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a b s t r a c t

In this paper, a fast multipole method (FMM) is proposed for 3-D Laplace equations in layered media.
The potential due to charges embedded in layered media is decomposed into a free space component
and four types of reaction field components, and the latter can be associated with the potential of a
polarization source defined for each type. New multipole expansions (MEs) and local expansions (LEs),
as well as the multipole to local (M2L) translation operators are derived for the reaction components,
based on which FMMs for reaction components are then developed. The resulting FMMs for charge
interactions in layered media is a combination of the classic FMM for the free space component and
the new FMMs for the reaction field components. With the help of a recurrence formula and contour
deformation technique for the run-time computation of the Sommerfeld-type integrals required in M2L
translation operators, pre-computations of a large number of tables are avoided. The new FMMs for the
reaction components are found to be much faster than the classic FMM for the free space component
due to the separation of equivalent polarization charges and target charges by a material interface. As
a result, the FMM for potential in layered media costs almost the same as the classic FMM in the free
space case. Numerical results validate the fast convergence of the MEs for the reaction components,
and the O(N) complexity of the FMMs with a given truncation number p for charge interactions in 3-D
layered media.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Solving Laplace equations in layered media is connected to
any important applications in science and engineering. For in-
tance, finding the electric charge distribution over conductors
mbedded in a layered dielectric medium has important appli-
ation in semi-conductor industry for calculating the capacitance
f interconnects (ICs) in very large-scale integrated (VLSI) circuits
or microchip designs (cf. [1–4]). Due to complex geometries of
he ICs, the Laplace equation for charge potential is usually solved
y an integral method with the Green’s function of the layered
edia (cf. [4,5]), which results in a huge dense linear algebraic
ystem to be solved by an iterative method such as GMRES
cf. [6]), etc. Other applications of the Laplace equation can be
ound in medical imaging of brains (cf. [7]), elasticity of compos-
te materials (cf. [8]), and electrical impedance tomography for
eophysical applications (cf. [9]).
Due to the full matrix resulting from the discretization of

ntegral equations, it will incur an O(N2) computational cost
for computing the product of the matrix with a vector (a basic
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0010-4655/© 2020 Elsevier B.V. All rights reserved.
operation for the GMRES iterative solver). The fast multipole
method (FMM) for the free space Green’s function (the Coulomb
potential) has been used in the development of FastCap (cf. [10])
to accelerate this product to O(N). However, the original FMM
of Greengard and Rokhlin (cf. [11,12]) is only designed for the
free space Green’s function, which reduces the O(N2) compu-
tational cost of N charge interactions in the free space to O(N).
To treat the dielectric material interfaces in the IC design, un-
knowns representing the polarization charges from the dielectric
inhomogeneities have to be introduced over the infinite material
interfaces, thus creating unnecessary unknowns and contributing
to larger linear systems. These extra unknowns over material
interfaces can be avoided by using the Green’s function of the
layered media in the formulation of the integral equations. To
find fast algorithms to solve the discretized linear system, image
charges are used to approximate the Green’s function of the
layered media [13–15], converting the reaction potential to the
free space Coulomb potential from the charges and their images,
thus, the free space FMM can be used [16–18]. Apparently, this
approach is limited to the ability of finding image charge approx-
imation for the layered media Green’s function. Unfortunately,
finding such an image approximation can be challenging, if not
impossible, for many layer media.

In this paper, we will develop a FMM for charge interactions

in layered media, which can be then used in fast iterative solvers

https://doi.org/10.1016/j.cpc.2020.107645
http://www.elsevier.com/locate/cpc
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or Laplace equations through integral equation methods with a
ayered media Green’s function. We will first derive the multipole
xpansions (MEs) and local expansions (LEs) for the reaction
omponents for the corresponding layered media Green’s func-
ion. Then, the original FMM for the interactions of charges in
ree space will be extended to those of charges embedded in
ayered media. The approach closely follows our recent work
or the Helmholtz equation in layered media (cf. [19,20]), where
he generating function of the Bessel function (2-D case) or a
unk–Hecke formula (3-D case) were used to connect Bessel
unctions and plane wave functions in order to derive the MEs,
Es, and M2L operators. The reason of using Fourier (2-D case)
nd spherical harmonic (3-D case) expansions of plane waves is
hat the Green’s function of layered media has a Sommerfeld-
ype integral representation also involving the plane waves. Even
hough the Laplace equation could be considered as a zero limit of
he wave number k in the Helmholtz equation, special treatments
f the k → 0 limit are required to obtain a limit version of the
xtended Funk–Hecke formula, which is the key in the derivation
f MEs, LEs, and M2L for the reaction components of the Lapla-
ian Green’s function in layered media. Similar to our previous
ork for the Helmholtz equation in layered media, the potential
ue to sources embedded in layered media is decomposed into
ree space and reaction components and equivalent polarization
harges are introduced to re-express the reaction components.
he FMM in layered media will then consist of classic FMM for
he free space components and FMMs for reaction components,
sing equivalent polarization sources and the new MEs, LEs, and
2L translations. Moreover, for fast and accurate calculations
f the Sommerfeld integrals in the M2L translation operators,
specially for charges very close to material interfaces, and to
void making pre-computed tables (cf. [19]), we will introduce a
ecurrence formula as well as special integration contour defor-
ation techniques. As in the Helmholtz equation case, the FMMs

or the reaction field components are much faster than that for
he free space components due to the fact that the introduced
quivalent polarization charges are always separated from target
harges by a material interface. As a result, the new FMM for
harges in layered media costs almost the same as the classic
MM for the free space case.
The rest of the paper is organized as follows. In Section 2, we

ill consider the limit case of the extended Funk–Hecke formula
ntroduced in [19], which leads to a spherical harmonic expan-
ion of the exponential kernel in the Sommerfeld-type integral
epresentation of the Green’s function. By using this expansion,
e present new alternative derivations, via the Fourier spectral
omain, for the ME, LE, and M2L operators of the free space
reen’s function. The same approach will be then used to de-
ive MEs, LEs, and M2L translation operators for the reaction
omponents of the layered Green’s function. In Section 3, af-
er a short discussion on the Green’s function in layered media
onsisting of free space and reaction components, we present
he formulas for the potential induced by sources embedded
n layered media. Then, the concept of equivalent polarization
harge of a source charge is introduced for each type of the
eaction components. The reaction components of the layered
reen’s function and the potential are then re-expressed by using
he equivalent polarization charges. Further, we derive the MEs,
Es, and M2L translation operators for the reaction components
ased on expressions using equivalent polarization charges. Com-
ining the original source charges and the equivalent polarization
harges associated to each reaction component, the FMMs for
eaction components can be implemented. A recurrence formula
nd contour deformation techniques are also introduced for the
omputation of M2L operator related Sommerfeld integrals. Sec-

ion 4 will give numerical results to show the spectral accuracy

2

and O(N) complexity of the proposed FMM for charge interactions
n layered media. A conclusion is given in Section 5 while two
ppendices are included for addition theorems and a recursive
lgorithm for computing reaction field density in the spectral
omain.

. A new derivation for the multipole and local expansions for
he far field potential of charges in free space

In this section, we first briefly review the main idea of the free
pace FMM and the conventional derivations of the key formulas,
.e., the multipole and local expansions of the free space Green’s
unction of the Laplace equation, and the corresponding shifting
nd translation operators. Then, we present a new derivation for
ll the formulas by using the Sommerfeld-type integral represen-
ation of the Green’s function. The key expansion used in the new
erivation is a limiting case of the extended Funk–Hecke formula
ntroduced in [19]. This new technique shall be applied to derive
Es and LEs for the reaction components of the layered media
reen’s function later on.

.1. An introduction of the fast multipole method (FMM) in free
pace

Given N source charges {Qj}
N
j=1 at locations {r ′

j}
N
j=1, consider

he calculation of the Coulombic potential

(r) =

N∑
j=1

Qj

|r − r ′

j|
, (2.1)

t N target points {r = r i}Ni=1. Obviously, this can be seen as the
interactions of N charges if the target points {r i}Ni=1 are exactly
he source locations {r ′

j}
N
j=1 (in this case, the sum will not include

the singular self-interaction term). Direct computation leads to
an O(N2) cost while the FMM is a fast method which reduces the
cost to O(N).

The key technique in the FMM is the multipole expansion
(ME) for the far field of the potential. Suppose the source charges
{Qj, r ′

j}
N
j=1 are enclosed in a sphere of radius a centered at r sc ,

the far field potential in the FMM framework refers to the po-
tential at target points with a distance to the center of the
sphere greater than 2a. In such a scenery, the combined potential
from all source charges could be represented by one source,
at the center of the sphere, with multipole source components
beyond the mono-pole of the Coulombic potential, such as dipole,
quadrupole, etc.

To illustrate how this can be achieved, we need to introduce
the multipole expansion at the center r sc of a sphere for the
Coulombic potential of one single source charge at any given
point r ′ inside the sphere, see Fig. 2.1. Given any point r far away
from the source point r ′, the law of cosines gives

|r − r ′
|
2

= r2 + (r ′)2 − 2rr ′ cos γ , (2.2)

here (r, θ, ϕ) and (r ′, θ ′, ϕ′) are the spherical coordinates of r, r ′

and the angle between them is γ ,

cos γ = cos θ cos θ ′
+ sin θ sin θ ′ cos(ϕ − ϕ′). (2.3)

Then, the Coulomb potential of a unit charge at r ′ in the free space
is represented by the Green’s function of the Laplace equation

G(r, r ′) =
1

|r − r ′|
=

1

r
√
1 − 2µ cos γ + µ2

=
1

r ′

√
1 − 2 cos γ

µ
+

1
µ2

, (2.4)
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here µ = r ′/r and the scaling constant 1/4π has been omit-
ed through out this paper. Furthermore, we have the following
aylor expansions

1

r
√
1 − 2µ cos γ + µ2

=

∞∑
n=0

Pn(cos γ )
µn

r
=

∞∑
n=0

Pn(cos γ )
r ′n

rn+1 ,

for µ < 1,

(2.5)

nd

1

r ′

√
1 − 2 cos γ

µ
+

1
µ2

=

∞∑
n=0

Pn(cos γ )
1

r ′µn =

∞∑
n=0

Pn(cos γ )
rn

r ′n+1 ,

for µ > 1.

