEMs), widely used in
capacitance extractions of VLSI circuits [2–7], are highly accurate and versatile, how-
ever, belonging to the deterministic and global methods, which need expensive surface
or volume mesh generations of whole domains. Moreover, high scalability of BEMs and
FEMs on millions of CPU cores is challenging in storing and solving large linear systems,
prompting many research works [8, 9].

Random methods, based on Feynman-Kac probabilistic formula for the solutions,
however, can offer local solutions of the Laplace equation [1,10–12] as well as natural par-
allelism. Potentials or charge densities are expressed as a weighted average of boundary
Dirichlet data visited by multiple Brownian motion paths, sampled efficiently with the
walk-on-spheres (WOS) method [23]. In fact, the industrial golden capacitance extraction
tool QuickCap NX [13] is a practical example of such random methods [14, 15].

However, a naive application of the Feynman-Kac formula for the Dirichlet data is
not applicable for an efficient calculation of the Neumann data on the boundary, as the
Dirichlet boundary will absorb quickly the random particles starting near the boundary.
To overcome such a drawback, we combined a deterministic boundary integral equation
(BIE) and the probabilistic Feynman-Kac formula based walk-on-spheres (WOS) method,
termed BIE-WOS [1], which allows us to compute the Neumann data over local patches
of the domain boundary efficiently, while still maintaining the merit of natural paral-
lelism of random methods. The BIE-WOS superimposes a hemisphere intersected with
the boundary of interest and sets a local BIE over the subdomain enclosed by a part of
the hemisphere and the intersected boundary. Using a homogeneous Green’s function of
a sphere results in the BIE involving only Dirichlet data over the hemisphere, which can
be calculated by WOS algorithms. With the given Dirichlet data and unknown Neumann
data on the patch surface, collocation methods can be employed to solve the integral
equations on the aforementioned patch surface to yield the required Neumann data.

In this paper, we will present a new version of BIE-WOS with a well-conditioned in-
tegral equation of second kind (IESK), which has a much better error control related to
the computation of the right hand side by the Feynman-Kac based WOS method. With
the new IESK BIE-WOS, a highly scalable communication-free boundary domain decom-
position BIE-WOS scheme is developed for the Laplace equation with Dirichlet data. The
main highlights of this paper are summarized as follows. (1) First, we exam the original
BIE-WOS method [1], which uses the integral equation of first kind (IEFK), even with
its well-known ill-conditioned issue in the resulting linear systems, still much used in
practice due to its simplicity. In fact, the first kind integral equation is still widely used in
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capacitance extractions of VLSI circuits with high accuracy (with a maximal relative error
10−3−10−4) [16,17]. However, we found some serious accuracy degeneration in the BIE-
WOS method with the IEFK. The analysis will show that such an accuracy degeneration
is not only attributed to the well-known ill-conditioning of the IEFK, but mainly to an am-
plification of errors, inevitably introduced by random methods of the BIE-WOS method,
while computing the right hand side of the IEFK. It turns out that to avoid this error
amplification, the proposed BIE-WOS method with the IESK is able to reduce the ampli-
fication of the random WOS-related errors in the calculation of the right hand side of the
IESK, while still possessing a better conditioning of the IESK linear system. It is shown
that BIE-WOS with the IESK is the preferred method for large parallel computations,
even with the additional complexity of treating the hyper-singularity integrals involved.
(2) Moreover, for the special case of a flat boundary patch, the BIE-WOS method with the
IESK can be simplified with integrals evaluated in closed forms and can give the Neu-
mann data on the flat patch directly, while the original BIE-WOS method in [1] can only
give the Neumann data at a single point on a flat boundary. Meanwhile, we will show
that the IESK with homogeneous Green’s function of a sphere is equal to a natural BEM
with a homogeneous three images Green’s function of a hemisphere. Finally, we present
the nearly linear scalability of the resulting parallel BIE-WOS on high-performance clus-
ters with over 6400 CPU cores, for a maximal relative error 3.15% (acceptable for many
real-world engineering applications).

The rest of the paper is organized as follows. The original BIE-WOS method is first
briefly reviewed in Section 2. In Section 3, the new version of the BIE-WOS method with
IESK is introduced while the integral kernels of both kind integral equations are given.
Then, the special case of flat patches is discussed in detail. In Section 4, accuracy issues of
the IEFK and IESK are analyzed for the case of flat patches. Numerical results are given
in Section 5 while conclusions and discussions are given in Section 6.

2 Review of the BIE-WOS method

For an exterior domain Ω⊂R3, the solution of the Laplace equation

{ −∆u= f , x∈Ω,

u|∂Ω=φ,
(2.1)

with f = 0, defines a mapping from the Dirichlet data u to the Neumann data ∂u
∂n on the

boundary ∂Ω, i.e., a DtN mapping as follows,

DtN: u|∂Ω→ ∂u

∂n

∣∣∣∣
∂Ω

, (2.2)

where n is the outward normal direction of boundary ∂Ω.



