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In this paper, we propose forward and backward stochastic differential equations (FBSDEs) 
based deep neural network (DNN) learning algorithms for the solution of high dimensional 
quasi-linear parabolic partial differential equations (PDEs), which is related to the FBSDEs 
from the Pardoux-Peng theory. The algorithms rely on a learning process by minimizing 
the path-wise difference between two discrete stochastic processes, which are defined by 
the time discretization of the FBSDEs and the DNN representation of the PDE solution, 
respectively. The proposed algorithms are shown to generate DNN solution for a 100-
dimensional Black–Scholes–Barenblatt equation, which is accurate in a finite region in the 
solution space, and has a convergence rate close to that of the Euler–Maruyama scheme 
used for discretizing the FBSDEs.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

The relationship between stochastic processes and the solution of partial differential equations is one of the high achieve-
ments of probability theory in potential theory research [1], represented by the celebrated Feynman–Kac formula in linear 
parabolic and elliptic partial differential equations (PDEs) as a result of the Kolmogorov backward equation for the generator 
of the stochastic process for the former [13] and Dynkin formula for the latter [11]. The recent work by Pardoux–Peng [12]
has extended the concept of classic linear Feynman–Kac formula to a nonlinear version, which connects the solution of a 
quasilinear parabolic PDE to a coupled pair of forward and backward stochastic processes. This extraordinary development 
has made much impact in many areas including the mathematical finance in option pricing [6].

In particular, in the field of scientific computing, this connection between stochastic differential equations (SDEs) and 
quasi-linear PDEs has inspired new approaches of solving high dimensional parabolic PDEs which are ubiquitous in material 
sciences such as the Allen–Cahn equations for phase transitions, and quantum mechanics such as Schrodinger equations as 
well as option pricing and stochastic controls such as the Black–Scholes and Hamilton-Jacobi-Bellman equations. For PDEs 
in high dimensions, the main challenge of the traditional numerical methods, such as finite element, finite difference and 
spectral methods, is the curse of dimensionality, namely, the number of unknowns in the discretized systems for the PDEs 
grows exponentially in terms of the dimension of the problem. Recently, machine learning approaches using deep neural 
networks have taken advantage of the Pardoux–Peng’s theory for forward and backward stochastic differential equations 
(FBSDEs) and PDEs. The solution to the PDEs can be learned by sampling the paths of involved stochastic processes, which 
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are discretized in time by the classic Euler–Maruyama scheme [7]. The first such an attempt was done in the work of [3], 
where neural network was used as an approximator to the gradient of the PDEs solutions, while the PDE’s solution follows 
the dynamics of the FBSDEs, and the learning was carried out by imposing the terminal condition provided by the parabolic 
PDEs. Another approach [14] is to approximate the PDE’s solution itself by a deep neural network, which also provides the 
gradient of the solution as required by the FBSDEs, the learning is then carried out by minimizing the difference between 
the solution given by the discretized SDEs and that given by the DNN at all discretization time stations. In this paper, 
an improved learning scheme will be proposed based on a similar approach in [14] but with more sound mathematical 
reasoning for the learning processes, to ensure the numerical methods’ mathematical consistency and improved convergence 
for the PDEs’ solutions.

The rest of the paper is organized as follows. In Section 2, we will review the Pardoux–Peng’s theory, which establishes 
the connection between FBSDEs and quasilinear parabolic PDEs, with an emphasis on the relation between the classic 
Feynman–Kac formula and the nonlinear version given by the Pardoux–Peng theory. Section 3 will first review the algorithm 
proposed in [14], and then two new improved methods will be proposed. Section 4 will present numerical results of the 
new schemes for solving a 100-dimensional Black–Scholes–Barenblatt equation. Finally, a conclusion is given in Section 5.

2. Pardoux–Peng theory on FBSDEs and quasilinear parabolic PDEs

In this paper, we consider the scalar solution u(t, x), t ∈ [0, T ], x ∈Rd for the following d-dimensional parabolic PDE

∂t u + 1

2
Tr[σσ T ∇∇u] + μ · ∇u = φ (1)

with a terminal condition

u(T , x) = g(x), (2)

where σ = σ(t, x, u), φ = φ(t, x, u, ∇u), μ = μ(t, x, u, ∇u) are functions with ranges in spaces with dimensions d ×d, 1 and 
d, respectively. We are interested in finding the initial value u(0, x0) given x0 ∈ Rd . Therefore, in some sense our problem 
is similar to a time reverse problem for a time reversed version of (1) with an initial data at t = 0.