(2.6)

y using the fact |Pn(x)| ≤ 1, x ∈ [−1, 1], the expansions above
ave exponential convergence⏐⏐⏐⏐⏐ 1
|r − r ′|

−

p∑
n=0

Pn(cos γ )(r ′)n

rn+1

⏐⏐⏐⏐⏐ ≤
1

r − r ′

( r ′

r

)p+1
, r > r ′, (2.7)

nd⏐⏐⏐⏐⏐ 1
|r − r ′|

−

p∑
n=0

Pn(cos γ )
rn

(r ′)n+1

⏐⏐⏐⏐⏐ ≤
1

r ′ − r

( r
r ′

)p+1
, r < r ′.

(2.8)

Let r tc be a target center close to r and r sc be a source center close
to r ′ and assume |r ′

− r sc | < |r − r sc | and |r ′
− r tc | > |r − r tc |, see

Fig. 2.1. Following the derivation in (2.2)–(2.6), we have Taylor
expansions

1
|r − r ′|

=
1

|(r − r sc) − (r ′ − r sc)|
=

∞∑
n=0

Pn(cos γs)
rs

( r ′
s

rs

)n
, (2.9)

nd

1
|r − r ′|

=
1

|(r − r tc) − (r ′ − r tc)|
=

∞∑
n=0

Pn(cos γt )
r ′
t

( rt
r ′
t

)n
, (2.10)

where (rs, θs, ϕs), (rt , θt , ϕt ) are the spherical coordinates of r−r sc
nd r − r tc , (r ′

s, θ
′
s, ϕ

′
s), (r

′
t , θ

′
t , ϕ

′
t ) are the spherical coordinates of

′
− r sc and r ′

− r tc(see Fig. 2.1) and

cos γs = cos θs cos θ ′

s + sin θs sin θ ′

s cos(ϕs − ϕ′

s),
cos γt = cos θt cos θ ′

t + sin θt sinϕ′

t cos(ϕt − ϕ′

t ).
(2.11)

ote that Pn(cos γs), Pn(cos γt ) still mix the source and target
nformation (r and r ′). Applying Legendre addition Theorem A.1
o expansions (2.9) and (2.10) gives a ME

1
|r − r ′|

=

∞∑
n=0

n∑
m=−n

Mnmr−n−1
s Ym

n (θs, ϕs), (2.12)

and a LE

1
|r − r ′|

=

∞∑
n=0

n∑
m=−n

Lnmrnt Y
m
n (θt , ϕt ), (2.13)

where

Mnm = c−2
n r ′n

s Ym
n (θ ′

s, ϕ
′
s), Lnm = c−2

n r ′−n−1
t Ym

n (θ ′
t , ϕ

′
t ), (2.14)

and, Ym and c are defined in (A.1) and (A.5), respectively.
n n

3

Fig. 2.1. Spherical coordinates used in multipole and local expansions.

Applying the ME (2.12) to each term in the potential (2.1) gives
approximation

Φ(r) ≈

p∑
n=0

n∑
m=−n

M̃nmr−n−1
s Ym

n (θs, ϕs) , (2.15)

where the coefficients, which only depend on the location and
magnitude of the sources, are defined as

M̃nm = c−2
n

N∑
j=1

Qjr ′n
sjYm

n (θ ′

sj, ϕ
′

sj), (2.16)

here (r ′

sj, θ
′

sj, ϕ
′

sj) are the spherical coordinates of r ′

j − r sc and
is the truncation order of the ME. By error estimate (2.7), the
pproximation (2.15) has exponential convergence as

Φ(r) −

p∑
n=0

n∑
m=−n

M̃nmr−n−1
s Ym

n (θs, ϕs)
⏐⏐⏐ ≤

1
2p+1a

N∑
j=1

Qj,

∀r s.t. |r − r sc | ≥ 2a. (2.17)

herefore, we can have a low rank approximation for the far field
f the potential Φ(r), i.e., (2.15) with small integer p. This implies
fast linear cost method to compute potential at N far field target
ocations {r i}i=1. The fast method is implemented in the following
wo steps:

Step 1: Pre-compute the ME coefficients M̃nm in (2.16) with a
cost of O(p2N), 0 ≤ n ≤ p, −n ≤ m ≤ n.

Step 2: Applying (2.15) to compute {Φ(r i)}Ni=1 at a cost of O(p2N).

e can see that the overall cost for computing {Φ(r i)}Ni=1 by using
he ME approximation will be O(N) instead of O(N2) using a direct
valuation of the potential function in (2.1).
Note that the fast method described above requires the target

ocations to be well separated from the source sphere. However,
uch a condition will not hold in many N-body interaction prob-
ems as the source and target charges are usually the same set
f charges. Realizing the convergence result (2.17) of the ME
pproximation holds for any scale a, the FMM utilizes an octree
ierarchical structure to partition a box containing all the source
nd target charges and applies the low rank compression (2.15)
etween any two boxes of a given scale a as long as they are
eparated by distance a, namely, non-adjacent boxes.
In the FMM implementation, there will be one upward and

ne downward recursive loops traversing the tree structure. An
pward loop along the tree is used to compute the MEs of all
oxes starting from the smallest boxes of the tree (the lowest
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evel of the tree, the root of the tree taken as the highest level).
nce the MEs for the boxes at the lowest level are computed
ccording to (2.16), the ME of each box in the up next level can
e simply obtained by merging the MEs of its eight children with
he help of a M2M (ME to ME) shifting operator, which relates
he ME coefficients of two MEs at two different centers. Next, a
ownward loop along the tree will be used to compute the local
xpansion (LE) of all boxes, which represents the potential due
o charges outside a given box and its eight neighboring boxes.
his time, the loop starts from the largest box (namely, the largest
ox containing all charges) whose local expansion (LE) is zero as
here is no charges outside. In the downward loop for the LEs, a
hifting for the LE at the center of a box to those at the centers
f its children will be needed. This can be done by a L2L (local to
ocal) shifting operator, which relates the LE coefficients of two
Es at two different centers. In the downward loop for the LEs, we
ill also need to translate MEs of boxes in the interaction list of a
iven box to LEs at the centers of this box. This leads to the ME to
E (M2L) translation operator, which translate the ME coefficients
f the far field of a group of charges to the LE coefficients of a LE
t the center of a far field target box.
The final step of the FMM is to compute the potential in each

ne of the boxes at the lowest level of the tree (i.e., the smallest
oxes), which combines the LE of the box, the outcome of the
ownward loop, and the potential contributions from charges
n the eight children of the box via direct calculations. For the
lgorithmic details, please refer to [11,21,22].
All the shifting and translation operators mentioned above can

e derived by using the addition theorems in Appendix A, which
re summarized as follows.

• M2L translation. Applying the addition Theorem A.3 to
expansion functions in ME (2.12) provides a translation from
ME (2.12) to LE (2.13) as follows

Lnm =

∞∑
n′=0

n′∑
m′=−n′

(−1)n
′
+mAm′

n′ Am
n Y

m′
−m

n+n′ (θst , ϕst )

c2n′Am′−m
n+n′ rn+n′+1

st

Mn′m′ , (2.18)

where (rst , θst , ϕst ) is the spherical coordinate of r sc − r tc .
• M2M and L2L translations.

M̃nm =

n∑
n′=0

n′∑
m′=−n′

(−1)m
′

Am′

n′ Am−m′

n−n′ rn
′

ss Y
−m′

n′ (θss, ϕss)

c2n′Am
n

Mn−n′,m−m′

(2.19)

L̃nm =

∞∑
n′=n

n′∑
m′=−n′

(−1)n
′
−nc2n′Am′

−m
n′−n Am

n r
n′

−n
tt Ym′

−m
n′−n (θtt , ϕtt )

c2n′−nc
2
nA

m′

n′

Ln′m′

(2.20)

can be derived by using addition Theorems A.2 and A.4.
Here, (rss, θss, ϕss) and (rtt , θtt , ϕtt ) are the spherical coordi-
nates of r sc − r̃ sc and r tc − r̃ tc ,

M̃nm = c−2
n r̃ ′n

s Ym
n (θ̃ ′

s, ϕ̃
′
s), L̃nm = c−2

n r̃ ′−n−1
t Ym

n (θ̃ ′
t , ϕ̃

′
t ),

(2.21)

are the ME and LE coefficients with respect to new centers
r̃ sc and r̃ tc , respectively.

.2. A new derivation of the multipole and local expansions in the
ree space

Besides using the addition theorems as in the previous section,
he target/source separation in (2.12) can also be achieved in the
ourier spectral domain. We shall give an alternative new deriva-
ion for (2.12) and (2.13) by using the integral representation of
4

1/|r − r ′
|. The main motivation for this effort is that it can be

further applied to derive multipole and local expansions for the
reaction components of the Green’s function in layered media to
be discussed in Section 3.

For the Green’s function G(r, r ′), we have the well known
dentity

1
|r − r ′|

=
1
2π

∫
∞

0

∫ 2π

0
eikρ ((x−x′) cosα+(y−y′) sinα)−kρ |z−z′|dαdkρ .

