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Abstract. In this paper, we establish the exponential convergence theory for
the multipole and local expansions, shifting and translation operators for the
Green’s function of 3-dimensional Laplace equation in layered media. An imme-
diate application of the theory is to ensure the exponential convergence of the
FMM which has been shown by the numerical results reported in [27]. As the
Green’s function in layered media consists of free space and reaction field com-
ponents and the theory for the free space components is well known, this paper
will focus on the analysis for the reaction components. We first prove that the
density functions in the integral representations of the reaction components are
analytic and bounded in the right half complex wave number plane. Then, by
using the Cagniard-de Hoop transform and contour deformations, estimates for
the remainder terms of the truncated expansions are given, and, as a result, the
exponential convergence for the expansions and translation operators is proven.
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1 Introduction

Many important computational problems in science and engineering involve solving
the Laplace equation in layered media. For instance, solving the electric static po-
tential in a layered dielectric medium has important application in semi-conductor
industry, such as calculating the capacitance of interconnects (ICs) in very large-
scale integrated (VLSI) circuits for microchip designs [22-24,31]. Other applica-
tions of solving Laplace equation in layered media can be found in medical imaging
of brains [30], modeling of triboelectric nanogenerators [19], elasticity of compos-
ite materials [3-5], complex scattering problem in meta-materials [8], electrostatic
potential computation in ion channel simulation [20], and electrical impedance to-
mography for geophysical applications [6].

Due to complex geometric structure of the physical objects and the layered
medium setting from aforementioned application problems, integral methods with
the Green’s function of layered media (cf. [22,33]) are usually adopted, which re-
sults in a huge dense linear algebraic system to be solved by an iterative method
such as GMRES [7], etc. As a result, it will incur an O(N?) computational cost for
computing the product of a N x N matrix with a vector (a basic operation for the
GMRES iterative solver). The well-known fast multipole method (FMM) proposed
by Greengard and Rohklin [13,14] for sources in free space has been applied to ac-
celerate the iterative solvers for dense linear system resulted from boundary integral
methods [21,25]. However, the algorithm is only applicable for problems in free space
and the FMM for Green’s function in layered media has been one of the most impor-
tant un-resolved problems in the fast algorithm research community. Since the early
1990s, many researchers has been working on this problem and proposed several fast
algorithms including complex image approximation [2,10,12,16,18], inhomogeneous
plane wave expansion [9,17], etc. Nevertheless, the multipole expansion theory of
the Green’s function of Laplace equation in layered media has not been established,
which forms the core component of FMMs.

The free space FMM was based on low rank approximations for the far field
of sources, which are obtained by using truncated multipole expansions (MEs) and
local expansions (LEs) with a small truncation number p. The capability of using
a small number p to achieve high accuracy is due to the exponential convergence of
the MEs and LEs, as well as the shifting and translation operators for multipole to
multipole (M2M), local to local (L2L), and multipole to local (M2L) conversions.
The mathematical foundation of the MEs and their shifting and translation oper-
ators is the classical addition theory for Legendre polynomials or Bessel functions
(cf. [1,11,15,29]).

Recently, we have derived MEs, LEs and translation operators for Green’s func-
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tions in layered media and later extended the FMMs of the Helmholtz, Laplace and
Poisson-Botzmann equations from free space to layered media (cf. [26-28,32]). The
numerical results showed that the new FMMs have similar efficiency and accuracy
as the free space FMM while significantly enlarge the application area of the classic
ones. Although the effectiveness of the new FMMs has been validated by plenty
of numerical results, a mathematical proof for the exponential convergence of the
MEs and LEs and the corresponding translation operators is highly desirable for the
development and future application of the new FMMs. Moreover, the theoretical
results on the MEs for layered Green’s function could be a helpful mathematical
tool in many other research area.

In contrast with the cases in free space, the Green’s functions in layered media
do not have closed forms in the physical space, Sommerfeld-type integral repre-
sentations and extended Funck-Hecke formulas were used to derive the MEs, LEs
and translation operators in our work mentioned above. The distinct feature of
the expansions and translation operators is that they involve Sommerfeld-type in-
tegrals with integrands depending on the layered structure of the media. Hence,
the main difficulty in the convergence analysis is how to give a delicate estimate on
the Sommerfeld-type integrals. Previously, we proved the exponential convergence
for the 2-dimensional Helmholtz equation case [32] and numerically showed that the
MEs in 3-dimensional cases (including Helmholtz, Laplace and Poisson Boltzmann
equations) also have exponential convergence similar to their 2-dimensional coun-
terparts. In this paper, we will continue our previous work on 2-D Helmholtz equa-
tion [32] to establish the exponential convergence theory for 3-dimensional Laplace
equations in layered media. The main difficulty in the analysis of 3-dimensional
problems is due to the double improper integrals in the 2-dimensional inverse Fourier
transform used in the representation of the 3-dimensional layered Green’s function
while only 1-dimensional inverse Fourier transform is used in 2-dimensional cases.

As the layered Green’s function consists of free space and reaction components,
and the theory for free space components is exactly the same as that for free space
Green’s function, our contribution is mainly on the analysis for the reaction compo-
nents. Firstly, we prove that the density functions in the integral representation of
the reaction components are analytic and bounded in the right half complex wave
number plane. It will play a key role in the estimate of the Sommerfeld integrals.
Secondly, we follow the idea of introducing equivalent polarization sources (cf. [26])
to reformulate the reaction components and propose a general framework to derive
their MEs, LEs and translation operators. By proving delicate estimates for the
truncation errors under the general framework, we then give theoretical proof for
the exponential convergence of the MEs, LEs and translation operators and show
that the convergence rates are determined by the Euclidean distance between the
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targets and corresponding equivalent polarization sources. As a result, we validate
the idea of using the MEs, LEs and translation operators with equivalent polar-
ization sources in the FMMs for the reaction components. The theoretical results
proved in this paper show that the FMM for Laplace equation in layered media [27]
is mathematically justified to have similar accuracy and error controls as the free
space FMM.

The rest of the paper is organized as follows. In Section 2, we review the integral
representation of the Green’s function of Laplace equation in layered media and a
recursive algorithm for a stable and efficient calculation of the reaction densities of
general multi-layered media. Based on the recursive formulas, we prove that the
reaction densities are bounded and analytic in the right half complex wave number
plane, which is important for the estimate of the Sommerfeld-type integrals. Section
3 will first review the derivation and convergence analysis of MEs, LEs, shifting
and translation operators for the free space Green’s function. Then, proofs for the
exponential convergence of the MEs, LEs and translation operators for the reaction
components of the layered Green’s function are presented. In Section 4, the error
estimate of FMM for 3-dimensional Laplace equation in layered media is discussed
by using the theoretical results proved in Section 3. Finally, a conclusion is given in
Section 5.

2 Spectral property of the Green’s function
of 3-dimensional Laplace equation in
layered media

In this section, we will first introduce the Green’s function for the Laplace equation
in 3-D layer media, and then prove the analyticity and boundedness properties for
its spectral form in the Fourier transform domain, which will be a key ingredient for
the analysis presented in this paper.

Consider a layered medium consisting of L-interfaces located at z=d,, {=
0,1,---,L—1, see Fig. 1. The piece wise constant material parameter is described
by {e/}t,. Suppose we have a point source at v’ = (2/,3/,2’) in the ¢'th layer
(dp <z'<dp_1), then, the layered media Green’s function usy (r,7") for the Laplace
equation satisfies

Auge(r,r")=—=5(r,r"), (2.1)

at field point r=(x,y,2) in the (th layer (dy <z <d,—1), where é(r,r’) is the Dirac
delta function. By using Fourier transforms along x— and y—directions, the problem
can be solved analytically for each layer in z by imposing transmission conditions
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Figure 1: Sketch of the layer structure for general multi-layer media.

at the interface between (th and (¢—1)th layer (z=dy_1), i.e

8“@*1 Z’<x7y7z> aUggl(kx,ky,Z)
Up—1,0(X,Y,2) =Uppr (,Y,2), E¢— : =c ,
Kl,f(y) ze(y) -1 92 Vi G

as well as the decaying conditions in the top and bottom-most layers as z — +o00.

By applying Fourier transform in z, y directions and solving the resulted ODE
with interface conditions, we can obtain the expression of the Green’s function in

the physical domain as (cf. [27, Appendix B])

(2.2)

( gy (r, ) +uly (r,r'),
wpr (r,7") +ugp (7)) +udy (v ) +ugy (r,7), C#1,

U,M/(’I",’I"/): 1
g (") g (v ") Fugy (") g (r, T,)"‘ma (=0,

| uge(r,r')+ug(rr),
(2.3)
with reaction components given by Sommerfeld-type integrals:

> 1 1 T ”,r
uge (r,7') 87T2/ / ke (1) 080 (k) dkydky, a,b=1,2, (2.4)

where i=+/—1, k,=\/k2+k2, k= (k;,ky,ik,),

T (7)== y—y' 2 —dp+2'—dp), (2.5a)
i (1) = (=2’ ,y—y 2= dp+dp 1 —2), (2.5b)
T (1) = (x =2,y =y do 142 —dp—2), (2.5¢)
i (r, ) = (r ="y =y dp 1 +dp 1 —2' = 2), (2.5d)
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are coordinate mappings depending on interfaces and {of}(k,)} are the reaction
densities in the Fourier spectral space. The expression (2.3) is a general formula
for source 7’ in an inner layer. In the cases of the source r’ in the top or bottom
most layer, the reaction components {u$z(r,7')}2_; and {uf} (r,r’)}2_; will vanish,
respectively. It should be noted that strictly speaking, the term “reaction field”,
resulting from the polarization field of dissimilar dielectric materials in different
layers, is only accurate in (2.3) for the case when ¢=/¢ where the field of the free
space (singular) part is subtracted from the total potential field there. For simplicity
in notations, we will use the same term for other cases ¢+ ¢, considering that the
field of the free space part from a source in the ¢'th layer is smooth in the ¢th layer.