C. Yan, W. Cai and X. Zeng / Commun. Comput. Phys., 29 (2021), pp. 1446-1468 1449

Using the Green’s second identity, the Neumann data at point x in the domain Ω is
given as the solution of the following boundary integral equation of the first kind [30]

u(x)=
∫

∂Ω
G(x,y)

∂u(y)

∂ny
dsy−

∫

∂Ω

∂G(x,y)

∂ny
u(y)dsy, x∈Ω, (2.3)

where ny is the outward normal direction of boundary point y, and G(x,y) is the funda-
mental solution of Laplace operator in the free three-dimension space

G(x,y)=
1

4π

1

|x−y| . (2.4)

In order to solve (2.3), traditional BEMs discretize the whole boundary ∂Ω into small
panels, construct a large dense linear system with collocation Nystrom methods, and
then solve the resulting linear system for a numerical solution. The traditional BEMs
are a global method as it is not possible to obtain just part of the Neumann data on the
boundary as the BIE-WOS method proposed in [1].

The BIE-WOS method superimposes an imaginary hemisphere upon a relevant por-
tion of the boundary ∂Ω, where a patch S is the intersection of ∂Ω and the hemisphere,
the hemispherical surface Γ is the outside part of the hemispherical surface exterior to
domain Ω, and the shaded region bounded by S∪Γ is denoted as ΩS.

Let G1(x,y) be the Green’s function of a sphere with a homogeneous boundary con-
dition on the whole sphere, which can be obtained easily using a Kelvin image, i.e.,

G1(x,y)=
1

4π


 1

|x−y| −
a|y|∣∣∣a2y−|y|2 x

∣∣∣


, (2.5)

where a is the radius of the hemisphere, the subscript 1 indicates one image charge is
used in its definition, i.e. the term 1

|x−y| attributes to the source point inside the sphere,

and the second term
−a|y|

|a2y−|y|2x| attributes to the image source outside the sphere.

Applying (2.3) to ΩS, one can obtain for x∈ΩS

u(x)=−
∫

Γ

∂G1(x,y)

∂ny
u(y)dsy+

∫

S

[
−∂G1(x,y)

∂ny
u(y)+G1(x,y)

∂u(y)

∂ny

]
dsy, (2.6)

where
∫

Γ
G1(x,y) ∂u(y)

∂ny
dsy =0, as G1 vanishes on Γ by its homogeneous condition.

BIE (2.6) requires the solution value u(y)|Γ, which will be calculated by the Feynman-
Kac formula [19,20] and the WOS methods [18,21–25]. The Feynman-Kac formula gives a
probabilistic solution u(x) in (2.1) over a domain Ω with the Dirichlet boundary condition
φ(x) as

u(x)=Ex (φ(XτΩ
))+Ex

[∫ τΩ

0
f (Xt)dt

]
, (2.7)
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where the expectation is taken over all sampling paths Xt=0(ω) = x and τΩ is the first
hit time (or exit time) of the domain Ω. In this paper, we consider only for the Laplace
equations ( f ≡0).

On the patch S, both u(y) and
∂u(y)

∂n are involved, where u(y) is given by the Dirichlet

condition and
∂u(y)

∂n is the unknown Neumann data to be calculated. Let x approaches

the boundary S, the Neumann data
∂u(y)

∂n over S can be solved with the following integral
equation

K

[
∂u

∂n

]
(x)=b(x), x∈S, (2.8)

where

K

[
∂u

∂n

]
≡

∫

S
G1(x,y)

∂u(y)

∂ny
dsy, (2.9)

b(x)≡
[

u(x)

2
+p.v.

∫

S

∂G1(x,y)

∂ny
u(y)dsy

]
+
∫

Γ

∂G1(x,y)

∂ny
u(y)dsy, (2.10)

and here, p.v. stands for the Cauchy principal value of the double layer potential [26].

The integral equation (2.8), (2.9) and (2.10) is the first kind and ill-conditioned [17]
with potential numerical difficulties. Differentiating on both sides of (2.6), one can obtain
a well-conditioned second kind integral equation [27] as

∂

∂nx
u(x)=−

∫

Γ

∂2G1(x,y)

∂ny∂nx
u(y)dsy

+
∫

S

[
−∂2G1(x,y)

∂ny∂nx
u(y)+

∂G1(x,y)

∂nx

∂u(y)

∂ny

]
dsy, x∈ΩS. (2.11)

Now, let x approaches the boundary S, one obtains

(
1

2
I−D

)[
∂u

∂n

]
(x)=b(x), x∈S, (2.12)

where

D

[
∂u

∂n

]
(x)≡p.v.

∫

S

∂G1(x,y)

∂nx

∂u(y)

∂ny
dsy, (2.13)

b(x)≡−p.f.
∫

S

∂2G1(x,y)

∂ny∂nx
u(y)dsy−

∫

Γ

∂2G1(x,y)

∂ny∂nx
u(y)dsy, x∈S, (2.14)

where p.f. is the Hadamard finite part limit for the hyper-singular integral, which can be
handled by various regularization techniques [26, 29].
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3 BIE-WOS method with first and second kind integral

equations

3.1 The integral kernels of the first and second integral equations in BIE-WOS

The BIE-WOS method can be formed with the first or second kind integral equations.
With the first kind integral equation as (2.8), (2.9) and (2.10), the homogeneous Green’s
function is (2.5) and the first-order partial derivative of the Green’s function in (2.10) is

∂G1(x,y)

∂ny
=

1

4π





|x|2−a2

ar3 , y∈Γ,

− r·ny

r3 + a(|x|2y−a2x)
T3 ·ny, y∈S,

(3.1)

where r=x−y, r= |x−y|, T=
√

a4−2a2(x·y)+|x|2|y|2, and a is the radius of the hemi-
sphere.