(2.22)

y this identity, we straightforwardly have source/target separa-
ion in spectral domain as follows

1
|r − r ′|

=
1
2π

∫
∞

0

∫ 2π

0
eikρk0·(r−rsc )e−ikρk0·(r ′

−rsc )dαdkρ,

1
|r − r ′|

=
1
2π

∫
∞

0

∫ 2π

0
eikρk0·(r−rtc )e−ikρk0·(r ′

−rtc )dαdkρ,

(2.23)

for z ≥ z ′ where

k0 = (cosα, sinα, i), (2.24)

and without loss of generality, here we only consider the case
z ≥ z ′ as an example.

A FMM for the Helmholtz kernel in layered media has been
proposed in [19] based on a similar source/target separation in
the spectral domain. One of the key ingredients is the following
extension of the well-known Funk–Hecke formula (cf. [23,24]).

Proposition 2.1. Given r = (x, y, z) ∈ R3, k > 0, α ∈

[0, 2π ) and denoted by (r, θ, ϕ) the spherical coordinates of r , k =

(
√
k2 − k2z cosα,

√
k2 − k2z sinα, kz) is a vector of complex entries.

Choosing branch (2.26) for
√
k2 − k2z in eik·r and P̂m

n ( kzk ) as defined
in (A.1), then

ik·r
=

∞∑
n=0

n∑
m=−n

Am
n (r)i

nP̂m
n

(kz
k

)
e−imα

=

∞∑
n=0

n∑
m=−n

Am
n (r)i

nP̂m
n

(kz
k

)
eimα, (2.25)

holds for all kz ∈ C, where

Am
n (r) = 4π jn(kr)Ym

n (θ, ϕ).

This extension enlarges the range of the classic Funk–Hecke
ormula from kz ∈ (−k, k) to the whole complex plane by
hoosing the branch

k2 − k2z = −i
√
r1r2ei

θ1+θ2
2 , (2.26)

or the square root function
√
k2 − k2z . Here (ri, θi), i = 1, 2 are

the modules and principal values of the arguments of complex
numbers kz + k and kz − k, i.e.,

z+k = r1eiθ1 , −π < θ1 ≤ π, kz−k = r2eiθ2 , −π < θ2 ≤ π.

t is worthy to point out that the normalized associated Legendre
unction P̂m

n (x) has also been extended to the whole complex
lane by using the same branch.
Although we have kρk0 = limk→0+ (

√
k2 − k2z cosα,√

k2 − k2z sinα, kz), with kz = ikρ , taking limit directly in the
xpansion (2.25) will induce singularity in the associated Leg-
ndre function. In the following, we will show how to cancel
he singularity to obtain a limit version of (2.25), which gives
n expansion for eikρk0·r . For this purpose, we first recall the
orresponding extended Legendre addition theorem (cf. [19]).
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emma 2.1. Let w = (
√
1 − w2 cosα,

√
1 − w2 sinα, w) be a

vector with complex entries, θ, ϕ be the azimuthal angle and polar
angles of a unit vector r̂ . Define

β(w) = w cos θ +

√
1 − w2 sin θ cos(α − ϕ), (2.27)

hen

n(β(w)) =
4π

2n + 1

n∑
m=−n

P̂m
n (cos θ )̂Pm

n (w)eim(α−ϕ), (2.28)

for all w ∈ C.

From this extended Legendre addition theorem, the following
expansion can be obtained by choosing a specific ω and then
taking limit carefully.

Lemma 2.2. Let k0 = (cosα, sinα, i) be a vector with complex
entry, θ, ϕ be the azimuthal angle and polar angles of a unit vector
r̂ . Then

(ik0 · r̂)n

n!
=

n∑
m=−n

Cm
n P̂m

n (cos θ )eim(α−ϕ), (2.29)

where

Cm
n = i2n−m

√
4π

(2n + 1)(n + m)!(n − m)!
. (2.30)

roof. For any k ∈ R+, define k = (
√
k2 + 1 cosα,

√
k2 + 1 sinα,

). By Lemma 2.1, we have

knPn
(k · r̂

k

)
=

4π
2n + 1

n∑
m=−n

P̂m
n (cos θ )knP̂m

n

( i
k

)
eim(α−ϕ). (2.31)

Consider the limit of the above identity as k → 0+. Note that

lim
k→0+

k · r̂ = k0 · r̂, (2.32)

together with the knowledge on the coefficient of the leading
term in the Legendre polynomial Pn(x) lead to

lim
k→0+

knPn
(k · r̂

k

)
=

(2n)!
2n(n!)2

(k0 · r̂)n. (2.33)

Recall the Rodrigues’ formula of the associated Legendre func-
tion

Pm
n (x) =

cnm
2nn!

(1−x2)
m
2

dn+m

dxn+m (x2−1)n, cnm =

√
2n + 1
4π

(n − m)!
(n + m)!

(2.34)

or 0 ≤ m ≤ n, we have

nP̂m
n

( i
k

)
=

cnm
2nn!

(2n)!
(n − m)!

(k2 + 1)
m
2 · kn−mQ̃n−m

( i
k

)
(2.35)

where Q̃n(z) is a monic polynomial of degree n. Hence, we get
similarly

lim
k→0+

knP̂m
n

( i
k

)
=

cnm
2nn!

(2n)!in−m

(n − m)!
. (2.36)

he identity P̂−m
n (x) = (−1)mP̂m

n (x) will give the limit for −n ≤

< 0 cases. Now, let k → 0+ in (2.31) and use results (2.33)
nd (2.36), we complete the proof. □

roposition 2.2. Given r = (x, y, z) ∈ R3, α ∈ [0, 2π )
nd denoted by (r, θ, ϕ) the spherical coordinates of r , k =
0

5

cosα, sinα, i) is a vector of complex entries. Then

ikρk0·r
=

∞∑
n=0

n∑
m=−n

Cm
n rnYm

n (θ, ϕ)knρe
−imα

=

∞∑
n=0

n∑
m=−n

Cm
n rnYm

n (θ, ϕ)knρe
imα, (2.37)

olds for all r > 0, kρ > 0, where Cm
n is the constant defined in

2.30).

roof. By Taylor expansion, we have

ikρk0·r
=

∞∑
n=0

(ik0 · r̂)n

n!
knρr

n. (2.38)

hen, (2.37) follows by applying Lemma 2.2 to each term in the
bove expansion. □

emark 2.1. By setting kz = ikρ and using the limit values given
by (2.33) and (2.36), one can also verify that the expansions for
eikρk0·r in Proposition 2.2 are exactly the limiting cases of the
xpansions in Proposition 2.1.

Applying spherical harmonic expansion (2.37) to exponential
unctions e−ikρk0·(r−rsc ) and eik·(r−rtc ) in (2.23) gives

1
|r − r ′|

=

∞∑
n=0

n∑
m=−n

Mnm
(−1)nc2nC

m
n

2π

×

∫
∞

0

∫ 2π

0
knρe

ikρk0·(r−rsc )eimαdαdkρ, (2.39)

and

1
|r − r ′|

=

∞∑
n=0

n∑
m=−n

L̂nmrnt Y
m
n (θt , ϕt ), (2.40)

or z ≥ z ′, where Mnm is defined in (2.14) and

ˆnm =
Cm
n

2π

∫
∞

0

∫ 2π

0
knρe

ikρk0·(rtc−r ′)e−imαdαdkρ . (2.41)

Recall the identity

r−n−1Y−m
n (θ, ϕ) =

(−1)nc2nC
m
n

2π

∫
∞

0

∫ 2π

0
knρe

ikρk0·re−imαdαdkρ,

(2.42)

or z ≥ 0, we see that (2.39) and (2.40) are exactly the ME (2.12)
nd LE (2.13) in the case of z ≥ z ′.
To derive the translation from the ME (2.12) to the LE (2.13),

e perform further splitting

ikρk0·(r−rsc ) = eikρk0·(r−rtc )eikρk0·(rtc−rsc ), (2.43)

n (2.39) and apply expansion (2.37) again to obtain the transla-
ion

Lnm =Cm
n

∞∑
n′=0

n′∑
m′=−n′

Mn′m′

(−1)n
′

c2n′Cm′

n′

2π

×

∫
∞

0

∫ 2π

0
kn+n′

ρ eikρk0(r
t
c−rsc )ei(m

′
−m)αdαdkρ .

By using the identity (2.42), we can also verify that the above
integral form is equal to the entries of the M2L translation matrix
defined in (2.18).
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Fig. 3.1. Sketch of the layer structure for general multi-layer media.

3. FMM for 3-D Laplace equation in layered media

In this section, the potential of charges in layered media is
formulated using layered Green’s function and then decomposed
into a free space component and four types of reaction compo-
nents. Furthermore, the reaction components are re-expressed by
using equivalent polarization charges. The new expressions are
used to derive the MEs and LEs for the reaction components of the
layered Green’s function in the same spirit as in the last section.
Based on these new expansions and translations, FMM for 3-D
Laplace kernel in layered media can be developed.

3.1. Potential due to sources embedded in multi-layer media

Consider a layered medium consisting of L-interfaces located
t z = dℓ, ℓ = 0, 1, . . . , L−1, see Fig. 3.1. The piecewise constant

material parameter is described by {εℓ}
L
ℓ=0. Suppose we have a

oint source at r ′
= (x′, y′, z ′) in the ℓ′th layer (dℓ′ < z ′ < dℓ′−1),

hen, the layered media Green’s function uℓℓ′ (r, r ′) for the Laplace
quation satisfies

uℓℓ′ (r, r ′) = −δ(r, r ′), (3.1)

t field point r = (x, y, z) in the ℓth layer (dℓ < z < dℓ−1) where
(r, r ′) is the Dirac delta function. By using Fourier transforms
long x- and y-directions, the problem can be solved analytically
or each layer in z by imposing transmission conditions at the
nterface between ℓth and (ℓ − 1)th layer (z = dℓ−1), i.e.,

uℓ−1,ℓ′ (x, y, z) = uℓℓ′ (x, y, z),

ℓ−1
∂uℓ−1,ℓ′ (x, y, z)

∂z
= εℓ

∂uℓℓ′ (kx, ky, z)
∂z

, (3.2)

s well as the decaying conditions in the top and bottom-most
ayers as z → ±∞.