Following Pardoux–Peng in [12], under certain regularity conditions, the forward-backward SDE reformulation gives a 
nonlinear implicit Feynman–Kac formula for the solution of the parabolic PDE (1). The FBSDEs are proposed as follows. Let 
Wt = (W 1

t , · · · , W d
t ) where each W j

t is a standard Brownian motion, and {Ft : 0 ≤ t ≤ T } be its natural filtration on the 
time interval [0, T ]. Then, we have the following stochastic equations for processes Xt , Yt and Zt in d, 1 and d dimensions 
that are adaptive to the filtration {Ft : 0 ≤ t ≤ T }, respectively,

dXt = μ(t, Xt, Yt, Zt)dt + σ(t, Xt, Yt)dWt,

X0 = x0,
(3)

dYt = φ(t, Xt, Yt, Zt)dt + Z T
t σ(t, Xt, Yt)dWt ,

Y T = g(XT ).
(4)

If μ and σ do not explicitly depend on Yt or Zt , the FBSDEs are decoupled.
We can easily show that processes defined by

Yt = u(t, Xt), Zt = ∇u(t, Xt) (5)

in fact satisfy the above equations (3) and (4). By using the Ito’s formula [11] and the forward SDE of Xt , we have

dYt = du(t, Xt) = ∂t udt + ∇u · dXt + 1

2

d∑
i=1

d∑
j=1

∂i jud[Xi, X j]t

= ∂t udt + ∇u · (μdt + σ · dWt) + 1

2
Tr[σσ T ∇∇u]dt

=
(

∂t u + ∇u · μ + 1

2
Tr[σσ T ∇∇u]

)
dt + Z T

t σdWt,

(6)

which gives the PDE (1) by comparing (6) with the backward SDE (4) for Yt .
The determination of the third stochastic process Zt from the two SDEs in (3) and (4) makes use of the martingale 

representation theory [8]. Consider the following special case of the backward SDE (4) as an example:

Yt +
T∫

f (s, Xs)ds +
T∫

Zs · dW s = g(XT ), 0 ≤ t ≤ T , (7)
t t

2
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i.e. μ(t, x, u, ∇u) = f (t, x), and σ(t, x, u) = Id×d is the identity matrix. By taking the conditional expectation with respect to 
Ft , we have

Yt = E [ Yt |Ft] = E

⎡
⎣ g(XT ) −

T∫
t

f (s, Xs)ds

∣∣∣∣∣∣Ft

⎤
⎦ , 0 ≤ t ≤ T . (8)

Next, we define the following martingale

Lt =E

⎡
⎣ g(XT ) −

T∫
0

f (s, Xs)ds

∣∣∣∣∣∣Ft

⎤
⎦ , 0 ≤ t ≤ T , (9)

where L0 = Y0. By the martingale representation theorem [8], there exists a stochastic process Z�
t such that

Lt = Y0 +
t∫

0

Z�
s · dW s, 0 ≤ t ≤ T . (10)

The stochastic process Z�
t is unique in the sense that

T∫
0

∥∥Z�
t − Z∗

t

∥∥2
dt = 0, a.s. (11)

if Z∗
t satisfies the same condition (10) as Z�

t [8]. Meanwhile, we can show that Zt = Z�
t solves the backward SDE (7),

Yt +
T∫

t

f (s, Xs)ds +
T∫

t

Z�
s · dW s − g(XT )

= E

⎡
⎣ g(XT ) −

T∫
t

f (s, Xs)ds

∣∣∣∣∣∣Ft

⎤
⎦ +

⎛
⎝ T∫

0

−
t∫

0

⎞
⎠ f (s, Xs)ds + (LT − Lt) − g(XT )

=
T∫

0

f (s, Xs)ds + LT − g(XT )

= LT −E

⎡
⎣ g(XT ) −

T∫
0

f (s)ds

∣∣∣∣∣∣FT

⎤
⎦

= 0.

Connection with the classic Feynman–Kac formula is interpreted as follows. If in the parabolic PDE (1), φ has a linear 
dependence on u, i.e.

φ(t, x, u,∇u) = c(t, x)u(t, x) + f (t, x), (12)

then, the backward SDE (4) has an explicit solution

Yt = e− ∫ T
t c(s,Xs)ds g(XT ) −

T∫
t

e− ∫ s
t c(τ ,Xτ )dτ f (s, Xs)ds −

T∫
t

e− ∫ s
t c(τ ,Xτ )dτ Z T

s σ(s, Xs, Ys)dW s. (13)

By taking the conditional expectation on both sides, we arrive at

Yt = E

⎡
⎣e− ∫ T

t c(s,Xs)ds g(XT ) −
T∫

t

e− ∫ s
t c(τ ,Xτ )dτ f (s, Xs)ds

∣∣∣∣∣∣Ft

⎤
⎦ . (14)