The reaction densities ofp(k,) only depend on the layered structure and the
material parameter €, in each layer. According to the derivation in [27, Appendix
BJ, a stable recurrence formula is available for large number of layers with more
general interface conditions

auf—l,@’ (:anaz) _ bg aufﬁ’(kxakyaz)

0z 0z - (26)

ag_l’ng_Lg/(fL‘,y,Z):a,gUgg/(I7y,Z)7 b(—l

where {a,,by}1, are given positive constants. In order to prove some key properties
of the densities, we will review the recurrence formula. For this purpose, let us

define

d_1:=dy, dpy1:=dp, Dyp=dp1—dy, ep=e*P (=01, L, (2.7a)
-1

+ Qy bg _ Qy bg 0 1
=t oy =——— CY=]]—, (=1,2,---,L, (2.7b
e a1 bey ¢ ap—1 by HQ@j ( )

j=0

and matrices

01,6 b1, ~
Tl (TM T, ) 1 <€e1€ﬂéF 661%):: 1 ﬁwz—l,e’ (2.8)

Tfl_ 1¢ sz_ L T ey, v 2e0_1
(0 O‘gél) O‘%) =01 i1,

A= (T2 ) o Fere, (2.8b)
ORI DY;
a0 & ! 1

80 .— (Su Sm) e b (2.8¢)

= s0 s0]~ : :

Siosw) 2\ L L

age;  beeg

It is worthy to point out that, we will use T 5, A® for £=1,2,---,L and S® for
¢=0,1,---,L. Then, the recursive algorithm is summarized in Algorithm 2.1.
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Algorithm 2.1 Stable and efficient algorithm for reaction densities o (k,) in
(2.4).

for /=0—L do
if /' <L then

C(£l+1) / / —Qyr
21 — ) ) ¢
ore (k) =———75 (%1 Qg9 )265’8 ( )v (2.9)
cwafl) by
end if
if />0 then
C(@’) ’ / ol Q!
22 -1 -1 -1 ¢
O-LZ’(k ): —W (agl ) aé2 )) 26[/718( ) (b€,> , (210)
Qg9
end if
for /I=L—-1—0 do
if /=/ then
(k)= Tﬁg%lazﬁl zﬂLTWH t%l+1 o Sﬁ)a@+5’fg)bg,, (2.11)
else
o (k) =T opty p+ T oty 0, (2.12)
end if
if /=¢'—1 then
o2 (k) =T o2+ T 022, + 8 Vay+ 54 b, (2.13)
else
i (kp) = Th'lo 1215/"‘Tu+1‘7£+1 o (2.14)
end if
if />0 then
if />/¢ then
_1 C(E,—i_l / 4 0'11
21y L )9, 0 (T
o (ky) 0 (0 1) oo A)2¢, S ( by )+A ( 6 )] (2.15)
else
Ugg/(k )= 0‘21 UM/( )/ 22a (2.16)
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if />¢—1 then

—1 cer < , 12
022 (k,) = W(O 1) WA(€_1)2641_1S(€_1) (Zj)JFA“) (Uéf)} (2.17)
22
else
g%,(k;): IU£€’< )/ 22 (2.18)
end if
end if
end for
end for

According to the formulas used in the Algorithm 2.1, we are able to prove some
important properties of the reaction densities, which will play a key role in the

analysis in the rest of this paper. First, we have the following lemma for the matrices
A® defined in (2.8).

Lemma 2.1. Suppose ap,by >0 for all {=0,1,---,L, then the entries in the second
row of the matrices AY satisfy

lasg 2= 1) P> (it =1 P (e 12— e 1) (1 P =i 12 >0 (2.19)

for ¢=1,2,--- L, and any k, € {z€C|Rez>0}.

Proof. By the definition of T/, A® in (2.8) for £=1,2,---,L, the entries
{ocg?,aé?}g“:l can be calculated recursively as

agl)_€171 ) OZSQ) =7, (2.20a)
ag) —0451)’72 6162+04§12)’72_62, a%) :aéll)’y;el—i—ozél;fyj, e (2.20b)
al)=alT Ve rertaly Ve, al)=alT Ve i asy Dt (2.200)

Naturally, we will prove the conclusion (2.19) by induction. As we have ay,b, >0 by
assumption and |e,| <1 for all k, € {z € C|Rez>0}, then

a b a
| 2

by B B ‘
T b b ‘:We | > v, el if Rek,>0. (2.21)
/—1 —1 1

Ap—1

Therefore, (2.19) is true for (=1 as

1)12 _ _
’0452)’ _|O‘2 | —|71 —m 61|2>|71| —|m |2>0' (2.22)
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Assume
s 2 S 2 _ — —
a5y | = o) "= (7 P = P (s P =z ) (i P= s P, (2.23)
is true for all s=2,3,--- /—1. By recursion (2.20), we have

¢ 0y (e—1 ¢ _ -1
|O‘él)|:|ﬁe—1%jeé—1+% ||Oéé2 )€€|> |a§2)‘ :Wé—l%z eg_1—|—7ﬂ|aé2 )|» (2.24)

where ﬁg::aéﬁ) / aé?. Noting that 77 are real, then

1Be-17v] eo—1+7; 1P = Be—ree—1 > (V) )2 +27F vy Re{ Be—ree—1 }+ (7, )%,
1Be—17; o1+ 1* =1B8e—1ee—1)*(v; )2 +27 v, Re{ Be—ree—1 }+ (v )*.
Therefore

Be-17 eer+7 P =1Be-1v e+ 1P = (0 = ()21 (1 = Becreea ).
Together with (2.24) and the fact |e,| <1 for all k, € {z € C|9Rez>0}, we obtain
02 )2 - (—1)2
s | e | =13 = ()1 (1= 1Be-a ) oy |
_ (—1) 2 0—1)2
=[(v )= (1 oy V[ = a5 [
Then, we complete the proof by applying the assumption (2.23). O

Proposition 2.1. Suppose ap,b, >0 for all (=0,1,---,L, then all reaction densities
odb (k) in (2.4) are continuous and bounded in {k,|Rek,>0}. Moreover, they are
analytic in the right half complex plane {k,|Rek,>0}.

Proof. From the definition (2.7) and (2.8), we have

et _ agr1be+aebiiq errr, TUH = ap1be—agbesq Fe-16_ <’V; e—1€er Yy 681)
H 2agbg ' 12 2agbg ’ ’)/Zeg "}/; ’
26 S(e) _ aé_leg bf_lef C(él) L 17 61 :£27
A ae_l _bg_l ’ 0(52) 2(2—6167]%(03@1,1*(&271)7 0 Sgl <£2

As they consist of constants {ay,be}2_, and their product with exponential functions
of k,, {THH T L (80 SOVE o) /o)), <, and the entries of matrices
{TLOL L {26,SOYL  and AO =TOL... T 1 are all continuous and bounded in
{k,|Rek,>0}. Moreover, by Lemma 2.1, the module of the denominators {agg)}le
in (2.9)-(2.18) are bounded below in {k,|9Rek,>0} by some positive constants deter-
mined by {a,b;}t_,. Therefore, checking the formulas (2.9)-(2.18) with the discus-
sions above, it is not difficult to conclude that all reaction densities are continuous
and bounded in {k,|9ek,>0} and analytic in the right half complex plane. O
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3 Convergence theory for the expansions of
the Green’s function of 3-dimensional
Laplace equation in layered media

In this section, we will establish the convergence theory of the multipole and local ex-
pansions of the Green’s function of 3-dimensional Laplace equation in layered media.
According to the expression (2.3), the layered media Green’s function consists of free
space and reaction field components. The expansions and their convergence results
for free space components are well-known and have laid the theoretical foundation
of the free space FMM. The theory presented in this paper is mainly established for
the reaction field components and will also include the exponential convergence of
the shifting and translation operators.

3.1 Convergence theory for the expansions of the free space
components

Let us first review the theoretical results for the free space components. It is mostly
for the completeness of the theory and comparison with the results that we will
prove for the reaction field components.

The addition theorems (cf. [11,15]) have been used to derive source/target sep-
arated ME, LE and corresponding shifting and translation operators for the free
space Green’s function. As in [27], we state the addition theorems (see Appendix
A) using scaled spherical harmonics

2n+1 (n—m)! ; ~ ;
Y "(0,0) = (—1)m\/ Zj; EZ+Z§' P (cosf)e™? := P (cosh)e™?, (3.1)

where P™(z) (resp. P:’l”(x)) is the associated (resp. normalized) Legendre function
of degree n and order m. We also use notations

. [2n+1 m (=1)"c, <n
" 4’ An_\/(n—m)!(n+m)!’ m|<n, (3:2)

in the presentation of the addition theorems and the rest part of this paper.

Given source and target centers rS and 7’ close to source r’ and target r such
that |r'—rs|<|r—r| and |r'—rL|>|r—7r’], the free space Green’s function has Taylor
expansions

1 1 1 & Pn(cos%)<rs)n7 (3.3)

Arfr—7|  dx|(r—rs)—(r'—rs)|  4r rs
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and
1 _ 1 _ 1 5 Palcosw) <ﬁ>n, (3.4)
A|lr—r!| Arx|(r—rl)—(r'—7rt)| 4x — T} T}

where P, (z) is the n-th order Legendre polynomial. Further, applying Legendre
addition Theorem A.l to expansions (3.3) and (3.4) gives source/target separated
ME

n 87 S) 1 /
M, 2 I Ps) Y (g, 3.5
47‘(“71 /r/| Z Z ?’L+1 4'/TC2 TS n ( S 5) ( )

n=0m=—n

and LE

]_ [
Z Z anT?Y ‘9t7%0t) Ly = e IY"‘(Q' ) (3'6)

47T|'r /| — =

In the formulas above, (75,05,¢5), (71,6:,¢:) are the spherical coordinates of r—r?
and r—rl ie.,

r—1; = (r¢sinfscosps,rssinfgsinpg, rycosbs), (3.7a)

<

S
(&
t
_rrc

= (rysinf;cospy,risindsingy, rycosby), (3.7b)
(rl,0.,0), (r},0;,}) are the spherical coordinates of ' —r? and r'—r! (see Fig. 2),
ie.,
v —ri=(rlsinf. cosy.,risind.siny’, r’cosh,), (3.8a)

v’ —r! = (risinf}cosy,,risinf}siny}, ricosd;), (3.8b)
s 18 the angle between r—r¢ and 7' —r$ and ~, the angle between r—r! and ' —7r!.
It is worthy to note that the notations (r,60s,¢s) and (r4,6;,¢;) will be used in many
important formulas in the rest part of this paper.

Applying Theorem A.3 in ME (3.5) provides a translation from ME (3.5) to LE
(3.6) which is given by

1)7+m AR ATV (6, o,
Z Z n * ntv ( ts§ t)M (39)

2 AM—TM n+1/+1 v
v=0p=—v CuAn—i-u st

where (74,05, ) is the spherical coordinate of 7$—rf. On the other hand, given
two new centers 75 and 7! close to ¢ and r!, respectively. By using the addition



12 W. Zhang, B. Wang and W. Cai / Ann. Appl. Math., 39 (2023), pp. 1-51

Figure 2: Spherical coordinates used in multipole and local expansions.