Here, we give the expression for the analytic solution with de-
ailed derivations included in Appendix B. In general, the layered
edia Green’s function in the physical domain takes the form

ℓℓ′ (r, r ′) =

⎧⎨⎩ur
ℓℓ′ (r, r ′) +

1
4π |r − r ′|

, ℓ = ℓ′,

ur
ℓℓ′ (r, r ′), otherwise,

(3.3)

here

r
ℓℓ′ (r, r ′) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
u11
0ℓ′ (r, r ′) + u12

0ℓ′ (r, r ′),

u11
ℓℓ′ (r, r ′) + u12

ℓℓ′ (r, r ′) + u21
ℓℓ′ (r, r ′) + u22

ℓℓ′ (r, r ′),

0 < ℓ < L,

u21
Lℓ′ (r, r ′) + u22

Lℓ′ (r, r ′).
(3.4) c

6

The reaction component uab
ℓℓ′ (r, r ′) is given in an integral form

uabℓℓ′ (r, r ′) =
1

8π2

∫
∞

0

∫ 2π

0
eikα ·(ρ−ρ′)Zab

ℓℓ′ (z, z ′)

× σ ab
ℓℓ′ (kρ)dαdkρ, a, b = 1, 2, (3.5)

here,

α = kρ(cosα, sinα), (3.6)

nd {Zab
ℓℓ′ (z, z ′)}2a,b=1 are exponential functions defined as

Z11
ℓℓ′ (z, z ′) := e−kρ (z−dℓ+z′

−dℓ′ ), Z12
ℓℓ′ (z, z ′) := e−kρ (z−dℓ+dℓ′−1−z′),

Z21
ℓℓ′ (z, z ′) := e−kρ (dℓ−1−z+z′

−dℓ′ ), Z22
ℓℓ′ (z, z ′) := e−kρ (dℓ−1−z+dℓ′−1−z′),

(3.7)

σ ab
ℓℓ′ (kρ)}2a,b=1 are reaction densities only dependent on the layer

tructure and the material parameter kℓ in each layer. The reac-
ion densities can be calculated efficiently by using a recursive
lgorithm, see Appendix B for more details. It is worthwhile to
oint out that the reaction components ua2

ℓℓ′ or ua1
ℓℓ′ will vanish if

he source r ′ is in the top or bottom most layer.
With the expression of the Green’s function in layered media,

e are ready to consider the potential due to sources in layered
edia. Let Pℓ = {(Qℓj, rℓj), j = 1, 2, . . . ,Nℓ}, ℓ = 0, 1, . . . , L be
groups of source charges distributed in a multi-layer medium
ith L + 1 layers (see Fig. 3.1). The group of charges in ℓth layer

s denoted by Pℓ. Apparently, the potential at rℓi due to all other
harges is given by the summation

ℓ(rℓi) =

L∑
ℓ′=0

Nℓ′∑
j=1

Qℓ′juℓℓ′ (rℓi, rℓ′j) =

Nℓ∑
j=1,j̸=i

Qℓj

4π |rℓi − rℓj|

+

L∑
ℓ′=0

Nℓ′∑
j=1

Qℓ′jur
ℓℓ′ (rℓi, rℓ′j), (3.8)

here ur
ℓℓ′ (r, r ′) are the reaction field components defined in

3.4)–(3.7). As the reaction components of the Green’s function in
ulti-layer media have different expressions (3.5) for sources and

argets in different layers, it is necessary to perform calculation
ndividually for interactions between any two groups of charges
mong the L + 1 groups {Pℓ}

L
ℓ=0. Applying expressions (3.4) and

3.5) in (3.8), we obtain

Φℓ(rℓi) =Φ free
ℓ (rℓi) + Φr

ℓ(rℓi)

=Φ free
ℓ (rℓi) +

L−1∑
ℓ′=0

[Φ11
ℓℓ′ (rℓi) + Φ21

ℓℓ′ (rℓi)]

+

L∑
ℓ′=1

[Φ12
ℓℓ′ (rℓi) + Φ22

ℓℓ′ (rℓi)],

(3.9)

here

Φ free
ℓ (rℓi) :=

Nℓ∑
j=1,j̸=i

Qℓj

4π |rℓi − rℓj|
, Φab

ℓℓ′ (rℓi) :=

Nℓ′∑
j=1

Qℓ′ juabℓℓ′ (rℓi, rℓ′ j).

(3.10)

According to (3.9), the potential due to charges in layered
edia has L free space and 4(L2 − 2L + 1) reaction components.
bviously, all free space components Φ free

ℓ (rℓi) can be computed
sing the traditional FMM. Thus, the main task of this paper is
o develop FMMs for the reaction components {Φab

ℓℓ′ (rℓi)}2a,b=1.
he key step to achieve this task is to derive MEs, LEs and
orresponding shifting and translation operators for the reaction
omponents defined in (3.5).
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.2. Equivalent polarization sources for reaction components

The expressions of the components given in (3.10) show that
he free space components only involve interactions between
harges in the same layer. Interactions between charges in dif-
erent layers are all included in the reaction components. Two
roups of charges involved in the computation of a reaction
omponent could be physically very far away from each other as
here could be many layers between the source and target layers
ssociated to the reaction component, see Fig. 3.2 (left).
Our recent work on the Helmholtz equation [19,20], of which

he Laplace equation can be considered as a special case where
he wave number k = 0, has shown that the exponential con-
vergence of the ME and LE for the reaction components uab

ℓℓ′ (r, r ′)
in fact depends on the distance between the target charge r and

polarization charge defined for the source charge r ′, which
ses the distance between the source charge r ′ and the nearest
aterial interface and always locates next to the nearest interface
djacent to the target charge. Fig. 3.3 illustrates the location of the
olarization charge r ′

ab for each of the four types of reaction fields
˜ab
ℓℓ′ , a, b = 1, 2. Specifically, the equivalent polarization sources
ssociated to reaction components uab

ℓℓ′ (r, r ′), a, b = 1, 2 are set
o be at coordinates (see Fig. 3.3)

r ′

11 := (x′, y′, dℓ − (z ′
− dℓ′ )), r ′

12 := (x′, y′, dℓ − (dℓ′−1 − z ′)),

r ′

21 := (x′, y′, dℓ−1 + (z ′
− dℓ′ )), r ′

22 := (x′, y′, dℓ−1 + (dℓ′−1 − z ′)),

(3.11)

and the reaction potentials are

ũabℓℓ′ (r, r ′

ab) :=
1

8π2

∫
∞

0

∫ 2π

0
eikα ·(ρ−ρ′)e−kρ |z−z′ab|

× σ ab
ℓℓ′ (kρ)dαdkρ, a, b = 1, 2, (3.12)

where z ′
ab denotes the z-coordinate of r ′

ab, i.e.,

z ′

11 = dℓ − (z ′
− dℓ′ ), z ′

12 = dℓ − (dℓ′−1 − z ′),
z ′

21 = dℓ−1 + (z ′
− dℓ′ ), z ′

22 = dℓ−1 + (dℓ′−1 − z ′).

We can see that the reaction potentials (3.12) represented
by the equivalent polarization sources has similar form as the
Sommerfeld-type integral representation (2.22) of the free space
Green’s function except for the extra density functions σ ab

ℓℓ′ (kρ).
Moreover, recall the definition in (3.11) we have

z > z ′

1b, and z < z ′

2b, b = 1, 2.

Therefore, the absolute value in the integral form (3.12) can be
removed according to the index a. More precisely, define

E+(r, r ′) := eikα ·(ρ−ρ′)ekρ (z−z′), E−(r, r ′) := eikα ·(ρ−ρ′)e−kρ (z−z′),

(3.13)

then

ũ1b
ℓℓ′ (r, r ′

1b) =
1

8π2

∫
∞

0

∫ 2π

0
E−(r, r ′

1b)σ
1b
ℓℓ′ (kρ)dαdkρ,

ũ2b
ℓℓ′ (r, r ′

2b) =
1

8π2

∫
∞

0

∫ 2π

0
E+(r, r ′

2b)σ
2b
ℓℓ′ (kρ)dαdkρ .

ecall the expressions (3.7), we verify that
−(r, r ′

1b) = eikα ·(ρ−ρ′)Z1b
ℓℓ′ (z, z ′),

+(r, r ′

2b) = eikα ·(ρ−ρ′)Z2b
ℓℓ′ (z, z ′), b = 1, 2. (3.14)

herefore, the reaction components (3.5) is equal to the reaction
otentials defined for associated equivalent polarization sources,
.e.,

1b ′
˜
1b ′ 2b ′

˜
2b ′
uℓℓ′ (r, r ) = uℓℓ′ (r, r1b), uℓℓ′ (r, r ) = uℓℓ′ (r, r2b), b = 1, 2.