If x and y coincide, (2.5) becomes weakly singular while (3.1) becomes strongly sin-
gular. Fortunately, both singularities can be easily regularized by polar coordinate trans-
form [26, 28].

If the BIE-WOS method is formed with the second kind integral equation as (2.12),
(2.13) and (2.14), the first-order partial derivative of the Green’s function in (2.13) is

∂G1(x,y)

∂nx
=

1

4π
[GI+GI I ]·nx,

GI =
r

r3
, GI I =

a(|y|2x−a2y)

T3
, (3.2)

where x={x1,x2,x3}, y={y1,y2,y3}, x·y=x1y1+x2y2+x3y3, T=
√

a4−2a2(x·y)+|x|2|y|2,

r= |r|, r=x−y.

If x and y coincide, (3.2) is a strongly singular integral for the first term r
r3 , and the

second term
a(|x|2y−a2x)

T3 in (3.2) has no singularity, because T is always larger than zero.
However, it becomes a nearly strong singularity when point x approaches to the hemi-
sphere surface.

Meanwhile, the second-order partial derivative of the Green’s function in (2.14) is

∂2G1(x,y)

∂ny∂nx
=

{
nx ·H1, y∈Γ,

ny ·[GI+GI I ]·nx, y∈S,
(3.3)
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where the Einstein’s notation is introduced, and

H1=− 1

4π

1

ar5

[
3y◦(a2−|x|2+x◦x)+x◦(−5a2+4x·y+|x|2−3x◦y)

]
, (3.4)

GI =
1

r3

(
δij−3

rirj

r2

)
, (3.5)

GI I =





− a(a2+x◦y)
T3 + 3a3(|y|2x◦x−2(x·y)x◦y+|x|2y◦y)

T5 , i= j,

2ayixj

T3 − 3a
T5

[
yixja

4−a2(xixj|y|2+yiyj|x|2)+yjxi|x|2|y|2
]

, i 6= j,
(3.6)

where δij is a 3×3 identity matrix, and ◦ denotes the Hadamard product,
namely, x◦y = {x1y1,x2y2,x3y3}, and the inner product x·y = x1y1+x2y2+x3y3, T =√

a4−2a2(x·y)+|x|2|y|2.

If y∈Γ, (3.4) has no singularity because x is on the patch S, and therefore r is always
larger than zero. However, it will be nearly singular when x is near the intersection edge
Γ∩S.

If y∈ S, GI is hyper-singular when x and y coincide, which can be regularized by the
methods in [29]. At these situations, GI I has no singularity as T is always larger than
zero. However, GI I becomes nearly singular when x is near to the intersection edge Γ∩S.
Note that both GI and GI I are 3x3 matrices. When y∈ S, GI is a symmetric matrix, while
GI I is not.

3.2 Simplification for flat surface patches on the boundary

For a small patch S on smooth part of the boundary, the patch S can be approximated
by a flat one without sacrificing much of the overall accuracy. Then, when both x and y

are on S, we have x·nx = y·nx = r·nx = 0, y3 = 0 and ny =nx = {0,0,−1} under the local
coordinate on patch S. Therefore, all integral kernels of the first and second kind in the
BIE-WOS algorithm can be simplified.

Applying (3.1) into the first kind integral equation of the BIE-WOS (2.8), for y∈S, then

p.v.
∫

S

∂G1(x,y)

∂ny
u(y)dsy =p.v.

∫

S

[
− r·ny

r3
+

a(|x|2y−a2x)

T3
·ny

]
u(y)dsy =0,

where the first term − r·ny

r3 is a strong singular integral, and its Cauchy principal is zero
as the jump term 1/2 on smooth boundary has already been taken out in (2.8), and the

second term
a(|x|2y−a2x)

T3 ·ny is zero as it has no singularity.

Therefore, the first kind integral equation of the BIE-WOS (2.8) can be simplified as

∫

S
G1(x,y)

∂u(y)

∂ny
dsy =

u(x)

2
+
∫

Γ

∂G1(x,y)

∂ny
u(y)dsy, x∈S. (3.7)
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All steps for constructing the linear system, the discretization of the flat patch in the
scheme of BIE are still required.

The second kind integral equation of the BIE-WOS (2.12) can be simplified more. Con-
sidering the fact that when both x and y are on S,

D

[
∂u

∂n

]
(x)=p.v.

∫

S

∂G1(x,y)

∂nx

∂u(y)

∂ny
dsy

=p.v.
∫

S

1

4π
[GI+GI I ]·nx

∂u(y)

∂ny
dsy =0, (3.8)

where again the Cauchy principal integral of the first term GI ·nx =
r
r3 ·nx is zero as the

jump term 1/2 on smooth boundary has already been taken out in (2.12), and the second

term GI I ·nx =
a(y2x−a2y)

T3 ·nx is zero as it has no singularity.