Theorems A.2 and A.4 in (3.5)-(3.6) and rearranging terms in the results, we have

v=0pu=—v

— M. mul— W‘Am A,ur Y (‘933790&‘?) Ynm+tu<95’¢s)
Yy Z » 2, AT R
v= Ouf—un’ 0Om/=—n nty ’

m|— ‘N‘Am “A“ n VYN m(essa ss) ern(ésa NS)
Y Yy s

n=0m=—nv=0pu=—v

and
Z Z Lyur{ Y01, 1)
v=0pu=—v
) n' —|m/ |+ |p|—|p—m/| 2Am AM 'Ttt <9tt790tt> L
Y Y Z Lw A Y (05)
v= 0#——1/71’ 0m/=— Crr Cony
_ _ n—|u—m|+|pu|—=|m| QAM mAmTtt nYVM ™ (O, 011 .
Y Yy e S
n=0m=—nv=npu=-—v v—n-n

where (fs,és,gbs), (ft,ét,gbt), (7ss,0ss,0s5) and (ry,0y,p4 ) are the spherical coordinates
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=S ~t s =S t ~t
Of ’I"—’I“C, ’I“—TC, ’I“C—TC and ’l"c—’f‘c, 1.€.,

P —7° = (Fysinf, cos Gy, Fesinbysin g, 7 cosb, ), (3.10a)
7 — 7 = (Fysinf, cos Py, 7y sinbysin @y, 7r.cosy), (3.10Db)
7. — 70 = (rssSIN0g5COS P55, 755 SN0 SIN P, 755 COSOys ), (3.10¢)
’I"Z — ’FZ (Ttt sin gtt COSWt, Tt sin Qtt sin Dtt,T4: COS Qtt) (3 ]_Od)
These two formulas implies that the coefficients
M . 1 ~/nYm(0/ Q5/) Z 1 Fl—n— IYm(Q/ ~ ) (3 11)
e 47r25” e nm 47r02t '

of the ME and LE at new centers 7¢ and 7% can be obtained via center shifting

) n_ v (_1)|m|—\u\Am*“Aﬂr"_”Yn“:Vm(st,@ss)
Mnmzz Z Am My, (3.12a)
v=0pu=—v n v
oo v (_ V n—|p—m|+|p|—|m| 2A'u mAmTtt TLYVM (etta(ptt)
DY T P

V=np=—v

Apparently, the following truncation error estimates

1 1 zp:Pn(cos%) (ré)n r
Amlr—v'| Ami= v Ts

p+1
< _5> ,ore>rl, (3.13)

—
T A (rs—rl) \rg

S

and

1 1 iPn(cos%) (Tt)”
Aic|lr—r'| 4w — T T

t

1 Tt p+1 ’
<— | = < 3.14
“An(r,—ry) <r2> ST (3.14)

for the Taylor expansions (3.3)-(3.4) can be obtained by using the fact |P,(x)| <1
for all z €[—1,1]. Recalling the derivation of the ME (3.5) and the LE (3.6), we
directly obtain the convergence theory for the ME and LE.

Theorem 3.1. Given a>0, r,ri €R3 such that |r—r:|>a, then for any r' inside
the sphere {x:|x—r:|<a}, the ME (3.5) holds and has truncation error estimate

Yy 3,803) 1 1 <a )p+1
M <— — . 3.15

drry—a \r,
=0m=-n
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Theorem 3.2. Given a>0, r,rt €R? such that |r—rt|<a, then for any v outside
the sphere {x:|x—7rt| <a}, the LE (4.5) holds and has truncation error estimate

)47-‘-‘7, ,r/| Z Z an/r't 0t7(70t) ! 1 <E>p+1. (316)

AT a— NG
=0m=-—n

The ME to LE translation (3.9) is usually truncated to give approximate local
expansion coefficients

+ p—m

u |m|A“A;nYn+V (est,@st>M
Z Z CQAAL m n+u+1 vpe
lv|=0p=—v n+v Tst

(3.17)

We find that the detailed proof of the error estimate for the truncated M2L trans-
lation has not been presented in the literature. Therefore, we present the following
theorem with the details of the proof given in the Appendix B. The geometric con-
figuration of the ME to LE translation is demonstrated in Fig. 3 via a 2-D sketch.

Figure 3: The geometric configuration of the ME, LE and the M2L translation for source far away from
the target point.

Theorem 3.3. Given a; >0, ay>0, rs, vt €R? such that |ré—rt|>a;+cay with c>1.
Then, for any v’ inside the sphere {x:|x—7r:|<ai} and any r inside the sphere
{z:|z—7l|<as}, the truncated ME to LE translation (3.17) leads to approzimation

with error estimate

Z Z L2 Y™ (O] < (“1+“2 )pﬂ. (3.18)

~dn (c—1)ag \ay+cay

‘47r]'r (e S
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(a) ME to ME shifting (b) LE to LE shifting

Figure 4: The geometric configuration for the center shifting.

Now, we consider the center shifting. The geometric configurations are demon-
strated in Fig. 4. Noting that the ME center shifting formulation (3.12a) gives
exactly the coefficients of the unique multipole expansion with respect to the new
center 7). By Theorem 3.1, we have error estimate for the shifted ME as follows.

Corollary 3.1. Given a>0 and two centers rs,75 € R? close to each other with
distance d=|75—r$|, v is another given point far away from them such that |r—73]>
a+d, then for any v inside the sphere {x:|x—r|<a}, the ME shifting formulation

(3.12a) leads to approximation with error estimate

ym S,gos) 1 1 (a+d>P+1
§ § M, o) o 2 - . 3.19
‘47r]r i Fotl Arrg—a—d\ T, ( )

=0m=—n

Although, the LE to LE shifting operator (3.12b) has an infinite summation, the
shifting operation remains exact with finite sum when we are shifting a truncated
LE to a new center. More clearly, we truncate the LE (3.6) to get approximation

NZZanrt ™ (0y,00) 1= D (r,1"). (3.20)

47T|’I" /| —

Obviously, ®,(r,r’) can be seen as an infinite sum

Z Z LY, (01,501 (3.21)

n=0m=—n
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with coefficients defined as

« {an, n<p, |m|<n,

Lum = (3.22)

0, n>p, |m|<n.
Applying the LE center shifting (3.12b) to (3.21) leads to

n=0m=—n

and the coefficients are given by

> v 1/ n— m|+ m| .2 ,LL m Am,.V—ny 1—m
i _} : }: (-1) ummlHul |C Ay Ay Yo, (9tt7<Ptt)L
nm = 2 CQAM Vi
v=np=—v Cv—nCn

B p v (_ ]/ n—|p—m|+|pu|—|m| QAM mAmTtt nYV# <0tt7§0tt)
=22 2A

l/'fln

Ly, (3.24)

V=n p=—v

Here, the definition (3.22) for [Ainm is used to reduce the infinite summation to the
finite one. Moreover, we have L,,, =0 for all n>p. As a result, (3.20) and (3.23)

imply
SN LtV ) =5 S LoV 0150, (3.25)

n=0m=—n n=0m=—n

where the coefficients Ly, are calculated via (3.24). Together with convergence
result in Theorem 3.2, we have error estimate for the LE center shifting as follows.

Corollary 3.2. Given a >0 and two centers r!, 7. € R® close to each other with
distance d=|rL—rt|, v is another given point inside the sphere {x:|x—7t| <a},
then for any v’ outside the sphere {x:|x—rt|>a+d}, applying the truncated LE
shifting formula (3.12b) to the truncated LE (3.20) leads to approzimation with

error estimate

‘47T|’I“ /| ZZL”W:?Y ‘9t>90t)

=0m=—n

1 <ft+d>p+1
47TCL T \Na-+d .

(3.26)

3.2 A general framework for the derivation of the
expansions, shifting and translation operators
for the reaction components

Besides using the addition theorems as presented above, we have proposed a different
derivation (cf. [27]) for (3.5) and (3.6) using the integral representation of 1/|r—17’|.
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Moreover, the methodology has been further applied to derive multipole and local
expansions for the reaction components defined in (2.4).

Below, we will propose a general framework for the derivation and convergence
analysis of the expansions and corresponding translation operators for the reaction
components. For this purpose, we define a general integral

Z(r;o) // e* "o (k,)dk.dk,, Vr=(r,y,2) ER? (3.27)

where k, = \/k2+k3, k= (ky,ky,ik,), o(k,) is a given density function. Applying
Taylor expansion to the exponential kernels gives

Z(r+r';0) // lkrzk n' o (k,)dk,dk,, (3.284)

(ik-7')" (k-
I(r+r'+7"50) // l’wzzk ( TWI' )" (k) dkodky,  (3.28b)

n=0 v=0

for any v =(2',y/,2"), "= (z",y",2") in R3. Suppose z>0, z+2'>0, z+2'+2" >0,
and the density function o(k,) is not increasing exponentially as k, — oo, then the
integrals in (3.27) and (3.28) are absolutely convergent as |e*"|=e~%»*. Let us first
present the main conclusion that the order of the improper integral and the infinite
summation in (3.28) can be exchanged and the resulting series have exponential
convergence under suitable conditions. Detailed proof will be given in Section 3.4.
For the sake of brevity, we will use notations

> > 1 i-r(ik'r/>n
In(r,r’;a):/_oo/_ook—pek p o(k,)dk,dk,, (3.29a)
1 4. (k)" (k")
T (r ' 7o) = /_ / L ST ok, bl (3.20D)

These integrals are all absolutely convergent due to the exponential decaying factor
ik-r
e,

Theorem 3.4. Suppose the density function o(k,) is analytic and has a bound
lo(k,)| <M, in the right half complex plane {k,:Rek,>0}, r=(x,y,2), r'=(2',y/,7') €
R3 such that >0, z+2'>0, and |r| > |r'|. Then, the expansion

I(r+r0)=> T,(r.r';0) (3.30)

n=0
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holds while the truncation error estimate is given by

p +1
2mwM, (|r']\”
7z ’ —E 1, " ‘<—U — . 3.31
(T+T ,O') ~ (r,r a0> = |7°|—|7°/| ( |’l"| ) ( )

In addition, suppose "= (2" y",2") ER? such that 242" +2">0 and |r| > |r'|+|r"|.
Then, the expansion

I('I"—i—’l",—i—’l"”;a):ZZIRV(T‘,’PI,'I””;U) (3.32)

n=0v=0
holds and the truncation error estimate is given by

p p
I(r+’r’—|—’r”;a)—ZZZW(T,T’,T”;J)‘

n=0 v=0

47 M, [ |7’ p+1 7| p+1
< ( ) +(————> . (3.33)
|| =] —=|r"| [\|r|—]|r"| 7| —|7/|

The following limiting version of the extended Legendre addition theorem will
also be used to derive MEs and LEs for the reaction components of the layered
Green’s function.