7

(3.15)

substitution into the expression of Φab
ℓℓ′ (rℓi) in (3.10) leads to

ab
ℓℓ′ (rℓi) =

Nℓ′∑
j=1

Qℓ′jũabℓℓ′ (rℓi, rabℓ′j), a, b = 1, 2, (3.16)

here

r11ℓ′j = (xℓ′j, yℓ′j, dℓ − (zℓj − dℓ′ )),

r12ℓ′j = (xℓ′j, yℓ′j, dℓ − (dℓ′−1 − zℓj)),

r21ℓ′j = (xℓ′j, yℓ′j, dℓ−1 + (zℓj − dℓ′ )),

r22ℓ′j = (xℓ′j, yℓ′j, dℓ−1 + (dℓ′−1 − zℓj)),

(3.17)

re coordinates of the associated equivalent polarization sources
or the computation of reaction components Φab

ℓℓ′ (rℓi), see Fig. 3.2
or an illustration of {r11

ℓ′j}
Nℓ′

j=1 and {r21
ℓ′j}

Nℓ′

j=1.
By using the expression (3.16), the computation of the reaction

omponents can be performed between targets and associated
quivalent polarization sources. The definition given by (3.17)
hows that the target particles {rℓi}

Nℓ

i=1 and the corresponding
quivalent polarization sources are always located on different
ides of an interface z = dℓ−1 or z = dℓ, see Fig. 3.2. We still
mphasize that the introduced equivalent polarization sources
re separate with the target charges even in considering the
eaction components for source and target charges in the same
ayer, see the numerical examples given in Section 3.4. This
roperty implies significant advantage of introducing equivalent
olarization sources and using expression (3.16) in the FMMs for
he reaction components Φab

ℓℓ′ (rℓi), a, b = 1, 2. The numerical
esults presented in Section 4 show that the FMMs for reaction
omponents have high efficiency as a direct consequence of the
eparation of the targets and equivalent polarization sources by
nterface.

.3. The fast multipole algorithm

In the development of FMM for reaction components Φab
ℓℓ′ (rℓi),

e will adopt the expression (3.16) with equivalent polarization
ources. Therefore, multipole and local expansions and corre-
ponding translation operators for ũab

ℓℓ′ (r, r ′
ab) are derived first.

nspired by source/target separation in (2.23), similar separations

E−(r, r ′

1b) = E−(r, r1bc )eikα ·(ρ1b
c −ρ′

1b)−kρ (z1bc −z′1b),

E+(r, r ′

2b) = E+(r, r2bc )eikα ·(ρ2b
c −ρ′

2b)+kρ (z2bc −z′2b),
(3.18)

nd

E−(r, r ′

1b) = E−(r tc, r
′

1b)e
ikα ·(ρ−ρt

c )−kρ (z−ztc ),

E+(r, r ′

2b) = E+(r tc, r
′

2b)e
ikα ·(ρ−ρt

c )+kρ (z−ztc ),
(3.19)

or b = 1, 2 are introduced by inserting the source center rabc =

xabc , yabc , zabc ) and the target center r tc = (xtc, y
t
c, z

t
c ), respectively.

ere, we also use notations ρab
c = (xabc , yabc ), ρt

c = (xtc, y
t
c) for

oordinates projected in xy-plane. Now, applying Proposition 2.2
ives us the following spherical harmonic expansions:

eikα ·(ρ2b
c −ρ′

2b)+kρ (z2bc −z′2b) =

∞∑
n=0

n∑
m=−n

Cm
n (r2bc )nYm

n (θ2b
c , π + ϕ2b

c )knρe
imα,

eikα ·(ρ1b
c −ρ′

1b)−kρ (z1bc −z′1b) =

∞∑
n=0

n∑
m=−n

Cm
n (r1bc )nYm

n (π − θ1b
c , π + ϕ1b

c )knρe
imα,

(3.20)
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Fig. 3.2. Equivalent polarized sources {r11
ℓ′ j}, {r21

ℓ′ j} and boxes in source tree.

Fig. 3.3. Location of equivalent polarization sources for the computation of uab
ℓℓ′ .
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nd

eikα ·(ρ−ρt
c )−kρ (z−ztc ) =

∞∑
n=0

n∑
m=−n

Cm
n rnt Y

m
n (θt , ϕt )knρe

−imα,

eikα ·(ρ−ρt
c )+kρ (z−ztc ) =

∞∑
n=0

n∑
m=−n

Cm
n rnt Y

m
n (π − θt , ϕt )knρe

−imα,

(3.21)

where (rabc , θ ab
c , ϕab

c ) is the spherical coordinates of r ′
ab − rabc . By

equalities

Ym
n (π − θ, ϕ) = (−1)n+mYm

n (θ, ϕ),
Ym
n (θ, π + ϕ) = (−1)mYm

n (θ, ϕ),

the above spherical harmonic expansions (3.20)–(3.21) together
with source/target separation (3.18) and (3.19) lead to

E−(r, r ′

1b) = E−(r, r1bc )
∞∑
n=0

n∑
m=−n

(−1)nCm
n (r1bc )nYm

n (θ1b
c , ϕ1b

c )knρe
imα,

E+(r, r ′

2b) = E+(r, r2bc )
∞∑
n=0

n∑
m=−n

(−1)mCm
n (r2bc )nYm

n (θ2b
c , ϕ2b

c )knρe
imα,

(3.22)

and

E−(r, r ′

1b) = E−(r tc, r
′

1b)
∞∑
n=0

n∑
m=−n

Cm
n rnt Y

m
n (θt , ϕt )knρe

−imα,

E+(r, r ′

2b) = E+(r tc, r
′

2b)
∞∑
n=0

n∑
m=−n

(−1)n+mCm
n rnt Y

m
n (θt , ϕt )knρe

−imα,

(3.23)

for b = 1, 2. Then, a substitution of (3.22) and (3.23) into (3.15)
gives a ME

ũabℓℓ′ (r, r ′

ab) =

∞∑
n=0

n∑
m=−n

Mab
nmF̃

ab
nm(r, r

ab
c ),

Mab
nm = c−2

n (rabc )nYm
n (θ ab

c , ϕab
c ),

(3.24)

at equivalent polarization source centers rabc and LE

ũabℓℓ′ (r, r ′

ab) =

∞∑
n=0

n∑
m=−n

Labnmr
n
t Y

m
n (θt , ϕt ) (3.25)

at target center r tc , respectively. Here, F̃ab
nm(r, rabc ) are given in

orms of Sommerfeld-type integrals

F̃1b
nm(r, r

1b
c ) =

(−1)nc2nC
m
n

8π2

∫
∞

0

∫ 2π

0
E−(r, r1bc )σ 1b

ℓℓ′ (kρ )knρe
imαdαdkρ,

F̃2b
nm(r, r

2b
c ) =

(−1)mc2nC
m
n

8π2

∫
∞

0

∫ 2π

0
E+(r, r2bc )σ 2b

ℓℓ′ (kρ )knρe
imαdαdkρ,

(3.26)

and the LE coefficients are given by

L1bnm =
Cm
n

8π2

∫
∞

0

∫ 2π

0
E−(r tc, r

′

1b)σ
1b
ℓℓ′ (kρ)knρe

−imαdαdkρ,

L2bnm =
(−1)n+mCm

n

8π2

∫
∞

0

∫ 2π

0
E+(r tc, r

′

2b)σ
2b
ℓℓ′ (kρ)knρe

−imαdαdkρ .

(3.27)

Let us give some numerical examples to show the convergence
behavior of finite truncated MEs in (3.24). Consider the MEs of
ũ11(r, r ′ ) and ũ22(r, r ′ ) in a three-layer media with ε = 21.2,
11 11 11 22 0

9

ε1 = 47.5, ε2 = 62.8, d0 = 0, d1 = −1.2. In all the following
examples, we fix r ′

= (0.625, 0.5, −0.1) in the middle layer
and use definition (3.11) to determine r ′

11 = (0.625, 0.5, −2.3),
r ′

22 = (0.625, 0.5, 0.1). The centers for MEs are set to be r11c =

(0.6, 0.6, −2.4), r22c = (0.6, 0.6, 0.2) which implies |r ′

11 − r11c | =

|r ′

22 − r22c | ≈ 0.1436. For both components, we shall test three
targets given as follows

r1 = (0.5, 0.625, −0.1), r2 = (0.5, 0.625, −0.6),
r3 = (0.5, 0.625, −1.1).

The relative errors against truncation number p are depicted in
Fig. 3.4. We also plot the convergence rates similar with that of

the ME of free space Green’s function, i.e., O
[(

|r−rabc |

|r ′
ab−rabc |

)p+1]
as

eference convergence rates. The results clearly show that the
Es of the reaction components uab11(r, r

′
ab) have spectral conver-

ence rate O
[(

|r−rabc |

|r ′
ab−rabc |

)p+1]
similar as that of free space Green’s

function. Actually, their exponential convergence has been deter-
mined by the Euclidean distance between target and polarization
source. Therefore, the MEs (3.24) can be used to develop FMM
for efficient computation of the reaction components as in the
development of classic FMM for the free space Green’s function.

According to the definition of E−(r, r ′) and E+(r, r ′) in (3.14),
the centers r tc and rabc have to satisfy

z1bc < dℓ, z2bc > dℓ−1, ztc > dℓ for ũ1b
ℓℓ′ (r, r ′

1b);

ztc < dℓ−1 for ũ2b
ℓℓ′ (r, r ′

2b),
(3.28)

to ensure the exponential decay in E−(r, r1bc ), E+(r, r2bc ) and
−(r tc, r

′

1b), E
+(r tc, r

′

2b) as kρ → ∞ and hence the convergence
f the corresponding Sommerfeld-type integrals in (3.26) and
3.27). These restrictions can be met easily in practice, as we are
onsidering targets in the ℓth layer and the equivalent polarized
oordinates are always located either above the interface z =

ℓ−1 or below the interface z = dℓ. More details will be discussed
elow in the presentation of the FMM algorithm.
We still need to consider the center shifting and translation

perators for ME (3.24) and LE (3.25). A desirable feature of the
xpansions of reaction components discussed above is that the
ormula (3.24) for the ME coefficients and the formula (3.25)
or the LE have exactly the same form as the formulas of ME
oefficients and LE for the free space Green’s function. Therefore,
he center shifting for MEs and LEs of reaction components are
xactly the same as free space case given in (2.19)–(2.20).