Plugging (3.8) into (2.12), we obtain

[
∂u

∂n

]
(x)=−2

[∫

Γ

∂2G1(x,y)

∂ny∂nx
u(y)dsy+p.f.

∫

S

∂2G1(x,y)

∂ny∂nx
u(y)dsy

]
, x∈S, (3.9)

where

∂2G1(x,y)

∂ny∂nx
=





1
4π

3y3[a2−ρx
2]

a[a2+ρx
2−2(x1y1+x2y2)]

5/2 , y∈Γ,

1
4π

[
1
r3 − a3

(ρyrI)
3

]
, y∈S,

(3.10)

with x={x1,x2,x3}, y={y1,y2,y3}, yI = ky, k= a2

ρ2
y
, r= |y−x|, rI = |yI−x|, ρx =

√
x1

2+x2
2,

ρy =
√

y1
2+y2

2.

Based on (3.9) and (3.10), the second kind integral equation of BIE-WOS is simplified
as an explicit integral, which can be calculated directly by the numerical quadrature on
Γ and S. The potentials u(y) on S are given by the Dirichlet boundary condition, and
u(y) on Γ is calculated by the WOS algorithm. All the discretization of the flat patch,
numerical implementations of the BIE, solutions of the linear system will be unnecessary.

When y∈Γ, (3.9) and (3.10) have no singularity because the denominator is always
larger than zero. However, (3.10) becomes nearly hyper-singular, when x approaches the

edge Γ∩S. When y∈S, (3.10) includes two parts 1
r3 and a3

(ρyrI )
3 . The first part 1

r3 has an

hyper-singularity when x and y coincide, but it can be regularized by methods in [26,29].

The second part a3

(ρyrI)
3 has no singularity, but again has nearly hyper-singularity when x

approaches the edge Γ∩S.

Remark 3.1 (Connection with Indirect BEM). In fact, we can deduce the same results of
(3.9) and (3.10) from the indirect BEM [30]. For a hemisphere Γ, the homogeneous Green’s
function G1(x,y) in (3.9) and (3.10) is the Green’s function with one image charge.
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For a half-ball domain Ωhb, i.e. ∂Ωhb = Γ∪S, the Neumann solution can be obtained
directly by the indirect BEM as

∂u(x)

∂nx
=−

∫

∂Ω

∂2G3(x,y)

∂ny∂nx
u(y)dsy, (3.11)

where the homogeneous Green’s function of a half-ball G3(x,y) is the three images
Green’s function, i.e.,

G3(x,y)=
1

4π
[g0(x,y)+g1(x,y)+g2(x,y)+g3(x,y)], (3.12)

where x = {x1,x2,x3}, y = {y1,y2,y3}, γ = a2/|x|2, three images are defined as x(1) =

γx, x(2) = {x1,x2,−x3}, x(3) = {x
(1)
1 ,x

(1)
2 ,−x

(1)
3 }, and g0(x,y) = 1/r(y,x), g1(x,y) =

−a/|x|/r(y,x(1)), g2(x,y)=−1/r(y,x(2)), g3(x,y)= a/|x|/r(y,x(3) ), r(x,y)= |x−y|.
We can show that

∂2G3(x,y)

∂nx∂ny
=2

∂2G1(x,y)

∂nx∂ny
. (3.13)

Therefore, (3.9) is the same as (3.11) indeed.

Remark 3.2. (1) The key advantage of the second kind of integral equation in (3.9) and
(3.10) for a flat patch is that the Neumann data is given directly by an explicit formula,
and only the WOS method for potentials on the hemisphere and numerical quadratures
are needed. Therefore, compared with the method on a curve patch, there is no discretiza-
tion of the patch and no coding for the BEM, thus the implementation is much simplified.
(2) The flat patch S is only a local assumption where the fictitious hemisphere intersects
with the boundary ∂Ω. Therefore, such constraint can be easily satisfied or approximated
for many engineering applications, where the surface is not too rough. (3) In the origi-

nal BIE-WOS method [1], the integral Σ1=−
∫

Γ

∂2G(x,y)
∂nx∂ny

u(y)dsy =−
∫

Γ
( 3

2π
cosθ

a3 )u(y)dsy of

(3.13) and the integral Σ2=−p.f.
∫

Sa

∂2G(x,y)
∂nx∂ny

u(y)dsy = −p.f.
∫

Sa

1
2π (

1
ρ3 − 1

a3 )u(y)dsy of (5.1)

are the special cases of (3.9) and (3.10) proposed in this paper. Following (3.13) and (5.1)
in the original BIE-WOS [1], only the Neumann data at the center of the hemisphere can
be calculated. In (3.9) and (3.10) of this paper, however, all Neumann data on the flat
patch can be obtained with nearly the same costs, as calculating potentials on the hemi-
sphere by the WOS method dominates the total CPU time, and numerical quadrature
cost is low.

4 Effect of error for the right hand side of IEFK and IESK in

BIE-WOS methods

In general, BIE/BEM methods can achieve satisfactory accuracy for engineering appli-
cations (10−3−10−5). However, we observed an unusual accuracy degeneration for the
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Figure 1: Two dielectric half-plane separated by the planar interface z=0.