For (t, x) ∈ [0, T ] × Rd , using Xt = x as the initial condition of the forward SDE (3) on the time interval [t, T ] instead of
X0 = x0, the traditional Feynman–Kac formula [11] is recovered,
3
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u(t, x) = E

⎡
⎣e− ∫ T

t c(s,Xs)ds g(XT ) −
T∫

t

e− ∫ s
t c(τ ,Xτ )dτ f (s, Xs)ds

∣∣∣∣∣∣ Xt = x

⎤
⎦ . (15)

For a general parabolic equation with a nonlinear function φ(s, x, u, ∇u), we have

Yt = E

⎡
⎣ g(XT ) −

T∫
t

φ(s, Xs, Ys, Zs)ds

∣∣∣∣∣∣Ft

⎤
⎦ ,

and for given (t, x) ∈ [0, T ] ×Rd , the following nonlinear equation for u(t, x) is obtained

u(t, x) = E

⎡
⎣ g(XT ) −

T∫
t

φ(s, Xs, u(s, Xs),∇u(s, Xs))ds

∣∣∣∣∣∣ Xt = x

⎤
⎦ . (16)

3. FBSDE based deep neural network algorithms for quasilinear parabolic PDEs

The learning of the PDEs’ solution will be based on the sample paths of the FBSDEs, which are linked to the PDE solution 
in (5). Paths of the FBSDEs will be produced by a time discretization algorithm with samples of the Brownian motion Wt .

Let 0 = t0 < · · · < tN = T be a uniform partition of [0, T ]. On each interval [tn, tn+1], define time and Brownian motion 
increments as

�tn = tn+1 − tn, �Wn = Wtn+1 − Wtn . (17)

Denoting Xtn , Ytn and Ztn by Xn , Yn and Zn , respectively, and applying the Euler–Maruyama scheme to the FBSDEs (3) and 
(4), respectively, we have

Xn+1 ≈ Xn + μ(tn, Xn, Yn, Zn)�tn + σ(tn, Xn, Yn)�Wn, (18)

Yn+1 ≈ Yn + φ(tn, Xn, Yn, Zn)�tn + Z T
n σ(tn, Xn, Yn)�Wn. (19)

Due to the relationship with the parabolic PDE, the solution to the parabolic PDE provides an alternative representation for 
Yn+1 and Zn+1,

Yn+1 = u(tn+1, Xn+1), (20)

Zn+1 = ∇u(tn+1, Xn+1). (21)

In this paper, fully connected networks of L hidden layers will be used, which are given in the following form,

fθ (x) = W [L−1]σ ◦ (· · · (W [1]σ ◦ (W [0](x) + b[0]) + b[1]) · · · ) + b[L−1], (22)

where W [1], · · · , W [L−1] and b[1], · · · , b[L−1] are the weight matrices and bias parameters, respectively, denoted collectively 
by θ , to be optimized via the training, σ(x) is the activation function and ◦ is the application of the activation function σ
applied to a vector quantity component-wisely.

3.1. Existing FBSDE based neural network algorithms

3.1.1. Deep BSDE [3]
The deep BSDE method trains a network to approximate the random value Y N at time t = T , where X0 = x0 is the input. 

Y0, Z0 are trainable variables and Y0 is the targeted quantity of the algorithm. Wn, Xn, 0 ≤ n ≤ N can be obtained similarly 
as before. The algorithm can be organized as follows.

(1) The initial value X0 = x0 is given. Trainable variables Y0 and Z0 are randomly initialized.
(2) On each time interval [tn, tn+1], use the Euler–Maruyama scheme to calculate Xn+1 and Yn+1 as in (18) and (19). Then, 

train a fully connected feedforward network

f (n+1)
θ (·) ≈ ∇u(tn+1, ·) (23)

where f (n+1)
θ (·) is a fully connected neural network of H hidden layers of the form given in (22). Activation functions 

including ReLU, Tanh, Sigmoid, etc. can be used.
(3) Connect all quantities (subnetworks f (n)

θ (·), etc) at {tn} to form a network that outputs Y N , which is expected to be an 
approximation of u(tN , XN).
4
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(4) The loss function is then defined by a Monte Carlo approximation of

E‖Y N − g(XN)‖2 . (24)

The deep BSDE method has been shown to give convergent numerical results for various high dimensional parabolic 
equations [3] and a posteriori estimate suggests strong convergence of half order [4].

Remark 1. The deep BSDE method from [3] trains the network for the specific initial data X0 = x0 and yields only an 
approximation to the PDE solution Y0 = u(0, x0). Therefore, once the desired initial data is changed, a new training may have 
to be carried out. Also, the total size of N individual sub-networks used to approximate Zn = ∇u(tn, Xn), n = 1, · · · , N − 1
will grow linearly in terms of time discretization steps N , resulting in large amount of training parameters if higher accuracy 
of the PDE solution is desired.