Next, we derive the translation operator from the ME (3.24)
o the LE (3.25). Recall the definition of exponential functions in
3.13), E−(r, r1bc ) and E+(r, r2bc ) can have splitting

E−(r, r1bc ) = E−(r tc, r
1b
c )eikα ·(ρ−ρt

c )e−kρ (z−ztc ),

E+(r, r2bc ) = E+(r tc, r
2b
c )eikα ·(ρ−ρt

c )ekρ (z−ztc ).

pplying spherical harmonic expansion (2.37) again, we obtain

ikα ·(ρ−ρt
c )e±kρ (z−ztc ) =

∞∑
n=0

n∑
m=−n

(∓1)n+mCm
n rnt Y

m
n (θt , ϕt )knρe

−imα.

ubstituting into (3.24), the ME is translated to LE (3.25) via

1b
nm =

∞∑
n′=0

n′∑
m′=−n

T 1b
nm,n′m′M1b

n′m′ ,

2b
nm = (−1)n+m

∞∑
n′=0

n′∑
m′=−n

T 2b
nm,n′m′M2b

n′m′ ,

(3.29)
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Fig. 3.4. Spectral convergence of the MEs for reaction components.
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Algorithm 1 FMM for general reaction component Φab
ℓℓ′ (rℓi), i =

, 2, · · · ,Nℓ

Determine equivalent polarized coordinates for all source
particles.
Generate an adaptive hierarchical tree structure according
to polarization sources {Qℓ′j, rabℓ′j}

Nℓ′

j=1 and targets {rℓi}
Nℓ

i=1. Pre-

compute {SnIabnm(ρ, z)}2pn=0 using recurrence formula (3.37) and
DE-SE quadrature and formula (3.50) for initial values.
Upward pass:
for l = H → 0 do

for all boxes j on source tree level l do
if j is a leaf node then

form the free-space ME using Eq. (3.24).
else

form the free-space ME by merging children’s ex-
pansions using the free-space center shift translation operator
(2.19).

end if
end for

end for
Downward pass:
for l = 1 → H do

for all boxes j on target tree level l do
shift the LE of j’s parent to j itself using the free-space

shifting (2.20).
collect interaction list contribution using the source box

to target box translation operator in Eq. (3.29) while T ab
nm,n′m′ are

computed using (3.35) and pre-computed {SnIabnm(ρ, z)}2pn=0.
end for

end for
Evaluate LEs:
for each leaf node (childless box) do

evaluate the LE at each particle location.
end for
Local Direct Interactions:
for i = 1 → N do

compute Eq. (3.16) of target particle i with sources in
the neighboring boxes using the mixed DE-SE quadrature and
formula (3.50) for Iab00(ρ, z).
end for
10
and the M2L translation operators are given in integral forms as
follows

T 1b
nm,n′m′ =

(−1)n
′

Dn′m′

nm

8π2

∫
∞

0

∫ 2π

0
E−(r tc , r

1b
c )σ 1b

ℓℓ′ (kρ )kn+n′

ρ ei(m
′
−m)αdαdkρ ,

T 2b
nm,n′m′ =

(−1)m
′

Dn′m′

nm

8π2

∫
∞

0

∫ 2π

0
E+(r tc , r

2b
c )σ 2b

ℓℓ′ (kρ )kn+n′

ρ ei(m
′
−m)αdαdkρ ,

(3.30)

here
n′m′

nm = c2n′Cm
n Cm′

n′ .

gain, the convergence of the Sommerfeld-type integrals in (3.30)
equires the conditions in (3.28).

The framework of the traditional FMM together with ME
3.24), LE (3.25), M2L translation (3.29)–(3.30) and free space ME
nd LE center shifting (2.19) and (2.20) constitute the FMM for
he computation of reaction components Φab

ℓℓ′ (rℓi), a, b = 1, 2.
n the FMM for each reaction component, a large box is defined
o include all equivalent polarization sources associated to the
eaction component and corresponding target charges, and an
daptive tree structure will be built by a bisection procedure,
ee. Fig. 3.2. Note that the validity of the ME (3.24), LE (3.25)
nd M2L translation (3.29) used in the algorithm imposes re-
trictions (3.28) on the centers, accordingly. This can be ensured
y setting the largest box for the specific reaction component to
e equally divided by the interface between equivalent polarized
ources and corresponding targets, see. Fig. 3.2. Thus, the largest
ox for the FMM implementation will be different for different
eaction components. With this setting, all source and target
oxes of higher than zeroth level in the adaptive tree structure
ill have centers below or above the interfaces, accordingly.
he fast multipole algorithm for the computation of a general
eaction component Φab

ℓℓ′ (rℓi) is summarized in Algorithm 1. Total
nteractions given by (3.9) will be obtained by first calculating all
omponents and then summing them up where the algorithm is
resented in Algorithm 2.

.4. Efficient computation of Sommerfeld-type integrals

It is clear that the FMM demands efficient computation of the
ouble integrals involved in the MEs, LEs and M2L translations.
n this section, we present an accurate and efficient way to
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ompute these double integrals. Firstly, the double integrals can
e simplified by using the following identity

n(z) =
1

2π in

∫ 2π

0
eiz cos θ+inθdθ. (3.31)

Algorithm 2 3-D FMM for (3.9)

for ℓ = 0 → L do
use free space FMM to compute Φ

free
ℓ (rℓi), i = 1, 2, · · · ,Nℓ.

end for
for ℓ = 0 → L − 1 do

for ℓ′
= 0 → L − 1 do

use Algorithm 1 to compute Φ11
ℓℓ′ (rℓi), i = 1, 2, · · · ,Nℓ.

end for
for ℓ′

= 1 → L do
use Algorithm 1 to compute Φ12

ℓℓ′ (rℓi), i = 1, 2, · · · ,Nℓ.
end for

end for
for ℓ = 1 → L do

for ℓ′
= 0 → L − 1 do

use Algorithm 1 to compute Φ21
ℓℓ′ (rℓi), i = 1, 2, · · · ,Nℓ.

end for
for ℓ′

= 1 → L do
use Algorithm 1 to compute Φ22

ℓℓ′ (rℓi), i = 1, 2, · · · ,Nℓ.
end for

end for

In particular, multipole expansion functions in (3.26) can be
implified as

F̃1b
nm(r, r

1b
c ) =

(−1)nc2nC
m
n imeimφ1b

s

4π

∫
∞

0
Jm(kρρ1b

s )e−kρ (z−z1bc )σ 1b
ℓℓ′ (kρ )knρdkρ ,

F̃2b
nm(r, r

2b
c ) =

(−1)mc2nC
m
n imeimφ2b

s

4π

∫
∞

0
Jm(kρρ2b

s )e−kρ (z2bc −z)σ 2b
ℓℓ′ (kρ )knρdkρ ,

nd the expression (3.27) for LE coefficients can be simplified as

L1bnm =
(−1)mCm

n i−me−imϕ1b
t

4π

∫
∞

0
Jm(kρρ1b

t )e−kρ (ztc−z′1b)σ 1b
ℓℓ′ (kρ)knρdkρ,

L2bnm =
(−1)nCm

n i−me−imϕ2b
t

4π

∫
∞

0
Jm(kρρ2b

t )e−kρ (z′2b−ztc )σ 2b
ℓℓ′ (kρ)knρdkρ

for b = 1, 2, where (ρab
s , ϕab

s ) and (ρab
t , ϕab

t ) are polar coordinates
of r − rabc and r tc − r ′

ab projected in the xy-plane, respectively.
Moreover, the M2L translation (3.30) can be simplified as

T 1b
nm,n′m′ =

(−1)n
′

D̃n′m′

nm (ϕ1b
ts )

4π

∫
∞

0
kn+n′

ρ Jm′−m(kρρ1b
ts )e

−kρ (ztc−z1bc )σ 1b
ℓℓ′ (kρ )dkρ ,

T 2b
nm,n′m′ =

(−1)m
′

D̃n′m′

nm (ϕ2b
ts )

4π

∫
∞

0
kn+n′

ρ Jm′−m(kρρ2b
ts )e

−kρ (z2bc −ztc )σ 2b
ℓℓ′ (kρ )dkρ ,

(3.32)

here (ρab
ts , ϕab

ts ) is the polar coordinates of r tc − rabc projected in
he xy plane,

n′m′

nm (ϕ) = Dn′m′

nm im
′
−mei(m

′
−m)ϕ .

efine integral

Iabnm(ρ, z) :=

∫
∞

Jm(kρρ)
knρe

−kρ z

√ σ ab
ℓℓ′ (kρ)dkρ, (3.33)
0 (n + m)!(n − m)!
11
then

F̃1b
nm(r, r

1b
c ) =

cneimϕ1b
s

4π
I1bnm(ρ

1b
s , z − z1bc ),

L1bnm =
(−1)n

4πcneimϕ1b
t
I1bnm(ρ

1b
t , ztc − z ′

1b),

F̃2b
nm(r, r

2b
c ) =

(−1)n+mcneimϕ2b
s

4π
I2bnm(ρ

2b
s , z2bc − z),

L2bnm =
(−1)me−imϕ2b

t

4πcn
I2bnm(ρ

2b
t , z ′

2b − ztc ),

(3.34)

T 1b
nm,n′m′ =

(−1)n+mQ n′m′

nm ei(m
′
−m)ϕ1b

ts

4π
I1bn+n′,m′−m(ρ

1b
ts , ztc − z1bc ),

T 2b
nm,n′m′ =

(−1)n+m+n′
+m′

Q n′m′

nm ei(m
′
−m)ϕ2b

ts

4π
I2bn+n′,m′−m(ρ

2b
ts , z2bc − ztc ),

(3.35)

where

Q n′m′

nm :=

√
(2n′ + 1)(n + n′ + m′ − m)!(n + n′ − m′ + m)!
(2n + 1)(n + m)!(n − m)!(n′ + m′)!(n′ − m′)!