Theorem 3.5. Let 0, ¢ be the azimuthal angle and polar angles of a unit vector T,
a€(0,2m) be a given angle. Define a vector ko= (cosa,sina,i) with complex entry.
Then

= Z Cﬁﬁf(cos@)eim(o‘_“"), (3.34)

m=—n

4
cgzﬁnm¢ z 3 (3.35)

(ikg-7)"
n!

where

(2n+1)(n+m)!(n—m)!

Now, we are ready to present the expansions and their translation operators
for reaction components. According to the expressions (2.4)-(2.5) for the reaction
components uff, (r,7'), it is natural to introduce notations

v =2y do— (2 —dp)), vy = (2" y \do—(dp_1—2")), (3.36a)
ry = (2" do1+ (2 —dp)), roo = (29 dy_1+(dp_1—2")), (3.36b)
which will simplify the coordinates mapping in (2.5) as follows

T (rr ) =r—r,, T r)=T1(r—rh), b=12. (3.37)
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Here, 7(r):=(z,y,—2) is the reflection of any r=(z,y,2) ER? according to zy-plane.
Obviously, the reflection 7(r) satisfies

lT(r)|=|r|, T(r+r)=1(r)+7(r), T(ar)=at(r), VYr,r'€R? VacR. (3.38)

As a result, we can get rid of the heavy notations 7% (r,7’) in (2.4) by using the
new coordinates to re-express the reaction components as follows

> 1 ik-(r—r ~

tge (1) w/ / oy (k) dkodky =g (r,r4,), (3.39%)
= 1 etkT(r— T ~ /

tge (1) w/ / BT 628 (k) dhadhy =035 (7,rh).  (3.39b)

By the definition (3.27), we have

~1b . 10 b . 20

g (7, 75) =Z(r—7hyi00), T (7,75, =Z(T(r—rh);00)- (3.40)
The coordinates in (3.36) are exactly the equivalent polarization sources (see Fig. 5)
which we have introduced in [26,27]. As in our previous papers, we will also use
notations (x},,y%,,24,) for the coordinates of 7/, a,b=1,2, in this paper.

Remark 3.1. There are two special cases

1 > <1 ik-(r—7r’)
uééz-l-l(lri??’./) = 871'2/ / k_e B OZE—H (k )dk dklh
—o0dJ —oo Vp

1 Y | ik-T(r—r’
u?él—l(rjrl)zgﬂa/ / k_ek ( o Eé 1(k )dk; dky,
—o00J —oo0 vp

in which we have
12 AN / 21 /
Ty (rr)=r—r', 7y (r,r')=71(r—7').
Actually, we will have r{,=7" and r5; =7 in these two cases, respectively.

Next, we will consider the expansions for a3 (r,7l,) with respect to (polariza-

tion) source center 7% = (2% y% 29) and target center v’ = (2! vy z!). As we are

C
considering targets in the /-th layer and the equivalent polarized coordinates are
always located either above the interface z=d,_; or below the interface z=d, (see
Fig. 5), it is reasonable to assume that the z-coordinates of 7% and r! satisfy (see
Fig. 6)
16 20 ¢
2, <dg, Z, >dg_17 dg<Zc<dg_1. (341)
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Figure 5: Location of equivalent polarization sources associated to u%’,

By the definition (3.27) and the linear features (3.38) of 7(r), we can insert the
source center 7% and the target center r in (3.40) to give

~1b

~2b

ua,(r,r’w):@l'(r—r

, 1
Uy (7,15) = @I(T(T—T

—(rie—7e")i00); (3.42a)
) =T (T —12");0%), (3.42b)
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and

. 1
gy (r,71) = g5 L (r—ri+ (re—riy)sou), (3.43a)

. 1
u%é’,(r Thy) = 3 QI(T(T_TZ)_T(TZ—TQQ gl?é’,), (3.43Db)
By definition (3.36) and assumptions in (3.41), we have

2—20>0, 2l—2,>0, 22—2>0, 2,—zl>0, 2—2,>0, zh,—2>0. (3.44)

Assume the centers 7% and r! further satisfy |r—r%®|> |rl,—r%| and |r—rl| <
|rt—wl.|, then (3.44) and Proposition 2.1 implies that Theorem 3.4 can be applied
to give expansions for the integrals in (3.42)-(3.43), i.e

—ik-(r},—rl°
all(r.r,) = 822 / / <n1,;€ )" oo (ky)dkydk,,  (3.45a)

2b

1 T’)” ’r‘ lk T<r ,rC )]n
W28 (7 1rh,) = < 22 / / ik nfk‘; 028 (k,)dkydk,, (3.45b)

ab’

and

ik
gy (r,rh,) = - 22/ / G (riryy) [ (r'k"" Al o (k,)dk,dk,, (3.46a)

pikr(riory yik-T(r—r
W28 (7, 1h,) = 822// ik (k JI" 028 (k,)dkydk,.  (3.46b)

Further, applying Theorem 3.5 to the expansions in (3.45)-(3.46) and then using the
identities

Ynm(’ir—e,gp) = (_1)n+mym(97@)’ Ynm(0>7r+90) = <_1)mym(0790)7 (347)

n n

to simplify the obtained results, we obtain MEs

0—2

) =30 30 M T (), M= (2 VO ), (349

n=0m=—n

at equivalent polarization source centers 7% and LEs

g (r,74) Z Z L3S, Y, (0r,1) (3.49)

n=0m=-—n



22 W. Zhang, B. Wang and W. Cai / Ann. Appl. Math., 39 (2023), pp. 1-51

at target center 7!, respectively. Here, (r®® 6% %) and (rs,0;,p;) are the spherical
coordinates of ri, —r% and r—r! (no / notation is included in the spherical coor-
dinates of 7/, —7% for simpler notation), the ME basis functions F (r,r%) are
represented by Sommerfeld—type integrals

n 2 m
F1o (g piry - (DG / / W rri s (g eme gl dk, (3.500)
fg;(r,rfb):% / / R T o2 (k) ki e dk,dk,,  (3.50D)

T
and the local expansion coefficients L% are given by
nmi / / lk: (7'3_7‘/1[;)0-1};/(k;p)k;b—le—imadkwdky’ (351&)
n+m m )

Li[;n— C / / 1k 7( T%)O-ff (kp)k,gfleflmadkxdky. (351b)

A desirable feature of the expansions of reaction components discussed above is
that the formula in (3.48) for the ME coefficients and the formula (3.49) for the LE
have exactly the same form as the formulas of ME coefficients and LE for free space
Green’s function. Therefore, we can see that center shifting for multipole and local
expansions are exactly the same as free space case given in (3.12a) and (3.12b).

As in (3.42)-(3.43), the reaction components in (3.39) can also be represented as

1
g (r,rh,) = @I(r—ri—l—(ri—rib)—(rib ri®:ol), (3.52a)
- 1
B rly) = Tl at) (el r (- )o) (3520)

Apparently, from (3.41), we have

t—2">0, 22'—z>0. (3.53)

Assume the given centers 7% and 7! satisfy |ri—r%|>|r/, —r%®|+|r—7r!|, then (3.44),
(3.53) and Proposition 2.1 implies that Theorem 3.4 can be applied to give expan-
sions for the integrals in (3.52), i.e

g (r,11) = S QZZIW L=t r—rl —(rl,—7l%);00), (3.54a)

n=0 v=0

azp (r,rh ) = = QZZI’“’ ri—r®) r(r—rl), —7 (P, —r);08). (3.54Db)

n=0r=0
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Applying Proposition 3.5 to the integrand of Z,,,(r,r’,7",0), we obtain the transla-
tion from ME (3.48) to LE (3.49), i.e

Lub ZZ nmuu l/p,’ (355)

v=0pu=—v

where the translation operators are given as follows

Tomn= ”m”" / / e (re=re) b (s, kot el g d,, (3.56a)
T = ”m”“ / / R Tremr) o2 (ke mag dk, o (3.56b)

and
1 _ v 2, vm 2 _ n+m—+up 2 o m
Dnmu,u ( 1) CZ/CTL 057 Dnmu,u ( 1) “szcn CII/L

3.3 Convergence theory for the expansions of the reaction
components

Recalling the derivation of the ME (3.5) and the LE (3.6), we have the following
exponential convergence for the ME and LE.

Theorem 3.6. Given a>0, r=(x,y,2) a target point in the (-th layer and v =
(2% Y% 2%%) a (polarization) source center satisfying conditions in (3.41). Suppose
|r—7%| >a, then, for any equivalent polarization source v, inside the sphere {x:
|z —7r®<a}, the MEs in (3.48) hold and have truncation error estimates

_ o’
A7t |r—rtt|—a

1 Mo ( ¢ )p+1 (3.57)

ab ab ab ab
UM’ ) ab E : Mnmfnm T ) S |’l“—’l’ab|
n=0m=—n c

for a,b=1,2, where M, a is the bound of o3 (k,) in the right half complex plane.

Proof. The MEs in (3.48) have been proved in the last subsection. Here, we only
need to consider the error estimate. By assumptions in (3.41), we have

Z_Zib>07 ZC%_Z>O7 Z_Zib>07 Zéb—2>0.

Together with the assumption |r—72®|>a>|r/ —7%®| and Proposition 2.1, we can
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apply the truncation error estimates (3.31) to obtain

10 1b 16
‘uw T, 7) — E E M, F..(r,r, )‘

n=0m=—n

1

) Z(r+riyiom) ZI —(re—7")s00) |,
Mo (Iﬁr?‘i"l)l’“
Am(|r—rd|=|ry =)\ |r—r®| ’

and similarly

2 2b 26
‘ua, T, 7o) — E E M F2 (r,rs )‘

n=0m=-—n

Moz, <Iréb—r2"|>p+l

Am(fr—r|=|ry, =)\ [r—7r2]

Consequently, the error estimate (3.57) follows by applying the assumption |r/,—
7% <a in the above estimates. O

It is worthy to mention that the above theoretical results have been predicted
by the numerical results in [27, Section 3.3]. Following a similar proof, we have the
error estimate for the truncated LE as follows.