3.1.2. FBSNNs [14] (Scheme 1)
The FBSNNs train a network uθ (t, x) that directly approximates the solution to the PDE (1) in some region in the (t, x)

space. The network has a fixed size of number of hidden layers and neurons per layer. The algorithm can be organized as 
follows.

(1) The initial value X0 = x0 is given. Evaluate Y0 and Z0 using the network

Y0 = uθ (t0, X0), Z0 = ∇uθ (t0, X0). (25)

The gradient above is calculated by an automatic differentiation.
(2) On each time interval [tn, tn+1], use the Euler–Maruyama scheme (18) to calculate Xn+1, and use the network for Yn+1

and Zn+1, i.e.

Xn+1 = Xn + μ(tn, Xn, Yn, Zn)�tn + σ(tn, Xn, Yn)�Wn,

Yn+1 = uθ (tn+1, Xn+1),

Zn+1 = ∇uθ (tn+1, Xn+1).

(26)

On the other hand, calculate a reference value Y �
n+1 using the Euler–Maruyama scheme (19)

Y �
n+1 = Yn + φ(tn, Xn, Yn, Zn)�tn + Z T

n σ(tn, Xn, Yn)�Wn. (27)

(3) The loss function is taken as a Monte Carlo approximation of

E

[
N∑

n=1

∥∥Yn − Y �
n

∥∥2 + ‖Y N − g(XN )‖2 + ‖Z N − ∇g(XN )‖2

]
. (28)

In this paper, we will name the above numerical method Scheme 1. In order to compare the training results using 
different values of N , the loss function for Scheme 1 is modified as

L1[uθ ; x0] = 1

M

[∑
ω

1

N

N∑
n=1

∥∥Yn − Y �
n

∥∥2 + β1 ‖Y N − g(XN )‖2 + β2 ‖Z N − ∇g(XN )‖2

]
(29)

where M serves as the batch size of the training and ω denotes any instance of sampling of the discretized Brownian 
motion Wn, 0 ≤ n ≤ N − 1, and β1, β2 are the penalty parameters for the terminal conditions. The averaging factor 1/N
is introduced for consistency consideration as the reduction of the loss function as N increases, when applied to the 
exact solution, is expected.

Remark 2. The FBSNNs algorithm proposed in [14] relies on a loss function involving the difference between sequences {Yn}
and {Y ∗

n }, which carry the information inside the time interval (0, T ). While the discrete stochastic process {Yn} can be 
expected to approach a continuous stochastic process as defined in the backward SDE (4), the question whether the discrete 
sequence of random variables {Y ∗

n } will converge to the same stochastic process is not clear. As a result, the rate and extent 
for the difference between {Yn} and {Y ∗

n }, thus the loss function, approaching to zero is not certain. Our numerical test will 
provide some evidence for this concern.

3.2. FBSDE based deep neural network algorithms for PDEs

In this section, we propose improved algorithms for the FBSDEs based deep neural networks similar to Scheme 1 above 
first proposed in [14], but are mathematically consistent in the definition of the loss function and the discretization of both 
forward and backward SDEs related to the PDE solutions. Specifically, the loss will be made of the difference of two discrete 
stochastic processes, which will approach the same process given by the backward SDEs if the overall scheme converges.
5
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3.2.1. FBSDE based algorithms - Scheme 2
Based on the Remark 2 from Section 3.1.2, we would like to design a new scheme whose loss function is expected to 

show the strong convergence rate of the Euler–Maruyama scheme for the discretization of the FBSDEs. A key factor will be 
to make the loss function as the pathwise differences between two stochastic processes, which will converge to the same 
continuous adapted diffusion process if the time discretization of FBSDEs and DNN approximations converge.

Scheme 2. Train a DNN uθ (t, x) to approximate the solution u(t, x) of the parabolic PDE (1).

(1) Given X0 = x0 and let Y0 = uθ (t0, X0), Z0 = ∇uθ (t0, X0).
(2) On each time interval [tn, tn+1], calculate Xn+1 and Yn+1 using the Euler–Maruyama scheme (18) and (19), respectively, 

and calculate Zn+1 using the network, i.e.

Xn+1 = Xn + μ(tn, Xn, Yn, Zn)�tn + σ(tn, Xn, Yn)�Wn,

Yn+1 = Yn + φ(tn, Xn, Yn, Zn)�tn + Z T
n σ(tn, Xn, Yn)�Wn,

Zn+1 = ∇uθ (tn+1, Xn+1).