.

herefore, we actually need efficient algorithm for the computa-
ion of the Sommerfeld-type integrals Iabnm(ρ, z) defined in (3.33).
t is clearly that they have oscillatory integrands. These integrals
re convergent when the target and source particles are not
xactly on the interfaces of the layered medium. High order
uadrature rules could be used for direct numerical computation
t runtime. However, this becomes prohibitively expensive due
o a large number of integrals needed in the FMM. In fact, (p +

)(2p+1) integrals will be required for each source box to target
ox translation. Moreover, the involved integrand decays more
lowly as n increases.
An important aspect in the implementation of FMM concerns

caling. Since Mab
nm ≈ (|r − rabc |)n, Labnm ≈ (|rab − r tc |)−n, a naive

se of the expansions (3.24) and (3.25) in the implementation
f FMM is likely to encounter underflow and overflow issues. To
void this, one must scale expansions, replacingMnm withMab

nm/Sn
nd Labnm with Labnm ·Sn where S is the scaling factor. To compensate
or this scaling, we replace F̃ab

nm(r, rabc ) with F̃ab
nm(r, rabc )·Sn, T ab

nm,n′m′

ith T ab
nm,n′m′ · Sn+n′

. Usually, the scaling factor S is chosen to be
he size of the box in which the computation occurs. Therefore,
he following scaled Sommerfeld-type integrals

nIabnm(ρ, z) =

∫
∞

0
Jm(kρρ)

(kρS)ne−kρ zσ ab
ℓℓ′ (kρ)

√
(n + m)!(n − m)!

dkρ,

n ≥ 0, m = 0, 1, . . . , n, (3.36)

re involved in the implementation of the FMM.
Recall the recurrence formula

m+1(z) =
2m
z

Jm(z) − Jm−1(z),

and define an =
√
n(n + 1). We have

SnIabnm+1(ρ, z) =

∫
∞

0
Jm+1(kρρ)

(kρS)ne−kρ zσ ab
ℓℓ′ (kρ)

√
(n + m + 1)!(n − m − 1)!

dkρ

=
2mS
ρ

∫
∞

0
Jm(kρρ)

(kρS)n−1e−kρ zσ ab
ℓℓ′ (kρ)

√
(n + m − 1)!(n − m − 1)!

×

√
(n + m − 1)!

dkρ
(n + m + 1)!
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∫
∞

0
Jm−1(kρρ)

(kρS)ne−kρ zσ ab
ℓℓ′ (kρ)

√
(n + m − 1)!(n − m + 1)!

×

√
(n + m − 1)!(n − m + 1)!
(n + m + 1)!(n − m − 1)!

dkρ,

hich gives the forward recurrence formula

nIabnm+1(ρ, z) =
2m
an+m

S
ρ
Sn−1Iabn−1m(ρ, z) −

an−m

an+m
SnIabnm−1(ρ, z),

(3.37)

for m ≥ 1, n ≥ m + 1. The stability of this recurrence formula
requires that

2m
an+m

<
ρ

S
. (3.38)

In the computation of F̃ab
nm(r, rabc ) · Sn and Labnm · Sn, ρab

s and
ρab
t could be arbitrary small. Therefore, the forward recurrence

formula (3.37) may not be able to be applied to calculate them.
Nevertheless, it is unnecessary to calculate F̃ab

nm(r, rabc ) · Sn and
Labnm ·Sn directly in the FMM. The coefficients Labnm ·Sn are calculated
from ME coefficients via M2L translations and then the potentials
are obtained via LEs (3.25). Therefore, we only need to consider
the computation of the integrals involved in the M2L translation
matrices T ab

nm,n′m′ . For any polarization source box in the interac-
tion list of a given target box, one can find that ρab

ts is either 0 or
larger than the box size S. If ρab

ts = 0, we directly have

Iabnm(ρ
ab
ts , z) = 0, ∀m > 0, ∀z > 0. (3.39)

In all other cases, we have ρab
ts ≥ S and the forward recurrence

formula (3.37) can always be applied as we have

2m
√
(n + m + 1)(n + m)

<
1

√
3

<
ρab
ts

S
, n ≥ m + 1, m ≥ 1.

Given a truncation number p, we still need to use quadratures
o calculate 4p+1 initial values {Iabn0(ρ, z)}2pn=0 and {Iabn1(ρ, z)}2pn=1 for
each M2L translation. Moreover, integrals {Iab00(ρ, z)}2a,b=1 are also
required in the computation of the direct interactions between
particles in neighboring boxes. These calculations require an ef-
ficient and robust numerical method. Note that {Iab00(ρ, z)}2a,b=1
are exactly the Sommerfeld integrals involved in the calcula-
tion of the layered Green’s function. A multitude of papers have
been published until now, devoted to their efficient calculation
(see [25] and the references there in).

Basically, we will adopt the mixed DE-SE quadrature
(cf. [25,26]) in this paper for efficient computations of the
Sommerfeld-type integrals. Nevertheless, we still need to con-
sider the case of large n which has not been covered in the
literature. We have found that the formulation (3.36) is not
adequate for two reasons: (i) the integrand may decay very slowly
if z is small; (ii) the integrand may have increasing oscillating
magnitude as n increases if ρ > z. As a matter of fact, the
asymptotic formula (B.32) and

Jm(z) ∼

√
2
πz

cos
(
z −

mπ

2
−

π

4

)
, z → ∞,

imply that the integrand in (3.36) has an asymptotic form

Jm(kρρ)
(kρS)ne−kρ zσ ab

ℓℓ′ (kρ)
√
(n + m)!(n − m)!

∼

√
2
π
Cab

ℓℓ′ cos
(
kρρ −

mπ

2
−

π

4

)
×

(kρρ)n−
1
2 Sne−kρ (z+ζ ab

ℓℓ′
)

√
(n + m)!(n − m)!

, (3.40)
12
as kρ → ∞. Given ρ, z > 0, define

nm(kρ; ρ, z + ζ ab
ℓℓ′ ) =

(kρρ)n−
1
2 Sne−kρ (z+ζ ab

ℓℓ′
)

√
(n + m)!(n − m)!

, (3.41)

hich has a maximum value

ax
kρ≥0

gnm(kρ; ρ, z + ζ ab
ℓℓ′ ) =

Sn
√
(n + m)!(n − m)!

(2n − 1
2

)n− 1
2

×

( ρ

z + ζ ab
ℓℓ′

)n− 1
2
e

1
2 −n, (3.42)

at kρ =
n

z+ζ ab
ℓℓ′

−
1

2(z+ζ ab
ℓℓ′

)
for n ≥ 1. Applying Stirling formula

n! ∼
√
2πnnn/en yields

max
kρ≥0

gnm(kρ; ρ, z + ζ ab
ℓℓ′ ) ∼

√
(2n − 1)e

2

×
n!

√
(n + m)!(n − m)!

( ρ

z + ζ ab
ℓℓ′

)n− 1
2
Sn, as n → ∞. (3.43)

Considering the case m = 0 and setting S =

√
ρ2 + z2, we have

max
kρ≥0

gn0(kρ, ρ, z + ζ ab
ℓℓ′ ) ∼

√
(2n − 1)(z + ζ ab

ℓℓ′ )e
2ρ

( ρS
z + ζ ab

ℓℓ′

)n
≥

√
(2n − 1)(z + ζ ab

ℓℓ′ )e
2ρ

( ρ2

z + ζ ab
ℓℓ′

)n
,

if ρ > z + ζ ab
ℓℓ′ .

(3.44)

rom the above estimate, we can see that the formulation (3.36)
ave very large cancellations in the integrand if ρ/(z + ζ ab

ℓℓ′ ) and
are large, see Fig. 3.5(a) for an example. Therefore, simply ap-
lying a quadrature to formula (3.36) will not get correct results
n all cases.

To overcome the problem discussed above, we will change
he contour of the integral (3.36). For this purpose, let us first
eformulate the integral (3.36) into

SnIabnm(ρ, z) =
1
2

∫
∞

0
H (1)

m (kρρ)
(Skρ )ne−kρ z

√
(n + m)!(n − m)!

σ ab
ℓℓ′ (kρ )dkρ

−
(−1)m

2

∫ 0

−∞

H (1)
m (kρρ)

(−Skρ )nekρ z

√
(n + m)!(n − m)!

σ ab
ℓℓ′ (−kρ )dkρ,

(3.45)

y using identities

m(x) =
H (1)

m (x) + H (2)
m (x)

2
, H (2)

m (−x) = (−1)m+1H (1)
m (x). (3.46)

ccording to the analysis in [27], the density function σ ab
ℓℓ′ (kρ) is

nalytic and bounded in the right half complex plane. Therefore,
e can change the contour of the first integral from [0, ∞) to

Γ +

ξ := {kρ = ξ (1 + i), ξ > 0} and the contour of the second
ntegral from (−∞, 0] to Γ −

ξ := {kρ = ξ (1− i), ξ < 0} to obtain

SnIabnm(ρ, z) =
1 + i
2

∫
∞

0
H (1)

m (ρξ (1 + i))

×
(Sξ )n(1 + i)ne−zξ (1+i)

√
(n + m)!(n − m)!

σ ab
ℓℓ′

(
(1 + i)ξ

)
dξ

−
(−1)m(1 − i)

2

∫ 0

−∞

H (1)
m (ρξ (1 − i))

×
(−Sξ )n(1 − i)nezξ (1−i)

√ σ ab
ℓℓ′

(
(i − 1)ξ

)
dξ .

(3.47)
(n + m)!(n − m)!
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ecalling the asymptotic formulation (cf. [28, Eq. (10.7.8)])

(1)
m (z) ∼

(1 + i)
√

πz
eiz, z → ∞, −π +δ ≤ phz ≤ 2π −δ, (3.48)

where δ is an arbitrary small positive number, we can obtain

H (1)
m (ρξ (1 + i)) ∼

(1 + i)
√

πρξ (1 + i)
e−ρξ eiρξ

→ 0, ξ → +∞,

H (1)
m (ρξ (1 − i)) ∼

(1 + i)
√

πρξ (1 − i)
eρξ eiρξ

→ 0, ξ → −∞,

(3.49)

for all ρ > 0. Defining

Gab
nm(ρ, z, ξ )

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + i
2

H (1)
m (ρξ (1 + i))

(Sξ )n(1 + i)ne−zξ (1+i)

√
(n + m)!(n − m)!