BIE-WOS method with IEFK, while the one with IESK maintains good accuracy. Such an
accuracy discrepancy between the first and second kind integral is partly attributed to
the well-known fact that IEFK is ill-conditioned while the IESK is well-conditioned [17].
But a closer examination shows that the ill-conditioning of the linear system (matrix A)
does not explain the whole reason of the accuracy degeneration of the BIE-WOS method
with the IEFK. The major cause in fact is on the computation of the right-hand side of the
BIEs where an adversary error amplification could occur in the case of IEFK. In this sec-
tion, we first exam the phenomenon of the accuracy degeneration in IEFK of BIE-WOS,
then analyze the reasons in detail.

A simple half-plane test case is given in Fig. 1, where the plane z=0 divides the space
into two dielectric domains with dielectric constants ǫ0 and ǫ1, respectively. A unit charge
q is located at rs =(0,0,−h). The Neumann data on plane z= 0 is to be calculated. The
potential u(r) for the upper domain z>0 satisfies the Laplace equation ∇2u(r)=0, with
variable Dirichlet data on the boundary z = 0. The analytic solution of potentials and
Neumann data on z=0 are given as

u(r)=
q′

4πǫ0

1

|r−rs|
,
∂u(r)

∂n
=

q′

4πǫ0

−(r−rs)·{0,0,−1}
|r−rs|3

, q′=
2ǫ0

ǫ0+ǫ1
q. (4.1)

Following the BIE-WOS method, a hemisphere with radius a=1 is constructed centered
at o=(0,0,0). A classic collocation and linear BEM is applied for the first kind integral
equation in (3.7), (2.5) and (3.1), and for the second kind one in (3.9) and (3.10).

We change the distance h of the charge q with h =1,10,20,50 and 100, respectively.
Fig. 2 gives the relative errors of all discretized panels within the radius 0.7a for avoiding
the corner effect [17], where Fig. 2(a,b) and Fig. 2(c,d) are for IEFK and IESK, respectively.
Meanwhile, the details of the condition numbers and maximal relative errors of all linear
systems are listed in Table 1.

The matrix size of linear systems Ax=b of IEFK’s and IESK’s in this case is 1513×1513,
and the discretizations of both IEFK and IESK are the same. From the results, we can see
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(a) relative error of first kind, h=1 (b) relative error of first kind, h=50

(c) relative error of second kind, h=1 (d) relative error of second kind, h=50

Figure 2: Accuracy comparison of the integral equations of first (IEFK) and second (IESK) kinds.

that as the charge distance h increases from 1 to 100, the maximal relative errors of IEFK’s
increase from 0.57% to 13.82%, while the errors of IESK’s only increase from 0.47% to
1.41%. cond(A) in Table 1 verifies the ill-conditioning of the IEFK (358.5) and IESK is well-
conditioned (1), however, it is not the reason for IEFK’s accuracy degeneration. When
the charge distance h increases from 1 to 100, the matrices A of IEFK’s and the condition
numbers of A remain the same, therefore, they can not explain the huge difference of
accuracy degeneration from 0.57% to 13.82%. However, for different h, the right hand
sides of the matrix system will change and we will see this is indeed the cause of the
different accuracy patterns for the BIE-WOS method with IEFK and IESK.
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Table 1: Comparison of condition numbers and accuracies between integral equation of the first (IEFK) and
second (IESK) kinds.

h
max relative error(%) of IEFK

cond(A)=358.5

max relative error(%) of IESK

cond(A)=1

1 0.57 0.48

10 2.81 0.47

20 4.09 0.81

50 6.11 1.41

100 13.82 1.39

It is expected that a condition number 358.5 will result in a loss of 2-3 significant digits
in the numerical results, usually acceptable for engineering applications. For example,
the Fastcap [4], a capacitance extraction software in 3D VLSI circuits with the first kind
BIE method, can easily achieve high accuracy (with a maximal relative error 10−3−10−4).
The loss of significant digits of IEFK is not mainly due to the large condition number
the matrix A in the linear system Ax= b, but more to the calculation of the right-hand b,
where a large error amplification occurred.

Considering the fact
∫

S∪Γ

∂2G1(x,y)

∂ny∂nx
c(x)dsy ≡0, (4.2)

where c(x) is any constant function of x, the right hand of IESK (2.14) can be rewritten as

b(x)≡p.f.
∫

S

∂2G1(x,y)

∂ny∂nx
[c(x)−u(y)]dsy+

∫

Γ

∂2G1(x,y)

∂ny∂nx
[c(x)−u(y)]dsy, x∈S. (4.3)

We can set c(x)=u(x) to reduce the singularity when y is near to x on S [1].
Therefore, the right-hand b of both the IEFK and IESK can be summarized as

b(x)=
∫

S
( )·u(y)dsy+

∫

Γ
( )·u(y)dsy =bS(x)+bΓ(x), (4.4)

bS(x)=∑
i

w1,i(x,yi)u(yi), bΓ(x)=∑
i

w2,i(x,yi)u(yi), (4.5)

where bS, bΓ are integrals on the flat patch S and hemisphere Γ, respectively, and w1,i(x,yi)
and w2,i(x,yi) include different integral kernels and weights of the Gauss quadrature, and
i is the index of integration quadrature points.