Theorem 3.7. Given a>0, r=(x,y,2z) a target point in the (-th layer and r’=
(a%,yL,2L) a center satisfying conditions in (3.41). Suppose |r—rt|<a, then, for any
equivalent polarization source vl outside the sphere {x:|x—rt|<a}, the LEs (3.49)

hold and have truncation error estimates

o] < LMot (lr=rtlye
Uy (1,75) ZZL 1Y (Or,000) | < N — ”P—’I‘é’( . ) (3.58)

n=0m=-—n

for a,b=1,2, where M, o is the bound of of,(k,) in the right half complex plane.

It is worthy to emphasize that the equivalent polarization sources 7}, and 74,
are defined to be below the lower and above the upper interfaces of the target layer,
respectively (see Fig. 6). The ME centers are required to be located on the same
side as the corresponding equivalent polarization sources. Accordingly, the target
center is required to be in the same layer as the target point . We refer to Fig. 6
for an illustration of the geometric configurations. The shadowed areas indicate
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z=d 2 N z=d

(=1

Figure 6: The geometric configuration for the ME and LE of the reaction components.

N

\ 4 ///'

Figure 7: The geometric configuration for the center shifting.

the feasible zones of the equivalent polarization sources and targets such that the

expansions and corresponding convergence results hold.

Now, we consider the error estimate for the ME to LE translation. Suppose the
ME to LE translations in (3.55) are truncated to give approximated LE coefficients

p v

nm,yp v

Lpe=> "N T Mo (3.59)

v=0pu=—v

25
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Thus, approximate LEs

g (r,mhy) R digy” (r,mh,) Z Z LEPriY ™ (0,01 (3.60)

n=0m=-—n

with approximate LE coefficients defined in (3.59) are obtained after M2L trans-

lation. Recalling representation (3.52) and expansion (3.54), the approximate LEs
~ab,p

Uy,” (r,7h,) have representations

ap (rorle) = o 22217”, el et —(r] —7r%)000), (3.61a)
n=0 v=0
1 p

B rmly) = s 3D T el ) ().~ —r®)0). (3610)
n=0r=0

Obviously, they are rectangular truncation of the double Taylor series. Hence, we
have the following error estimate.

Theorem 3.8. Given a; >0, as>0, r, v’ are any points locate in the £-th and ¢'-th
layers, respectively. Suppose T and 7! are two points satisfy conditions in (3.41)
and |rt—r®| > a;+cay with some ¢>1. Then, the truncated ME to LE translation
(3.59) has error estimate

Mub

o

ab ~ or ay )p“ (1)?“ 369
UM/(’I’,T'ah> UZE’ (T7rab ’— It (C 1)&2 |:<a1+(c_1)a2 + c ) ( . )

where Mgg;, is the bound of o3, (k,) in the right half complex plane.

Proof. By (3.54), (3.61) and truncation error estimate (3.33), we obtain

~1b,
}Uw ) — Uee'p(r le)‘

1
D) L W e Ly )
g n=0v=0
Mo ( oty
2 (g —re®| = |r—re| =[rl, =7 ) Mrg—red| = |r—r|

M 1b

o

_pt +1
r=r| )p (3.63)

+ ee! (
2r(|ri—met|=lr—ri[ = |rip =) Nre—ret| = |rj, —re|

Similar error estimate can also be obtained for the reaction component a2 (r,75;)
by following the same derivations. Consequently, the error estimate (3.62) follows
by further applying the assumptions |r/, —7%| <a; and |r—rf|<ay and |ri—r®| >
ai+casy. ]
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Remark 3.2. The error estimates in Theorems 3.6-3.8 are almost the same as the
ones in Theorems 3.1-3.3 except the dependence on the bound MJ% of the density

U?;/(kp)-

3.4 Proof for the Theorem 3.4

The proof consists of the following three steps:

Step 1: Rotation according to the azimuthal angle of . By the assumptions
2>0,24+2 >0 and z+2'+2" >0, all improper integrals in the Theorem 3.4 have
exponentially decaying integrands and hence are absolutely convergent. Denote by
(p,) the polar coordinate of (x,y) and define a transform in the complex (k;,k,)-
plane as follows:

E+in=e"(k,—ik,), (3.64)
or equivalently,
ky,=&cosp+nsing, k,=Esinp—ncosy. (3.65)
It is obvious that k,=+/&2+n?, dk,dk,=—d&dn and
'k:. S\n ingsEn n n
ik 7) = (f2+ )5 [SCOS(@ p)nsinp—p) sina+icosa
n! n! VE+n?

=g (&,1,:7) (3.66)
for any 7= (Fsinacos3,7sinasin3,7cosa) € R3. Moreover, by (3.65), we have

eik-'r :ei(kzx+kyy)—kpz :eiﬁp—kpz'

Therefore, integrals in (3.28) can be re-expressed as

I(r+r';0) / / Zg (&,m, ;1" )elPRoz 5{: )dgd

:/0 / Z[Qn(&—n,cp;r’)—ﬁn@,n,% )] eierhez Eﬂ >d§d (3.67)
—p=0 P
and

Z(r+r'+7r";0) / /OOZng, (&,m, 57 7)o Re 5{: )dfd

X n=0v=0 p

/ /“ii [9 (&= 057" 7")

n=0v=0

: k
g per’ a0t T ey (3.68)

p
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where
g (&m, 037 0") 1= (Em,0:7) G0 (§ 1, 037"). (3.69)
Accordingly, the integrals in (3.29) can be re-expressed as

In(r+r’;0)=// [Qn(ﬁ,—n,s@;r’)—Qn(é,n,w;r’)}eig"‘k‘“#dwﬁ, (3.70a)
0 —00

p

T (r 1 1750) = / / [Gun (€1 i0:7" 1)
0 —00

: k
S ) P d (3.700)
o
Step 2: Contour deformation. In the following analysis, we will deform the
contour of the inner integrals in (3.67), (3.68) and (3.70). As the integrands involve
square root function k,(§) =+/£2+n?, we choose branch as follows

| 2| +QRez
2

|z| —Rez

V= 2

+isign(Jmz) , VzeC. (3.71)

Here and after, we use notations PRez, Jmz for the real and imaginary parts of any
given complex number z. With this branch, k,(§)=+/£2+n? for any fixed n#0 has
branch cut along {{|{=i(, (> |n|} and {£|¢=i(, (< —|n|} (the red lines in Fig. 8)

in the complex &-plane and is analytic with respect to € in the complex domain

C\{&lE=i¢, ¢=[nyU{glE=i¢, ¢<—=[nl}).
The contour deformation will be based on the following lemma:

Lemma 3.1. Denote by Qf C C the complex domain between real azis and the
contour I' defined by the parametric {4 (t) in (3.74). Given real numbers p>0, z>0
and n#0, suppose r=1/p>+22, f(&) is an analytic function in the complex domain
Qf and satisfies

lim | f(&)er VI Hea¢| =0 (3.72)

€] —+o0
for £€Q. Then, we have the following contour deformation
e_‘mrt

t2—1

/ T fE)ee VT e / TUHE AL B+ FE (A (D) mdt,  (3.73)

where £4(t), AL(t) are defined by the Cagniard-de Hoop transform

ety =" (pt2vVE2—1), As(t)= @(p\/ﬁ—wizt). (3.74)

r
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Proof. Define a hyperbolic integral path I'=1", UT'_| where

For any R>0, let O}, and OF be the parts of the circle {£:|¢]=R} that are bounded
by the real axis and 'y, respectively (see Fig. 8). Denote by {1 (tg) = Rel% the

intersections of OE and I'=. Then, 0< 0}, < 5, 5 <Op<mand

0% y :
‘ f(&)esr—v "QWng‘ < / ! | f(Re®)elfe eV iz ol g, (3.76a)
of 0

f(g)eiﬁﬂfv"“f"’zczg‘ < [ |F(Re?)eiRe o EE R . (3.76D)
%

Or

Taking limit for R — +oo and applying the assumption (3.72) on the right hand
sides gives

‘ NG ”2+52zd£‘ 0, R—+oo. (3.77)
OR

Recalling the branch (3.71), the square root function /7?42 has branch cut along
{£1€=1¢, ¢>|n|} and {£|€=i(, (< —|n|} (see Fig. 8). By the assumption z>0, we
always have @ <|n| which implies that the square root function y/n?+&? is analytic
in the domain Q" for any fixed n#0. Together with the assumption on f(§), we
have f(&)e€P~V7+€ i analytic in the domain Qf for any fixed 7#0. Therefore,
by Cauchy’s theorem, (3.73) follows from the facts

| HoesVEE e [ e VIS v @)
o r

and
g+ (t) nl . AL (1)
= ipVi2—1+zt)= . 3.79
pTamiy e AU )= T (3.79)
This completes the proof. n

In order to deform the contour of the inner integrals in (3.67), (3.68) and (3.70)
from the real axis to the contour I' defined in the Lemma 3.1, 1 is not allowed to
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4 Im(5)

-]

Figure 8: The Cagniard-de Hoop transform from the real axis to I'; UI'_.

touch 0. For this reason, we introduce sequences

+ ! — OO 1§p k‘pz (
gk ('I",’l" 70) /Ilg /_ Zgn 5 m,er L
) i&p— k‘pz (kp) dgd

5;?(7“77“’70):[00/_ Zﬁn(é,—m% "

Fi(rr' r" o) / /miignygnw,rr

») dedn,

p

itp—ky= 0 (Kp)
)fpk ]{;dgd

n=0nu=0
Fi (rr'r”,0) / / Zng —n,57 7)oz gfk’))déd
n=0nu=0 p
and
g rrto)= [ [ auenspires e e geay,
1 Jooo Ko
erro)= [ [ autemngrer Ty
1
1 J- p

/ gnu(gun,(ﬁ;'f’/?'r‘”) ip—kpz 5{: )dfd

P

Math., 39 (2023),

pp. 1-51

(3.80a)

(3.80D)

(3.80c)

(3.80d)

(3.81a)
(3.81b)

(3.81c¢)
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Fo (e " o) gm,§ —n,o;r 7" )elsP kp2 T o (k, )dfdn, 3.81d
k k,

for k=1,2,---. Apparently, they are all absolutely convergent integrals under the
assumption z>0, z4+2'>0 and z+2z'+2" >0. Moreover, we have

IZ(r+r'0)=lim & (r,7',0)— lim & (r,r',0), (3.82a)
k—o0 k—o0
Z(r+r'+7r";0) = lim f;(r,r',r”,o)—]}im Fl(rr' " o). (3.82b)
—00 —00
and
To(r+r0)=lim & (r,7' 0)— lim & (r,7,0), (3.83a)
k—ro0 k—o0
Im,(r—l—r'+r";a):khm Fo (e ! 0)— lim 77 (v, 7" o). (3.83b)
—00 k—oc0

The inner integrals of the double integrals defined in (3.80)-(3.81) can change contour
from real axis to I' as proved in the following lemmas.