(30)

Next, define a second variable by the DNN representation of the PDE solution,

Y �
n+1 = uθ (tn+1, Xn+1). (31)

(3) For a batch size M with ω denoting any of the M sample paths, the loss function is given as

L2[uθ ; x0] = 1

M

∑
ω

[
1

N

N∑
n=1

∥∥Yn − Y �
n

∥∥2 + β1
∥∥Y �

N − g(XN )
∥∥2 + β2 ‖Z N − ∇g(XN )‖2

]
, (32)

where β1, β2 are the penalty parameters of the terminal condition.

The quantity Y �
N is used in the terminal term in the loss function L2[uθ ; x0], because here it is a straightforward output 

of the neural network uθ .

3.2.2. FBSDE based algorithms - Scheme 3
In the Scheme 2 above, the discrete process (31) is defined through the composition function using the DNN represen-

tation of the PDE solution uθ (t, x). An alternative way is given below where both discrete processes are obtained from an 
Euler–Maruyama discretization of the SDEs.

Scheme 3. Train a DNN uθ (t, x) to approximate the solution u(t, x) of the parabolic PDE (1).

(1) Given the initial values X (1)
0 = X (2)

0 = x0 and we compute

Y (1)
0 = Y (2)

0 = uθ (t0, x0), Z (1)
0 = Z (2)

0 = ∇uθ (t0, x0) (33)

from the network uθ (t, x).
(2) On each time interval [tn, tn+1], calculate X (1)

n+1, Y
(1)
n+1 and Z (1)

n+1 as in (26) of Scheme 1, then X (2)
n+1, Y

(2)
n+1 and Z (2)

n+1 as in 
(30) of Scheme 2, i.e.

X (1)
n+1 = X (1)

n + μ(tn, X (1)
n , Y (1)

n , Z (1)
n )�tn + σ(tn, X (1)

n , Y (1)
n )�Wn,

Y (1)
n+1 = uθ (tn+1, X (1)

n+1),

Z (1)
n+1 = ∇uθ (tn+1, X (1)

n+1),

(34)

X (2)
n+1 = X (2)

n + μ(tn, X (2)
n , Y (2)

n , Z (2)
n )�tn + σ(tn, X (1)

n , Y (1)
n )�Wn,

Y (2)
n+1 = Y (2)

n + φ(tn, X (2)
n , Y (2)

n , Z (2)
n )�tn + (Z (2)

n )T σ(tn, X (2)
n , Y (2)

n )�Wn,

Z (2)
n+1 = ∇uθ (tn+1, X (2)

n+1).

(35)

(3) For a batch size M with ω denoting any of the M sample paths, the loss function is defined by

L3[uθ ; x0] = 1

M

∑
ω

[
1

N

N∑
n=1

∥∥∥Y (1)
n − Y (2)

n

∥∥∥2 + β1

∥∥∥Y (1)
N − g(X (1)

N )

∥∥∥2 + β2

∥∥∥Z (1)
N − ∇g(X (1)

N )

∥∥∥2
]

, (36)

where β1, β2 are the penalty parameters of the terminal condition.
6



W. Zhang and W. Cai Journal of Computational Physics 470 (2022) 111557
Remark 3. Formulation of the deep BSDE method for solving PDEs in [3] is closely related to deep learning approximation of 
stochastic control problems using DNN [2] [5], and Zn , approximated by individual subnetworks f (n)

θ (·) in [3], serves as the 
policy at time tn in the context of reinforcement learning [15][9]. On the other hand, the policy Zn for the Scheme 1, 2, 3 is 
given analytically by the gradient of the DNN used to represent the PDE solution itself. Moreover, there is some difference 
in the loss functions used in the stochastic gradient optimizations for finding the optimal policy function parameterized by 
the deep neural networks. In the deep BSDE method, the mis-match of the terminal condition predicted by the BSDE is used 
as the loss function while Schemes 1, 2 and 3 use, in addition, the mis-match of two stochastic processes, one generated by 
the BSDEs and one by a function composition of stochastic processes.

4. Numerical results

In this section, we will carry out several tests on Scheme 1 from [14] and the new Scheme 2 and Scheme 3, for a 
100-dimensional Black–Scholes–Barenblatt equation and its variants.

4.1. 100-dimensional Black–Scholes–Barenblatt equation

Consider the following 100-dimensional Black–Scholes–Barenblatt (BSB) equation from [14] as the model problem: for 
t ∈ [0, T ] and x ∈Rd , the scalar function u(t, x) satisfies

ut + 1

2
Tr

[
σ 2diag(xxT )∇∇u

]
= r(u − ∇u · x),

u(T , x) = ‖x‖2.