While the Dirichlet data u(y) on the flat patch S is known without errors, the data
u(y) on the hemisphere Γ, however, has to be calculated by the random walk WOS in the
BIE-WOS method. BIE-WOS methods require large amount of Brownian path samples
for a satisfactory accuracy, due to the convergence rate of the O(1/

√
N) for N paths. In

the half-plane case, for example, the maximal relative error of u|Γ by WOS is about 0.5%−
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1% for N = 5×105 paths. The accuracy of numerical quadrature, however, is usually
10−4−10−6, thus, having no adversary effect on the overall accuracy. Therefore, we only
need to exam the error introduced by the WOS method, say,

ũ(y)= [1+δr(y)]u(y), y∈Γ, (4.6)

where u(y) is the true potential on point y, ũ(y) is the potential calculated by the random
WOS methods, and δr(y) is the relative error of the WOS solution.

For the simplicity of argument, let us assume that u(y)≥0, y∈Γ, then

|b̃Γ(x)|=∑
i

w2,i(x,yi)[1+δr(yi)]u(yi)

≤ (1+|δr,max|)∑
i

w2,i(x,yi)u(yi)

≤ (1+|δr,max|)|bΓ(x)|, (4.7)

where |δr,max|=maxi |δr(yi)|.
Therefore, the relative error of right hand δb(x) is

|δb(x)|=
∣∣∣∣
bs(x)+ b̃Γ(x)

bs(x)+bΓ(x)
−1

∣∣∣∣≤
∣∣∣∣

1
bs(x)
bΓ(x)

+1

∣∣∣∣|δr,max|= f
( bs(x)

bΓ(x)

)
|δr,max|, (4.8)

where an amplification function f (z) is defined as

f (z)=
1

z+1
. (4.9)

One can clearly see that if the signs of bS(x) and bΓ(x) are the same, i.e. z= bs(x)
bΓ(x)

>0, the

relative error of right hand |δb(x)|6 |ffir,max|. However, if the signs of bS(x) and bΓ(x) are
different, i.e. z60, the upper bound of the relative error of right hand will be amplified.
Especially, if bS(x)≈−bΓ(x), i.e. z≈−1, a large error amplification occurs as | f (z)|≫1.

As a result of the behavior of the amplification function f (z), on a flat patch surface
S, for the IEFK of BIE-WOS, assuming u(x)>0,

bS(x)=
u(x)

2
>0, (4.10)

bΓ(x)=
∫

Γ
(

x2−a2

ar3
)u(y)dsy <0. (4.11)

Therefore, as discussed above, IEFK will lose accuracy as the upper bound of the relative

error of right hand will be enlarged with z= bs(x)
bΓ(x)

<0 and | f (z)|>1 if the absolute values

of bS(x) and b̃Γ(x) are similar, it has a large adversary effect on the overall accuracy of the
solution, which is exactly what happened for the case of the half-plane with h=50.
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On the other hand, for the IESK of BIE-WOS with large c(x), we can show that

bS(x)=p.f.
∫

S

1

4π

[
1

r3
− a3

(
ρyrI

)3

]
[c(x)−u(y)]dsy >0, (4.12)

b̃Γ(x)=
∫

Γ

1

4π

3y3

[
a2−ρx

2
]

a[a2+ρx
2−2(x1y1+x2y2)]

5/2
[c(x)−u(y)]dsy >0. (4.13)

Therefore, IESK will behave better in terms of error amplification in the calculation of the

right hand side, for z= bs(x)
bΓ(x)

> 0 and the relative error of right-hand δb 6 δr,max. For the

extreme case with h=50, δb ≈ δr,max and x≈0, i.e., the relative error of the final results is
dominated by WOS methods. Certainly, the trade-off is that we need to handle the higher
singularities (hyper-singularity and near hyper-singularity) in the integral kernels for the
IESK.

Fig. 3 verifies the above observations for various components of the right-hand b for

different h. The x-axis is the index of the discretized panels, and y-axis is bS(x), b̃Γ(x),
and b(x) of the panels. From Fig. 3, one can see that when h varies from 1 to 50, for IEFK,
bS(x)> 0, bΓ(x)< 0, b(x) is near to zero when h= 50, and there are huge errors on b(x),
because of the numerical cancelation. For the IESK, however, both bS(x)>0 and bΓ(x)>0,
therefore total b(x)>0 and there is no cancelation on b(x).