Lemma 3.2. Suppose z>0, z+2'>0, |r'|<|r| and o(k,) is analytic and bounded
in the right half complex plane, then

Ef(r,r'0) / / Zh (t,n, ;7 \/tn_rtdtdn, (3.84a)
Ek(r,r’;a):/i /1 nzﬂ)ﬁn(t,—n,w;r’)\jtz—n_:tldtdn. (3.84D)

On the other hand, suppose z2>0, z+2'+2">0 and |r'+7"| <|r|, then
FH ! a0) / /miihm Lo r )\/t_dtdn, (3.85a)
II;(T’TI’T//;U):/i /looiihny(t,—n,go;r’,r”)\Z;—n_:tldtdn. (3.85b)

Here, r=|r|,

ha(t,0,0:7") = G (&4 (8),m 057 Vo (KT (1)) — g (6= (£) m. 057" ) (K, (1)), (3.86a)
P (1,057 ,7") = g (E4- () 1, 057" 7" o (K (1))
— g (§-(t),n, 057" 7)o (K (1)), (3.86b)

£+ (t) is defined in (3.74), and k3 (t):=+/Ex(t)+n? is the value of k, on the contour

I introduced in Lemma 3.1.
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Proof. As discussed in the proof of Lemma 3.1, the square root function /n?4¢£2
is analytic with respect to ¢ in the domain Q' for z>0 and 7#0. Moreover, the
branch (3.71) adopted to the square root function implies

Relk, ()] =Re[\/E2+12| >0, VE€Q! and n+#£0. (3.87)

Together with the assumption o(k,) is analytic and bounded in the right half com-
plex plane, we obtain o(k,(£)) is analytic and bounded in Q. On the other hand,
the series

> amEEner), DY gu(S ot ), (3.88)
n=0 n=0 r=0

are resulted from a rotation of the Taylor expansions of exponential functions. Then,
the definition (3.66) and (3.69) gives

Zgn 5 IHI o ) (ac cosp+y’ sing)tin(z’'sinp—y’ cosp)—kp 2’ 7

Zzgnu(é g 1) € oo 0+ s (o s+ s+
n=0 v=0

Together with the discussions on k,(£)#0 and o(k,(¢)) in the domain Qf, we can
conclude that

‘MQFZ%%LZEQMGim%ﬂW%
P n=0 v=0

are analytic in the domain Q' for any n#0.
Denoting £ = Re?; the branch defined in (3.71) gives a lower bound

24 R2c0s20)2+ R4sin?20+n2+ R2cos20
%%@:¢wm ) 0

5 > R|cosf|=|MReg|. (3.89)

Suppose £ €QfFN(0FUOR), we have €[0,05]U[05, 7], where 67 is defined as in the
proof of Lemma 3.1. Then, the definition of §% gives

sind

t

|cosd| 2y/15—1

. YOe[0,05]U[05, 7). (3.90)
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Noting that tp — 400 as R— 400, we obtain

. Jm¢ . PR P
lim —< lim ———==- 3.91
gl—-+oo [Rel| T trtoo 121 2 (3:91)

for £€Q. By the assumption z+2'>0, inequality (3.89) and exponential expression
for the series in (3.88), we have

< (=) Ime— (=42 e (3.92)

eiﬁP*kpZZgn(éjin,(p;,r/)
n=0

where p':=+/x2+y2. Similarly, the assumption z+2z'+2z" >0 leads to

oo o0

eiépikpzZzgnz/(f,in,@;"'/,"'”)

n=0 v=0

< e(F=pImE— ("4 Ioiee] (3.93)

where p:=+/(2'+2")2+(y'+y")?. Substituting into the definition of f;(£), f2(€) and
applying the boundedness of o(k,(£)), we obtain

. iEp—kpz 3 / — jmg - ! 5
|§‘1i>1200}f1(€)6 ¢ < C|£|ll>rilooexp{|9%§| [(P p) Red] (2+2 )} } k(€)1

. iEp—kpz : S m_ / " 6
Jm et <C Jim exp {97 i =+ )] }

for £€Qf. If p'<p, then

~

/ ng N (o NN / _
€] [ (0= p) ey = (=) | = (= p)ImE— (o ) heg] = —o0,

as £€Qy and |¢|—+o00. On the other hand, if p’>p, by (3.91) and the assumptions
|r| > |r'|, we obtain

Jmé
|Ref]

/2 2 / 2 _ 2
_(Zﬂ/)}gpp pP—zt—zz S|"°\ id
z 2z

(¢ =) <0, ceqf. (3.94)

lim [
|§]—+o00
Therefore, we always have

~

) , Jm¢ , § |
Jimexp{imeg] (o —p)w—@:m}} kp(g)\—o, ceny, (3.95)
which implies
lim |fi(&)e*r " 2¢|=0, £eqf. (3.96)

|€|=—+00
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Noting that the assumption |r'+7”|<|r| and the inequality (3.91) lead to

Jmé
lim [ p— - z+z’+z”}
jel—+o0 7 p)lfmé! ( )
s 2 L2 / " / "2 __ 2

PPz 2(2'+2 )S s et <0, €€t (3.97)

z 2z

in the case p>p. A similar derivation gives

lim | fa(&)etrrere| =0, ceQf. (3.98)

|§|=+m

In summary, we can apply Lemma 3.1 to change the contour of integrals in (3.80).
Noting that the branch (3.71) for the square root function and the definitions in

(3.74) gives
= /& (O T =%iAL (1), (3.99)

we then obtain the desired formulas in (3.84)-(3.85) by canceling A (t) from k3 (t).
This completes the proof. n

Lemma 3.3. Suppose z>0, and o(k,) is analytic and bounded in the right half
complex plane, then

e—nrt
(r,r',0) / / n(t,n, ;7" ) ———=dtdn, (3.100a)
\/252—1
£ h " 3.100b
(e o : tdn, .
Frrer= [ [ Rt (3.100b)
v,+ A/ _ > > AN/ eimt
Ft (! 1 ) = / / htanin’ ") St (3.100c)
—nrt
F (e’ r” / / o (t,—n, 057" 7" ¢ dtdn, 3.100d

where r=|r|, hn(t,n,go;r') and hy, (t,n,0;7",7") are defined in (3.86).

Proof. The proof is very similar with Lemma 3.2 except that the definition (3.66)
and (3.69) lead polynomial bounds

(&N, 057 )Usipé)» ‘ <Cler, (3.101a)
(et g’ DS <clep e, (3.101b)

as |£|—+oc and £€Qf. Consequently, the exponential decay in |e¢? =% | for |£|—+o0
and £ € Q) directly ensures the contour deformation. O]
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Step 3: Convergence and error estimate. Recalling the equalities in (3.82)-
(3.83), the order exchanging of the improper integrals and the infinite summations
n (3.30)-(3.32) can be implemented by first exchanging order in (3.84)-(3.85) to
obtain the following equalities

E(r,r' o) ijnirra Fi(r,r' v o) ZZ}""H[TTT ,0), (3.102)

n=0v=0
and then taking limits for £ — oco. The key ingredients to accomplish this goal are
the estimates proved in Lemma 3.5.

Lemma 3.4. Let &.(t) be the contour defined in (3.74), * =
(Fsinacos B,7sinasin 3,7 cosa) €R? is any given vector. Then,

. AL, 2 N5
|G (&£ (t),m,057)| < | :f ) (T2t2—p2) : (3.103a)
. AL NG
< .
19 (&(8), —n,037)| < —— <r2t2_p2) : (3.103b)

hold for any t>1 and integer n>0.
Proof. Note that

&x (1) cos(p— ﬁ)+nsm(sa B) 11 &@W+in pop, Sx(B)=in g
VEDT [\/5i<t>2+n‘26 emmr
g+t )COS(@O B)— nsm(so B) 1[ ()i ipp) &)~ e_iup—m]
& (t)*+ V& (t)2+n? VEx(t)2+n? '
From the definitions in (3.74) and equality (3.99), we have
kp(€x(8)? =Ex(t)”+1* =—As(1)?, (3.104)
and
Ee(t)+in | n B rt+
et~ T eVl p’
&()—in | _ n 5
oo G Gl iy

Therefore, we have the following formulas

Ex(t)cos(p—B)+nsin(p—B)  (rt+p)el0==+B) 4 (pt— p)ei0=—0+H)

Nt _ 37— . (3.105a)
£+ (t)cos(p— ) —nsin(p— 5) (rt£p)el =D 4 (rt—p)e 0o (3.105b)

IO 27— ) |
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where 4 denote the phases of the complex numbers (£4(¢)+in)//&+(t)?+n?, i.e.,

CW+in _ frip . &)—in VGO [rizp (3.106)
V& ()2 412 rt—p EL(t)24n? Ex(t)+in rt—i—p

By formulations in (3.105), we calculate that

2

‘ﬁi cos(p— 5)+7751n(80 5y
Ex(t)*+

1 | e ,
T z\(<7“t+p>e%+<rt—p>e““)¥+i¢mwsa1
r22—p

2
rtcos(vy)sina+ipsin(iy )sina—+iy/r2t2— p2cosa

sin+icoso

22 iy

1

a2 55— ((psina++/12t2 — p?sintpecosa)® +(r*t* — p*) cos” )
A2 —p?

1 .

< 22— 2 (P*+ (% = p*)sin® Y+ (1r°1? — p?) cos? Y. )
T2t2

T2 (3.107)

where ¢y =74 —p+ . Similarly, the following estimate

1 _ 2 242
’gi COS (10 /6) nsln<¢ /B) SiIlOH—iCOSCY S27ﬂ2—t2 (3108)
RO P
can also be obtained. Then, (3.103) follows by applying estimate (3.108) and identity
(3.104) to the definition in (3.66). O

Lemma 3.5. Let izn(t,in,ga;r’) and hy, (t,£n,0;7",7") be the functions defined in
(3.86) with £4(t) defined in (3.74). Suppose p>0, z>0, r=1/p>+22, the density
function o (k3 (t)) has a uniform bound |o(k (t))| <M, along the contour T' defined
in Lemma 3.1. Then, the following estimates

[o¢] [o¢] . einrt | /|7L
ho (t,£n,0;7") dtd77<7rM ) (3.109)
/11C /1 /t +1
and
oo oo 6—177”75 |,,,/|n’,’,,//’1/<n+y>!
P (t, 21, 057" 7" dtdn<mwM, , 3.110
/i /1 (1.2, )\/t2—1 =T rrtvtiplpl ( )

hold for any integers n,v>0.
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Proof. By the definitions in (3.69), (3.74), (3.86), the estimates in Lemma 3.4 and

the bound of o (k3 (t)), we have
n+v n—+v
Ay (@)rt L JA=®)lrt
242 — 2 242 — 2

(mt)" ™"

for any 1> 0. Direct calculation leads to estimate

Mo_l,r,/|n|,r//|l/
nly!
_2M0|,,,,/|n’,r,//’u

!