(37)

The PDE is linked to the FBSDEs

dXt = σdiag(Xt)dWt ,

X0 = x0,

dYt = r(Yt − Zt · Xt)dt + σ Z T
t diag(Xt)dWt ,

Y T = g(XT ),

(38)

where g(x) = ‖x‖2, and x0 ∈Rd is the position where we like to get the initial value u(0, x0). The exact solution to the PDE 
(37) is given in a closed form by

u(t, x) = e(r+σ 2)(T −t) ‖x‖2 , (39)

so that we can test the accuracy of the DNN schemes. Parameters are given by d = 100, T = 1.0, σ = 0.4, r = 0.05 and

x0 = (1,0.5,1,0.5, · · · ,1,0.5). (40)

We use a 6-layer fully connected feedforward neural network for uθ (t, x) with 5 hidden layers, each having 256 neurons. 
The activation function is the sine function as suggested by [14]. We train the network with the Adam optimizer with 
descending learning rates 1e-3, 1e-4, 1e-5, 1e-6 and 1e-7, each for 10000 steps. The batch size is M = 100.

In the loss functions (29), (32) and (36), the penalty parameters are chosen as β1 = β2 = 0.02.
Illustration of the training results in the high-dimensional space is provided along the sample paths. When the training 

is finished, we randomly generate 1000 sample paths for verification of the accuracy, with a finer time discretization with 
time steps �tn = 1/1000. For each (discretized) sample path ω and for 0 ≤ n ≤ 1000, the relative error at (tn, Xn(ω)) (or at 
(tn, X (2)

n (ω)) when using Scheme 3) is defined by

eN
n (ω) = |uθ (tn, Xn(ω)) − u(tn, Xn(ω))|

|u(tn, Xn(ω))| . (41)

The mean and the standard deviation (SD) of each eN
n can also be calculated, denoted by Mean(eN

n ) and SD(eN
n ), respectively.

4.1.1. Scheme 1 from [14]
Fig. 1 shows the relative error of Scheme 1 for N = 12, 48 and 192, where the mean error and the mean error plus two 

standard deviations of the error are presented. We can see the reduction of the errors from N = 12 to N = 48, however, 
the error increases from N = 48 to N = 192. This degeneracy in accuracy is an indication that as the time discretization is 
refined, the two quantities in the definition of loss function (28) do not approach the same continuous stochastic process. 
In fact, as it is defined by (27), {Y �

n } may not converge to a continuous stochastic process at all.
7
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Fig. 1. (Non-convergence) Relative error of Scheme 1 for N = 12 (middle), 48 (bottom) and 192 (top).

Fig. 2. Relative error of Scheme 2 for N = 12,48,192 and 768.

4.1.2. Scheme 2 and Scheme 3
Fig. 2 and Fig. 3 show the mean error and mean error plus two standard derivations of the error for Scheme 2 and 

Scheme 3 for N = 12, N = 48, N = 192 and N = 768, respectively. Errors in these figures are measured in a log base 2 scale 
to reflect the expected convergence rate as N increases, to be elaborated below.

Both the results in Fig. 2 and Fig. 3 show the convergence of the new Scheme 2 and Scheme 3, respectively, in contrast 
to the degeneracy of the accuracy of Scheme 1 when the time discretization is refined. For both new schemes, we can see 
improvement of the accuracy from N = 48 to N = 192 is close to the one from N = 12 to N = 48, but the improvement 
of N = 768 over N = 192 is less. This indicates the network training might dominate the error compared to the time 
discretization error. In fact, the terminal parts of the loss function failed to halve in the N = 768 cases compared to N =
192. The convergence rates as N increases are expected to follow the order of the Euler–Maruyama scheme. To show the 
convergence rates, we define

α
(1)
N = log4 max

0≤n≤1000

Mean(e4N
n )

Mean(eN
n )

, α
(2)
N = log4 max

0≤n≤1000

Mean(e4N
n ) + 2SD(e4N

n )

Mean(eN
n ) + 2SD(eN

n )
, (42)

which reflect the worst scenery of convergence rates for t ∈ [0, 1]. One can see from Table 1 that Scheme 2 approximately 
follows the half order of convergence from N = 12 to N = 192, while the improvement from N = 192 to N = 768 for 
Scheme 2 degenerates due to the presence of other errors from the DNN and similar situation happens for Scheme 3.

Fig. 4 (a) (b) show the prediction of trained networks using Scheme 2 and Scheme 3 with N = 192 along 8 sampled test 
paths depicted in Fig. 4 (c), in comparison with the exact solution, where the average error of the prediction is given in 
Fig. 4 (d).
8
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Fig. 3. Relative error of Scheme 3 for N = 12,48,192 and 768.