Remark 4.1. (1) The error of right hand side f ( bs(x)
bΓ(x)

)δr,max includes two parts. The source

of error δr,max, induced by discretization errors, numerical quadratures, random walks,
etc., is only dependent on the geometry of boundary, and is independent of the Dirichlet

data on the boundary. The amplification factor f ( bs(x)
bΓ(x)

) is not a numerical error source

and dependent on the exact solution, related to the boundary geometry and Dirichlet
data. Therefore, in this case, when distance h changes, the Dirichlet data changes and
the amplification factor changes correspondingly. Meanwhile the error sources from the
numerical quadratures, random walks are unchanged. (2) Basically, the integral kernels
of IEFK has its right hand side as the difference between bs(x) and |bΓ(x)|, so cancela-
tion is essentially inside and amplification factor is always larger than 1. In traditional
BEMs with IEFK, such a phenomenon is not easily observed, because the accuracy of
right-hands, resulting from numerical quadratures, is usually high enough (10−4). (3)
The right-hands of IESK are additive, so the amplification factor is less than 1, thus nu-
merically stable. In the BIE-WOS method, the IESK is highly recommended as its relative
error of the right hand is not enlarged with the inevitable and hard-to-reduce error in the
order of 10−2 introduced by the WOS method. However, special treatments are needed
for more complicated integral kernels, higher singularity with more complicate regu-
larized methods. (4) The IEFK in the BIE-WOS method should be applied in a careful

manner, where b̃, bS, b̃Γ must be compared to avoid accepting the results under numeri-
cal cancelations and error amplifications. For general cases, the criterion for applying the
IEFK with confidence needs further studies.
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(a) right hands of IEFK, h=1 (b) right hands of IEFK, h=50

(c) right hands of IESK, h=1 (d) right hands of IESK, h=50

Figure 3: Comparisons of right-hand bS, bΓ, b for the first and second kind integral equations.

5 Numerical results

5.1 The algorithm of the parallel BIE-WOS method

The scheme of the parallel BIE-WOS method is straightforward. For a large domain
where the exterior Laplace equation solution to be found, many hemispheres are su-
perimposed to cover the Neumann data surface, and the DtN mapping on the patch
of boundary intersected by each hemisphere is solved independently by the BIE-WOS
method. Therefore, it is a highly scalable boundary domain decomposition method for
a communication-free among hemispheres and allows the natural parallel implemen-
tation of the random walks for the problem for each hemisphere. Also, the radius of
hemispheres can be different, and the local patches of the hemisphere are preferably
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overlapped. It is evident no global structured surface mesh is required for the parallel
BIE-WOS method and only a local mesh on each patch is needed for the BIEs.

5.2 Accuracy and scalability of the parallel BIE-WOS method

Several large scale tests are presented below to demonstrate the accuracy and parallel
efficiency of the proposed parallel BIE-WOS method. The parallel BIE-WOS algorithm
is implemented in C/C++ language with the openMP [31] and MPI [32] for a large scale
parallel computation on high-performance clusters. In the MPI implementation, a master
node dispatches tasks of individual hemisphere to idle computational nodes and collect
results. Each computational node is accelerated by the openMP for WOS sampling of the
Brownian paths and quadratures of all integrals.

The parallel efficiency of the proposed method is tested under the weak scalability,
i.e., the task loads increasing as the CPU cores increasing. For example, we use 32 CPU
nodes for the 32x task load and 256 CPU nodes for the 256x task load, where the 32x
and 256X task load has 32 and 256 hemispheres to cover parts of the whole surface, re-
spectively. Therefore, different problems are solved indeed each time with different CPU
nodes. Thus, the accuracies are correspondingly the maximal relative error for different
problems which has a different task load, thus the difference in accuracy. Experiment
results verify the high scalability of the BIE-WOS algorithms.

On each hemisphere, the potential u(y) on Γ is computed by the WOS method with
105 Brownian paths for each grid of a 40×40 grids generated by evenly discretizing the
surface of the hemisphere along with the polar and azimuthal angles. A bilinear inter-
polation is applied for potentials u(y) on Γ in the numerical quadratures. In the WOS
method, a large sphere with radius R=105 is introduced, and whenever particles move
out of this large sphere, they are considered as gone to the infinity [25] and no contribu-
tion will be made to the expectation value on the domain boundary in the Feynman-Kac
formula. The thickness of the absorption shell ε= 10−5 is used to determine if particles
have hit the boundary or not.

A general patch S is discretized into triangular panels with the help of distmesh [33]
and CGAL tools [34]. For the numerical tests here all cases use the proposed IESK version
of the BIE-WOS method. In order to improve the accuracy, a linear BEM is applied for
the panels inside a patch, while a constant BEM is applied for the outer-most panels on
the patch. The collocation points are exactly located on the corner if the same linear BEM
method is applied there (p. 417, [17]). A Gauss quadrature with 40×40 Gauss points is
applied for each integration panel. In order to improve the accuracy of quadratures even
more, for curve surface, quadratures on curve triangular panel are applied, instead.

The analytical solutions of all three cases are obtained, for the Dirichlet boundary
conditions are carefully set as the potentials induced by the charges.

Case 1: Interface between two half-spaces. A [−15,15]×[−15,15] rectangular plate is
located on xoy interface between two dissimilar dielectric half spaces, covered by 16×
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Table 2: Accuracy and scalability of charge density on the planar interface between two dielectric half-spaces.

Task load #nodes #CPU cores Wall time(s) Speedup Max error(%)

1x 1 16 89.06 1.0 1.97

32x 32 512 91.93 32.0 1.97

64x 64 1024 91.65 64.2 1.97

128x 128 2048 106.20 110.8 1.97

256x 256 4096 106.47 221.0 2.43

Figure 4: Relative error distribution on the planar interface between two dielectric half-spaces.