Ihm/(t7 :l:nacp;'r/a,r”) | S

—nrt
P (t, 0, 057" 7" dtd
/]1 (t,£n, 057", 7") \/m Y
1| nal! |V o0 n+v

<2M0|r ’ ‘Ir ‘ / t Ve_nrtdtdn

nly!
B ’r1|n‘,,,//‘ n—H/
=My (3.111)

for any integers n,v>0. Another estimate in (3.109) can be proved similarly. [

Lemma 3.6. Suppose |r|>|r'|+|r"|, 2>0, z+2'4+2">0, and the density function
o(k,) is analytic and has a bound |o(k,)| <M, in the right half complex plane. Then,

lim F- (r,7',r",0) Zth FE (e v 0), (3.112)

k—o00 k—o00
n=0vr=0

where the integrals are defined in (3.80) and (3.81).

Proof. By the estimate (3.110), we have

R

n=0vr=0
<7‘[‘M ZZ'T/| |7‘”| n—|—V)
v ‘f,-‘nJrqulnlyl

_ M, 7’| +[r"] ™M,
WZ( \rl ) (3.113)

=TT

fnrt

V-1

P (t,£m, 057" 7") dtdn

for any |r| > |r'|+|r”|. Therefore, we can apply the Fubini theorem to exchange
the order of the improper integrals and the infinite summations in (3.85). Together
with Lemma 3.3, we obtain the second equality in (3.102). Note that (3.113) holds
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uniformly with respect to parameter k. Therefore, the series in the second equality
of (3.102) are also uniform convergent with respect to parameter k. Taking limit
for k— oo in (3.102) and exchanging order of the limit and summations gives the
conclusion. O]

Mimicking the analysis above, we obtain similar conclusion for & (r,r’,0).

Lemma 3.7. Suppose |r|>|r'|, 2>0, 24+2'>0, and the density function o(k,) is
analytic and has a bound |o(k,)| < M, in the right half complex plane. Then,

[e.o]

lim EE(r,r' o)=Y  lim & (r,7,0), (3.114)

k—o00 k—o0
n=0

where the integrals are defined in (3.80) and (3.81).

By (3.82), (3.83) and Lemmas 3.6-3.7, we finish the proof of (3.30)-(3.32).
Next, let us prove the truncation error estimate (3.33). Another error estimate
(3.31) can be proved similarly. By (3.100) and estimates (3.110), we have

""" (ntv))!

i [T (r o0 7" 0)| <7 M, ] (3.115)
Therefore, (3.83) implies
Z,, (7,7 7" J)|—| hm]—" (r,’r’,r”,a)—]Cllrgo}"jy(r,r’,r”,aﬂ
<l VL o)+ i (%, 0)
<opng, T nt0)! (3.116)

||+l
Together with (3.32) and the assumption ||+ |7"| <|r|, we obtain
p p
’I(’r—f—r'—}—r”;a)—ZZIW(T,T’,T”;J)‘

n=0v=0

7™ 7" |” (n+v)! |7 |™ 7" (n+v)!
S27TM Z Z |rr|n+u+1n|yl Z Z |fr|n+u+1n|yl

Ln=0v=p+1 n=p+1v=0

-y v 7| (n+v)! || (n+v)!
=27 E E E
o |,r’1/+1 ra 7 [rnly! ]r\nﬂ o [r[nlv!

Lv=p+1 n=p+1
// v v+1 /n n+1
—or M, Z || Z r'| 7]
|,r.|1/+l |T| |'I"/| 1/+1 |fr.|n+l |’I°| |,r.//|)n+l
Lv=p+1 n=p+1

//|

47 M, 11 11
- Mo {( g ) +(|"“_|H)” ] (3.117)
el =[] =] L\ e[ =[] =[]
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4 Application of the convergence analysis to
the FMM for 3-dimensional Laplace equation
in layered media

In this section, we will employ the convergence theory established in the last section
to give error estimates for the approximations used in the FMM for 3-dimensional
Laplace equation in layered media.

Let Z,={(Qj,7¢), j=1,2,--- Ny}, £=0,1,---,L be L groups of source charges
distributed in a multi-layer medium with L+1 layers (see Fig. 1). The group of
charges in ¢-th layer is denoted by £2,. The FMM proposed in [27] provides a fast
algorithm to compute interactions

L
¢£<,’a& ree +Z ©f€, ZZ +¢ezl(r&)]+2[®fﬁ/( EZ)_I_@%?’(T&)]’ (41)
=1
where
Ny Q ‘ Ny
q)free( Z) — Z #7 (bff/ 7‘& ZQ@ U/ggl Toi,Tej ) u,b:1727 (42)
PRy 471"7‘&' —T‘gj‘

are free space and reaction field components, respectively. Far field approximations
are used for both free space and reaction field components.

4.1 A review of the error estimates for the approximations
used in the FMM for free space components

Let ®¢¢(r) and ®F () be the free space components of the potentials induced by
all particles inside a given source box B centered at r’ and all particles far away
from a given target box B, centered at r! (see. Fig. 9), i

Tee E : Qf‘ Tee § : QE‘
(I)g 1n( ) . ) (I)zout(r> = : ) (43)
Jje Jje

j4w\r—rgj| < Am|r—7y]

where 7 and K are the sets of indices of particles inside B, and of particles far away
from By, respectively. The FMM for free space components use ME

ofin =3 Y arg 02 (1)

n=0m=—n
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source box B, target box B,
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Figure 9: An illustration of the source and target box for the free space component in the ¢-th layer.

at any target points far away from By and LE

(I)grcefm Z Z Lot Y (0r,01), (4.5)

n=0m=—n

inside By, where (rs,05,05) and (r4,0;,¢;) are spherical coordinates of r—r? and
r—r! respectively. The coefficients are given by

2 _
in YY), L= “nelym
Mnm——E Qes(riy)" Y 635, 00), Lim=7— D Qeilryy) Y (6,¢4), (4.6)
jeJg JEK

where (rj;,07;,%7;) and (r(;,05;,¢;;) are spherical coordinates of r¢;—r7 and r¢;—7r,

respectively. These expansions can be obtained by applying expansions (3.5)-(3.6)
to each term in the summations given by (4.3). Moreover, applying Theorem 3.1
and Theorem 3.2 to the expansion of each term immediately leads to the following
error estimates (cf. [15]).

Theorem 4.1. Denote the radius of the circumscribed sphere of the source box By
by as. Suppose J is the set of indices of all particles in Bg, then the ME (4.4) has
truncation error estimate

‘ irle:la Z Z Mln nrnj?lgOS) <

n=0m=-—n

1 Q7 (%)p“ (4.7)

AT ry—ag \ 7,

for any r outside the circumscribed sphere, i.e., |r—rs|>as, where

Qr=>Y _|Qul. (4.8)

jeTJ
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Theorem 4.2. Denote the radius of the circumscribed sphere of the target box B, by
ar. Suppose K is the set of indices of all particles (Qej,7ej) such that |ry;—rt| > ay,
then the LE (4.5) has truncation error estimate

1 Qk (ﬁ)pﬂ

= dr a;r—7T¢ \ay

b (r) =33 Ly (G| <

n=0m=—n

(4.9)

for any r € By, where

Q=Y _|Qul. (4.10)

JjeK

Let BP¥em he a parent box of the source box B, and B&4 be a child box of the
target box By in the oct-tree structure. Denote by 75 and 7L the centers of BPe™
and B respectively. In the FMM, the shifting operations from the ME (4.4) at
r$ to new ME at 75 and from the LE (4.5) at v’ to new LE at 7! are required. The
truncated ME and LE at new centers 75 and 7, are given by

A~y 3 g Ve nj_;‘ps), e R3S ey i), (41)

n=0m=—n n=0m=—n

where the coefficients are calculated via center shifting

in 1) Ay “A“r” Yo" (BssyPss) 1 rin
M Z Z - M, (4.12a)
v= OM_—V —l/ n
Yo lp—m|+|p|—|m| QA” APy R () )
out n |t ttrPtt) 7 out
L Z Z CZAH Luu ) (412b)

v=npu=—v

(75,05, 55)s (Tsss0ss:0ss), (71,00,@;) and (ry,0u, 1) are the spherical coordinates of
r—7rs, ri—7r:, r—r; and 7L—rl respectively. By Corollary 3.1 and Corollary 3.2,
we obtain the following error estimates.

Theorem 4.3. Denote the radius of the circumscribed sphere of the source box By
by as. Suppose J is the set of indices of all particles in Bs. For any |r—75|>as+7ss,
the first expansion in (4.11) has error estimate

free in n 87905) 1 QJ Gs+Tss p+l
L P 2 (B

A Ts—(as+7ss) Ty

n=0m=—n

where Q7 is defined in (4.8).



42 W. Zhang, B. Wang and W. Cai / Ann. Appl. Math., 39 (2023), pp. 1-51

Theorem 4.4. Denote the radius of the circumscribed sphere of the source bor By
by a;. Suppose K is the set of indices of all particles (Qg;,7¢;) such that |re—rt|>a,.
For any |r—7t| <a;—ry, the second approximation in (4.11) has error estimate

ree out zsn 1 7’;‘1—70 p+1
ot ()30 3 Iy G| < - — 2 (B gy

47T A — T — Tt Qy

n=0m=-n
where Qx is defined in (4.10).

Suppose target box By is far away from the source box B,. Recall the translation
operator (3.9), the ME (4.4) can be translated to an LE with respect to center 7!
where the LE expansion coefficients are calculated from ME coefficients via

in V+|m|AuA7TYnM+Vm(95tagpst) in
Lom Z Z G2 AT M, (4.15)
v=0pu=—vr n+v s

In the FMM, the translation in (4.15) is further truncated which gives approximated
local expansion coefficients

1)/ AR ATV O, 0)
n - n+v sty Pst in

Z Z 2 AP My, (4.16)
v=0p=—v n+v st

Applying Theorem 3.3, we have error estimate:

Theorem 4.5. Suppose B, and B; are well separated cubic bozes and denote the
radii of their circumscribed spheres by as and a;, J is the set of indices of all particles

in Bs. The well separateness of the boxes means that |rs—rl| > as+ca, with ¢>1.
Then

1 Q as+ag \PH

free n m J > :

}: L2, Y™ (6, — ( ) , VreB, (417
‘ Eln Z m!'t t SOt) 47 (C 1)at as+cay " ' ( )

n=0m=-—n

where Q7 is defined in (4.8).