Table 1
Convergence rate as N increases.

Scheme 2 Scheme 3

N-4N α
(1)
N α

(2)
N α

(1)
N α

(2)
N

12-48 0.363 0.401 0.585 0.551
48-192 0.401 0.496 0.181 0.212
192-768 -6.93e-3 1.900e-2 0.146 0.179

4.1.3. Extrapolation for higher order accuracy in solution Y0

In Section 4.1.2 we have seen that Scheme 2 and Scheme 3 have the convergence behavior as the Euler–Maruyama 
scheme, so we can assume that the truncation error may have the following asymptotic ansatz

uN
θ − u = C1N− 1

2 + C2N−1 + O (N− 3
2 ), (43)

where the leading term C1N− 1
2 dominates the error when N is sufficiently large. If this holds for both uN

θ and u4N
θ for some 

constants C1 and C2, then we can define an extrapolated solution

u4N
ex = 2u4N

θ − uN
θ

= u − C2

2
N−1 + O (N− 3

2 ) (44)

as an improved approximation to the solution.
For the model problem (37), the extrapolation is valid for the approximation of Y0 = u(0, x0) and u(0, x) in a neighbor-

hood near x0, as shown by Table 2 and Fig. 5. In terms of the accuracy of Y0, by training the DNNs only with N = 12 and 
N = 48, the extrapolated result u48

ex (0, x0) has its accuracy outperforming those using N = 768 which takes more than 10
times longer time to train, when using either Scheme 2 or Scheme 3. Due to training difficulties, the improvement for using 
extrapolation on N = 768 is marginal, but still exists.

Note that the extrapolation approach usually may not work for the whole time interval along the entire sample paths. 
For instance, the values at t = T are subject to explicit fitting of the terminal condition from the loss functions (32) and 
(36), so we cannot expect a general constant C1 in (43) for uN

θ (T , x) and u4N
θ (T , x). The result in Fig. 5 shows that the 

extrapolation technique can be used for a time interval 0 ≤ t ≤ 0.1. For the value of Y0, the extrapolation with Scheme 2
has the order of convergence approximately at 0.744 between N = 48 and N = 192.

4.1.4. Region of validity of DNN uθ (t, x) near X0

In this section, we will verify the validity of the networks uθ (t, x) in a region that are larger than the one sampled 
during the training process. For this purpose, we randomly sample the initial value X0 = x̃0 from a cubic neighborhood of 
x0 with halved edge length R , i.e.,

(x̃0) j = (x0) j · (1 + ε j), 1 ≤ j ≤ d = 100, (45)

where ε j are i.i.d. random variables with uniform distribution on (−R, R). For the network trained with Scheme 2 and 
N = 192, we compare the resulting error using the same measurement with R = 0.25 and R = 0.5, while keeping one 
9
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Fig. 4. Prediction of 8 test sample paths from training results of Scheme 2 and Scheme 3, N = 192.

Table 2
Relative error of Y0 from the network approximation and extrapolation.

Scheme 2 Scheme 3

N - 4N uN
θ uN

ex uN
θ uN

ex

12 2.91e-03 2.82e-03
12-48 1.67e-03 4.29e-04 1.13e-03 5.57e-04
48-192 7.58e-04 1.53e-04 8.43e-04 5.55e-04
192-768 6.77e-04 5.97e-04 5.96e-04 3.49e-04

Fig. 5. Mean relative error of the extrapolation u192
θ (t, Xt ) for 0 ≤ t ≤ T , using Scheme 2.
10
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Fig. 6. Training error verified with initial value x̃0 from a neighborhood of x0, using Scheme 2, N = 192.

sample starting exactly from x0 (for the sake of plotting), see Fig. 6. The averaged relative error is slightly larger at t = 0
because during the training process these regions are less likely to be visited since we fixed the initial value for all training 
paths at X0 = x0. If we look at the overall maximum for t ∈ [0, T ], we can still have an averaged relative error of 0.34% for 
R = 0.25 and 1.25% for R = 0.5. Also, it is noted that, in comparison with the non-perturbed result, the trained network fits 
the solution of the PDE better when Yt has a value below 80.

This result shows that the DNN we trained for x = x0 is in fact can be used in a local neighborhood around x0 for the 
whole time interval 0 ≤ t ≤ T .

4.2. MultiscaleDNN for the BSB equation with temporal oscillations

In a recent work [10], a multi-scale DNN was proposed, which consists of a series of parallel normal sub-networks, each 
of which receiving a scaled version of the input, and outputs of the sub-networks are combined to form the final output of 
the MscaleDNN (see Fig. 7). The individual sub-networks in the MscaleDNN with a scaled input is designed to approximate 
a segment of frequency content of the targeted function, and the effect of the scaling is to convert a specific high frequency 
content to a lower frequency range so that the learning can be accomplished more quickly, which is shown by the recent 
work [10] on the frequency dependence of the DNN convergence.