16 hemispheres with a radius a = 2. A unit charge is located at (0,0,-20). The maximal
number of computational nodes is 256.

The speedup and maximal relative error are listed in Table 2, where the maximal
relative error is 2.43%. A more clear colormap of the relative error distribution on the
whole solved surface is shown in Fig. 4, where the relative errors of most regions are less
than 1%. The scalability of the parallel BIE-WOS method is shown in Fig. 5. It can be seen
that when the number of CPU cores increases from 16 and 4096, the parallel BIE-WOS can
nearly keep up the ideal linear speedup.

Case 2: A very large ellipsoid. A very large ellipsoid with semi-axes e1 = 20, e2 = 30
and e3 = 40. Three unit point charges are located at (0,0,0), (10,0,0) and (0,0,8). 242
hemispheres with radius a=8 cover the ellipsoid.

The speedup and maximal relative error are listed in Table 3, where the maximal
relative error is 3.06%. The colormap of the relative error distribution is shown in Fig. 6,
where the relative errors of most regions are smaller than 1%.

The scalability of the BIE-WOS method is shown in Fig. 7, where BIE-WOS algorithm
again keeps the nearly ideal linear speedup, when the CPU core number increases from
16 to 3872.
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Figure 5: Scalability of the BIE-WOS method on the planar interface between two dielectric half-spaces.

Table 3: Accuracy and scalability of charge density on a large ellipsoid.

Task load #nodes #CPU cores Wall time(s) Speedup Max error(%)

1x 1 16 1069.94 1.0 2.35

32x 32 512 1248.94 27.5 2.35

64x 64 1024 1239.91 55.4 2.35

128x 128 2048 1426.46 96.2 2.35

242x 242 3872 1164.05 223.0 3.06

Figure 6: Relative error distribution on a large ellipsoid test case.

Case 3: A body of revolution. A body of revolution is formed by rotating the function
f (x)=(x/2)(x/2−3)(x/2−1.50−0.8i)(x/2−1.5+0.8i),x∈ [0,6] along x-axis as shown in
Fig. 8, and Fig. 9 shows its CAD representation.
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Figure 7: Scalability of the BIE-WOS method on a large ellipsoid.

Figure 8: A convolution rotating f (x) along x-axis.

Figure 9: Discretization of a large revolution body.
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Figure 10: Maximal and mean of relative error over panels.

Figure 11: Relative error distribution on a large revolution body.

Table 4: Accuracy and scalability of charge density on a large revolution body.

Task load #nodes #CPU cores Wall time(s) Speedup Max error(%)

4x 4 64 1170 4.0 2.07

32x 32 512 1200 31.2 3.08

128x 128 2048 1523 98.3 3.08

180x 180 2880 1480 142.3 3.15

256x 256 4096 1387 215.9 3.15

400x 400 6400 1259 371.7 3.15

The maximal and mean relative error of each hemisphere are shown in Fig. 10, where
x-axis is the id of hemispheres. From Fig. 10, the maximal relative error of all panels
is 3.15% and the maximal of mean relative errors of hemispheres is less than 1%. The
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Figure 12: Scalability of a large revolution body.

color-map of the relative error distribution is shown in Fig. 11.

Fig. 12 shows the scalability, which again keeps the nearly ideal linear speedup as the
number of CPU cores increases from 64 to 6400.

6 Conclusions and discussions

In this paper, a parallel BIE-WOS solver, without the need of a global structured mesh
over the domain boundary, is implemented for the Laplace equation with Dirichlet data
with high scalability on large scale computational platforms. The numerical cancela-
tion of the BIE-WOS with the first kind integral equation is analyzed and the BIE-WOS
method with the second kind integral is proposed to avoid possible error amplifications
in the BIE. For flat patches, the BIE-WOS with IESK can be simplified to obtain all Neu-
mann data, thus more efficient than the original BIE-WOS method. The numerical results
verify the accuracy and the desired nearly linear scalability of the algorithm on a super-
computer with 6400 CPU cores. Based on its high scalability, the proposed method can
be applied to solve large scale Laplace problems within a constant time by increasing the
number of CPU nodes.

An important feature of the parallel BIE-WOS method is its fault tolerance capability
for exascale computations, due to the local feature of the boundary domain decomposi-
tion approach and the use of path integral ensemble of the WOS methods. Any possi-
ble error in computing the DtN mapping on any individual patch of small size over the
boundary, due to either computer memory or communication fault, will have only a min-
imal effect on the overall calculation of the mapping, thus on the solution to the Laplace
equation. A simple monitor of the value of the local DtN mapping, compared with the
average values from neighboring patches, can be implemented to flag possible fault for
re-calculation over the patch of concern.
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Finally, though the BIE-WOS method presented in this paper is for the Laplace equa-
tion, for the Poisson equation (2.1) with a non-zero right hand side f (x) with a compact
support, a special solution u∗(x) in a box enclosing the sup( f ) can be found by inverting
the Laplace operator using Fast Fourier Transforms, then a simple subtraction with u∗(x)
will reduce the Poisson equation to a Laplace equation with a modified boundary data
on ∂Ω, to which the proposed BIE-WOS method can be applied.
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