4.2 Error estimates for the approximations used in the
FMMs for reaction components

Let ®ff, ., () and @, | () be general reaction components of potentials induced by
all equivalent polarizaion sources inside a given polarization source box B centered
at 7% and far away from a given target box B; centered at 7!, i.e.,

C
ez' in( ZQZ’ g (r 7'@/ ) éé’ out ( ZQZ’ agp (r Te' ) (4.18)

JjeT jex
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where J and K are the sets of indices of equivalent polarization sources inside
B and far away from B, respectively (see Fig. 10). The FMM for the reaction
component ®%,(r) use ME

D i Z Z MR FSE (r,78°) (4.19)

n=0m=—n

at any target points far away from B and LE

M’ out Z Z Lab OUt Ym 6t790t) (420)

n=0m=—n

for all targets inside B;, where the coefficients are given by

-2
in CTL a nﬁ
M= Qe (i)"Y (0F5.5). (4.21a)
JjeT

Lot = QZQ@ / / T bt (kK e ™ ke, dy, (4.21b)

n+mCm )
Lt =y~ Qu / / i) 620 (kK e ey dky, (4.210)

JEK

F® (r,r%) are defined in (3 50), (re,0s,00) and (17,05, 04 are the spherical co-
ordinates of r—r! and r§’ —r® respectively. Apparently, these expansions can be
obtained by applying expanswns (3.48)-(3.49) to each term in the summations given
by (4.18). Moreover, applying Theorems 3.6 and 3.7 term by term gives the following

error estimates.

Theorem 4.6. Suppose a®® is the radius of the circumscribed sphere of the box B,
J is the set of indices of all equivalent polarization sources in B, then ME (4.19)
has truncation error estimate

1 QM a®  \ptl
2 /‘ E : 7\ [ab in Fub ab T oot s
‘ iw (rme ‘ 47t P — 1ot —qgb (\r—rg"\) (4.22)

n=0m=-—n

for any v such that |r—r®|>a®
half complex plane,

where M, a6, 18 the bound of o (k,) in the right

s 7

Qr=>_|Qujl. (4.23)

JjeJ
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Proof. By Theorem 3.6 and triangle inequality, we have

‘(I)ZZ’ . Z Z Mab mfah ,r ,r,ub)‘
n=0m=—n
<Z|Q5']‘

jeJ
1 QoMo ( ag’ )P“

2
(7“@, )Y (05, o5, )F (1, 7)

Ugé/ r TEI ) 4n

dmr—r®—a® \[r—re

This completes the proof. O
Theorem 4.7. Suppose a; is the radius of the circumscribed sphere of the target box

By, v is a point inside By, K is the set of indices of all charges (Qg/],re, ) such that
65— 7L >ay, then the LE (4.20) has truncation error estimate

‘ 244 out Z Z Lab OUt Ym emﬁt)

n=0m=—n

1 QxMe <|r—’r§\>p+1’ (4.24)
SAra—|r—ri\  q

where M"?;/ is the bound of o3, (k,) in the right half complex plane,

Q=) _|Quj- (4.25)

jex

As reported in the last section, the center shifting operators in the FMMs for
reaction components are exactly the same as in the free space FMM. Therefore, we
will only consider the error estimate for the ME to LE translation here. Suppose the
target box B is far away from the polarization source box B, see Fig. 10. Recalling
the truncated translation (3.59), an approximated LE of the potential <I>M,- in the
target box B; is obtained, i.e.,

D" ()= Z Z LESPrny ™9, o), (4.26)

n=0m=—n

where the coefficients are given by
bp__ b b in
LP = E E LMy (4.27)
v=0pu=—v

These are the M2L translations which actually used in the FMMs for reaction com-
ponents. By applying Theorem 3.8 term by term, we obtain the following estimate.
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Figure 10: An illustration of equivalent polarization source and target box for the reaction components
in the /-th layer due to sources in ¢'-th layer.

Theorem 4.8. Suppose a®® and a; are the radii of the circumscribed spheres of two
well separated boxes B (polarization source box) and B; (target box), respectively.
The well separateness of the boxes means that |rt—r%|>a%+ca; with some c¢> 1.
Denoted by J the set of indices of all equivalent polarization sources in B, then
the truncated ME to LE translation (4.27) leads to approximation with truncation
error estimate

1 QrMgas /o0 4 q, \pt1
O (1) — %P (r)| < — e ( s T ) VreB 4.28
124 ,m(r) )24 ,m(r) = o (c—l)at agh—l—cat ’ r ty ( )

where MO.;;/ is the bound of oi,(k,) in the right half complex plane, Q7 is defined in
(4.23).
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5 Conclusions

In this paper, we established the convergence theory for the multipole and local ex-
pansions of the Green’s function of 3-dimensional Laplace equation in layered media.
We first showed that the reaction density functions involved in the integral repre-
sentation of the layered Green’s function are analytic and bounded in the right half
complex wave number plane. Then, we proved that the MEs, LEs and correspond-
ing shifting and translation operators for the Green’s function of a 3-dimensional
Laplace equation in layered media have exponential convergence similar to the clas-
sic theory for the Green’s function in free space. As in the analysis for the FMM in
free space, the theory presented in this paper proved that the FMM developed for
the 3-D Laplace equations in layered media (cf. [27]) has an exponential convergence.

In a future work, we will carry out the error estimate for the expansions, shifting
and translation operators of the Green’s function of the 3-dimensional Helmholtz
equation in layered media, which will require new techniques to address the effect of
the surface waves (poles of density function close to the real axis) on the exponential
convergence property of the MEs, LEs and M2L translation operators.

Appendix A: Addition theorems

Theorem A.1 (Addition theorem for Legendre polynomials). Let P and Q be points
with spherical coordinates (r,0,p) and (p,«,B), respectively, and let v be the angle
subtended between them. Then

> Y (B, (0.). (A1)

47

FPuleosy) =577

Theorem A.2. Let Q=(p,a,[3) be the center of expansion of an arbitrary spherical
harmonic of negative degree. Let the point P = (r,0,p¢), with r>p, and P—Q =
(r',0',¢"). Then

el’gp \m+m/| \m/|AmAm nY ( B) anri—;m (0790)
pin’ Toami+l Z Z CQAm+m pntn/+1l

n=0m=-—n n* n+n’

Theorem A.3. Let Q=(p,a,3) be the center of expansion of an arbitrary spherical
harmonic of negative degree. Let the point P = (r,0,p), with r <p, and P—Q =
(r',0',¢"). Then

9/7()0 n+|m|AmAm Yrﬁ-n’m( 75) .
m T+l Z Z CQA ndn/+1 r Yn (Qaw)'

n=0m=-—n n+n p
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Theorem A.4. Let Q=(p,a,[) be the center of expansion of an arbitrary spherical
harmonic of negative degree. Let the point P=(r,0,p) and P—Q=(1",0',¢’). Then
,r,/n’ Ynnlz’ (9/790/)
Lyl ==l 2, gm A=y, 6)

DI T (i (2]

n=0m=—n n-n/—n*"n’

In the above theorems, the definition A" =0, ¥,"*(6,9)=0 for |m|>n is used.

Appendix B: The proof of Theorem 3.3

Proof. By the assumption |[ri—rl|>a;+cas (¢>1), we have |[r'—rs|+|r—ri|<|rl—rs|
for any re{x:|x—rt|<ay}, r'e{x:|x—r:|<a;}. Then, as in (3.3)-(3.4), we have
Taylor expansion

1 1 "T't—’l‘,‘ n’
= B.1
Aw|lr—r!|  Ax|ri—r.—(rs—rl)] 47T Z |rt rs <|r§—r,§|> ’ (B.1)

where ) .
é::_(rs_rt).(,rc_rc)’ r = S

—p—pt, B.2
rrlre—rt| © T Te TS (B:2)

Truncate the expansion (B.1) and denote the approximation by

|re =7 ’)
. B.3
Y(rr) 4#2 |rt rs <]r§—’r§] (B:3)

Then, we directly have error estimate

< 1 <|7”t—"°§|)p+1
“dn(jrs—rt|=lr—rl]) \|rs—r]

< 1 ( ai+as >p+1
“4n(c—1)ag \aj+cay '

1
Art|r—7r'|

_wp(,r.’,r/)

(B.4)

Applying identity P, (—z)=(—1)"P,(x) and Legendre addition theorem in (B.3)
gives

P ron

(e N _

YP(rr')= T Y (Ot ) [P — |V Y0 (7= 1), (B.5)
Z 2n/+1 Tst+1 Z

n/=0 m/=—n/
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where (74,0s,¢s) 1s the spherical coordinates of r$—r.. Further, applying addition
Theorem A.4 and then rearranging the resulted summation, we obtain

Z Z Zﬂ'rit:ﬁst Z Z n/m, n nym m(el’(’ps)rtym(et7spt)

n'=0m’'=—n’ n=0m=-—n

S50 Z L4 ff’.ff” () Y 6 )Y (G)

n=0m=—nn/=nm'=

_Z Z [Z Z nz;rn—ilf;;—f“) Bn-H/ m+u( )VYM(QI 7905)] T?Ynm(ehspt)?

n=0m=-—n v=0u=—v

where
2 _ N ’_ /_
. (—1)+n [m]+[m/|—|m m\A?Ami m
n'm’ — 22 m )
c2ex, AT

(re,04,0¢) and (rl,0%,¢"), are the spherical coordinates of »—r! and r'—r, respec-
tively. Apparently, ¥f(r,7’) is a truncated LE at target center r! with coefficients
given by

Z Z 171'7" +v+1 Bn+um+u< ) Yu(elagols) (B6)
v=0p=—v

By identity Y#(6,¢)=(—1)"Yy *(6,p), the coefficients L2 can be re-expressed as

Ynml_/ S 7(205 ) nm YTV Z. TN
ZZ Ty sl AL LTI (v LI O § D (e

v= OILL—flj
ImlAmA uYnﬂ—ﬁ-u (05t790st)
_Z Z chm o n+1/+1 Mu,u- (B7)
v=0p=—v nintv Tst

Noting that A" =A™, the above coeflicients is exactly the truncated M2L coeffi-
cients given in (3.17). As a result, we have

Z Z Ly Y (O, 00) =P (1), (B.8)

n=0m=—n

and the error estimate (3.18) follows by applying (B.4). O
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