Fig. 7 shows the schematics of a MscaleDNN consisting of n sub-networks. Each scaled input passing through a fully-
connected sub-network, which can be expressed in the formula (22), here we use the sine function for the activation 
function, i.e.,

σ(x) = sin(x). (46)
11
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Fig. 7. Illustration of a MscaleDNN.

Mathematically, the final output of a MscaleDNN solution is represented by the following sum of sub-networks fθni with 
network parameters denoted by θni (i.e. weight matrices and bias)

f (x) ∼
M∑

i=1

W [L]
i fθni (αi · x) + b[L], (47)

where αi is the chosen scale vector for the i-th sub-network in Fig. 7. For more details on the design of the MscaleDNN, 
refer to [10].

For the input scales, the general idea is to adopt various scaling factors for different components of the input, depending 
on the complexity of the solution of the PDE to be solved.

The MscaleDNN is tested with the following model problem, modified from the BSB equation above with an oscillatory 
factor to effectively increase the learning difficulty:

∂t u + 1

2
Tr[σ 2∇∇u] = φ,

u(T , x) = g(x),
(48)

where the dimension d = 100, T = 1.0, σ = 0.4 and r = 0.05 are unchanged parameters compared to (37),

g(x) = ‖x‖2 (1 + α sin (β S1 − γ T )) , (49)

φ(t, x, u,∇u) = r(u − ∇u · x) + αe(r+σ 2)(T −t) P (t, x), (50)

P (t, x) = (rβ S1 S2 − γ S2 + 2σ 2β S3) cos(β S1 − γ t) − σ 2β2

2
S2

2 sin(β S1 − γ t), (51)

where each S j = ∑d
i=1 x j

i , and α, β and γ are parameters to be tuned. The modified PDE (48) has a solution

u(t, x) = e(r+σ 2)(T −t)‖x‖2 (1 + α sin (β S1 − γ t)) , (52)

and corresponds to the FBSDEs

dXt = σdiag(Xt)dWt ,

X0 = x0,

dYt =
(

r(Yt − Zt · Xt) + αe(r+σ 2)(T −t) P (t, Xt)
)

dt + σ Z T
t diag(Xt)dWt,

Y T = g(XT ).

(53)

We apply α = 0.025, β = 0.25 and γ = 32 to the above equation. During the training process, we use the same settings for 
the fully-connected DNN as in previous tests. For the MscaleDNN, the network is divided into 4 sub-networks, each having 
5 hidden layers with 64 neurons per layer, so that sizes of the networks in the comparison are matching. The scaled inputs 
for the sub-networks are given by

(30t, x), (31t, x), (32t, x), (33t, x), (54)
12
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Fig. 8. Relative training error for fully-connected DNN and MscaleDNN for the model problem with oscillation, using Scheme 2 and N = 48.

Fig. 9. Comparison between MscaleDNN and fully-connected DNN for the prediction of 4 sample paths for the model problem with oscillation, using 
Scheme 2 and N = 48.

Fig. 10. Prediction of 8 sample paths for problem with oscillation (48), using the MscaleDNN with Scheme 2 and N = 192.

so that a wider range of frequency of t can be captured with the MscaleDNN. When applying Scheme 2 and N = 48, from 
Fig. 8 and Fig. 9 we can see the MscaleDNN halves the overall error compared to the fully-connected network. One can also 
predict sample paths with better accuracy using the MscaleDNN, too, see Fig. 10 in the neighborhood of x0.
13
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5. Conclusion

In this paper, we have proposed two FBSDE based DNN algorithms for high dimensional quasilinear parabolic equations. 
The key component of the proposed algorithms is the loss function used, consisting of, in addition to the terminal condi-
tion of the PDE, the path-wise difference of two convergent stochastic processes from either discretized SDEs or the PDEs 
network solution. As the two stochastic processes converge to the same stochastic processes in the Pardoux–Peng theory, 
the new algorithms are able to demonstrate a nearly half-order strong convergence rate of the underlying Euler–Maruyama 
scheme for the SDEs. We also show that the extrapolation method verifies the convergence order of the DNN solutions to 
some extent and further enhances the resulting accuracy of the estimate on the initial value of the PDE. For PDEs with time 
oscillatory solutions, we demonstrated that the MscaleDNN is shown to provide an enhancement of the resulting accuracy.

Future research will be done to improve the convergence of the networks and the overall schemes, including MscaleDNN 
for PDEs with spatially oscillatory solutions.
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