× σ ab
ℓℓ′

(
(1 + i)ξ

)
, if ξ ≥ 0,

(−1)m(i − 1)
2

H (1)
m (ρξ (1 − i))

(−Sξ )n(1 − i)nezξ (1−i)

√
(n + m)!(n − m)!

× σ ab
ℓℓ′

(
(i − 1)ξ

)
, if ξ < 0,

hen, we have

nIabnm(ρ, z) =

∫
∞

0
Gab
nm(ρ, z, ξ )dξ +

∫
∞

0
Gab
nm(ρ, z, −ξ )dξ . (3.50)

y the asymptotic formulas (B.32) and (3.49), we have

Gab
nm(ρ, z, ξ ) ∼

ξ n− 1
2 Sne−ξ (z+ρ+ζ ab

ℓℓ′
)

√
(n + m)!(n − m)!

= gnm(ξ ; 1, z + ρ + ζ ab
ℓℓ′ ), ξ → +∞,

Gab
nm(ρ, z, −ξ ) ∼

ξ n− 1
2 Sne−ξ (z+ρ+ζ ab

ℓℓ′
)

√
(n + m)!(n − m)!

= gnm(ξ ; 1, z + ρ + ζ ab
ℓℓ′ ), ξ → +∞.

(3.51)

ecalling (3.43) to get

max
ξ≥0

gnm(ξ ; 1, ρ + z + ζ ab
ℓℓ′ ) ∼

√
(2n − 1)e

2

×
n!

√
(n + m)!(n − m)!

( 1
ρ + z + ζ ab

ℓℓ′

)n− 1
2
Sn. (3.52)
13
As an example, we consider the case m = 0 and set S =

√
ρ2 + z2

gain, i.e.,

ax
ξ≥0

gn0(ξ ; 1, ρ + z + ζ ab
ℓℓ′ ) ∼

√
(2n − 1)e

2(ρ + z + ζ ab
ℓℓ′ )

( √
ρ2 + z2

ρ + z + ζ ab
ℓℓ′

)n

.

(3.53)

Apparently, the large cancellation in the case ρ > z + ζ ab
ℓℓ′

can be significantly suppressed by using the formulation (3.50).
At the same time, the oscillating term Jm(kρρ) is turned to be
exponentially decaying functions H (1)

m (ρξ (1±i)) and thus produce
aster exponential decaying term. A comparison of the integrands
n (3.36) and (3.50) are plotted in Fig. 3.5.

To end this section, we will give some numerical results to
how the accuracy and efficiency of the algorithm using mixed
E-SE quadrature together with formulations (3.36) and (3.50)
or the computation of the Sommerfeld type integrals. We test
he integral with densities σ ab

ℓℓ′ (kρ) ≡ 1 as the asymptotic formula
B.32) implies that σ ab

ℓℓ′ (kρ) tends to be either the constant Cab
ℓℓ′ or 0

apidly as kρ → ∞. Letting S = r :=

√
ρ2 + z2, then the identity

(2.42) yields To end this section, we will give some numerical
results to show the accuracy and efficiency of the algorithm using
mixed DE-SE quadrature together with formulations (3.36) and
(3.50) for the computation of the Sommerfeld type integrals. We
test the integral with densities σ ab

ℓℓ′ (kρ) ≡ 1 as the asymptotic
formula (B.32) implies that σ ab

ℓℓ′ (kρ) tends to be either the constant
ab
ℓℓ′ or 0 rapidly as kρ → ∞. Letting S = r :=

√
ρ2 + z2, then the

identity (2.42) yields

rnIabnm(ρ, z) =

√
4π

2n + 1
1
r
P̂m
n

( z
r

)
. (3.54)

We fix z = 0.001 and test ρ = 0.0005, 0.01, 0.1 by using
two different quadratures: (i) the composite Gaussian quadrature
applied to the integral (3.36); (ii) the mixed DE-SE quadrature
applied to (3.50). For the composite Gaussian quadrature, the
asymptotic formula (3.41) is used to determine the truncation
points such that the magnitude of the integrand decays to smaller
than 1.0e−15. Then, a uniform mesh with mesh size equal to 2
and 30 Gauss points in each interval is used to achieve machine
accuracy in regular cases. Due to the small value of z, a very
large truncation is needed if the formulation (3.36) is used. The
numerical results are compared in Table 3.1, while the reference
values are calculated by (3.54). We can see that the integral
domain truncation is larger than 47834 for the composite Gauss
quadrature approach when ρ = 0.0005, n = 5 and m = 0, 1.
The truncations in all other tested cases are even larger. Thus, a
large number of quadrature points have to be used to achieve a
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Table 3.1
A comparison of two quadrature rules for the computation of Sommerfeld integrals with z = 0.001.
ρ n m Composite Gauss Mixed DE-SE

Number of points Error Number of points Error

0.0005
5 0 717523 −3.307e−12 52 7.105e−14

1 716016 2.576e−11 52 1.421e−14

10 0 892278 6.954e−12 72 −2.842e−14
1 891431 1.882e−11 72 −9.059e−14

0.01
5 0 872989 −1.427e−10 56 4.441e−16

1 871511 −2.716e−11 64 3.108e−15

10 0 1246898 1.147e−5 56 −1.443e−15
1 1246090 −6.755e−6 56 6.883e−15

0.1
5 0 1039851 −8.793e−7 72 7.632e−17

1 1038393 −9.250e−7 72 −4.996e−16

10 0 1610764 −10615.95 48 1.943e−16
1 1609974 1334.402 48 2.775e−17
i
v
p
t
t
c
c
t
t
t
t
t
a
r
p
h
l
t
o
a

C
a

good accuracy when the composite Gauss quadrature is applied
to (3.36). In contrast, the mixed DE-SE quadrature can obtain
machine accuracy using no more than 100 points. Moreover, as
the ratio ρ/z increases, applying composite Gauss quadrature to
(3.36) cannot produce reasonable results due to the large can-
cellation in (3.36). Instead, the mixed DE-SE quadrature applied
to (3.50) can still provide results with almost machine accuracy
using no more than 100 quadrature points.

Remark 3.1. In the FMM for reaction components, the most time
consuming part is still the computation of the M2L matrices. Nev-
ertheless, the equations in (3.35) show that we can pre-compute
{SnIabnm(ρ, z)}2pn=0,m = 0, 1, . . . , n for all possible (ρ, z) determined
y the target box and all source boxes in its interaction list.
s target and equivalent polarization source boxes are always
eparated by a material interface, we only have no more than
9 different (ρ, z) cases for all M2L in a fixed level of the tree
tructure. Denoted the depth of the tree structure used in the
MM by H , then the total number of pre-computed matrices is
qual to 29H .

. Numerical results

In this section, we present numerical results to demonstrate
he performance of the proposed FMM. The algorithm is imple-
ented based on an open-source adaptive FMM package
ASHMM (cf. [29]) on a workstation with two Xeon E5-2699 v4
.2 GHz processors (each has 22 cores) and 500GB RAM using
he GCC compiler version 6.3. The main improvement in the
umerical results compared with that presented in [19] for the
elmholtz equation is that no off-line computation is needed and
umerical tests with media of many layers and charges very close
o interfaces are presented.

harges in a 3 layer medium. We first test problems in a three
ayers medium with interfaces placed at z0 = 0, z1 = −1.2.
Charges are set to be uniformly distributed in irregular domains
which are obtained by shifting the domain determined by r =

0.599−a+
a
8 (35 cos4 θ −30 cos2 θ +3) with a = 0.1, 0.15, 0.05 to

new centers (0, 0, 0.6), (0, 0, −0.6) and (0, 0, −1.8), respectively
see Fig. 4.1(a) for the cross section of the domains). Particle
ocations are generated randomly with a uniform distribution in a
arger cube within corresponding irregular domains. We can see
hat the minimum distance between charges and the interfaces is
.001 in all three layers, i.e., the numerical examples have charges
ery close to the interfaces. In the layered medium, the material
arameters are set to be ε0 = 21.2, ε1 = 47.5, ε2 = 62.8. Let

Φ̃ (r ) be the approximated values of Φ (r ) calculated by FMM.
ℓ ℓi ℓ ℓi a

14
Table 4.1
Comparison of CPU time (sec) using multiple cores (p = 5).

cores N time for all {Φ
free
ℓ }

2
ℓ=0 time for all {Φab

ℓℓ′ }

1

4164016 426.66 67.76
6229016 436.30 57.75
8883960 455.32 75.97
12202880 527.56 132.06

6

4164016 80.78 21.86
6229016 82.96 20.76
8883960 86.54 25.74
12202880 100.08 42.94

36

4164016 24.97 20.58
6229016 25.71 18.81
8883960 26.02 23.45
12202880 28.51 36.72

Define ℓ2 and maximum errors as

Errℓ
2 :=

√∑Nℓ

i=1 |Φℓ(rℓi) − Φ̃ℓ(rℓi)|
2∑Nℓ

i=1 |Φℓ(rℓi)|2
,

Errℓ
max := max

1≤i≤Nℓ

|Φℓ(rℓi) − Φ̃ℓ(rℓi)|
|Φℓ(rℓi)|

.

(4.1)

For accuracy test, we put N = 1168 + 856 + 1504 charges
n the irregular domains in three layers, see Fig. 4.1(a). Con-
ergence rates against p are depicted in Fig. 4.1(b). Clearly, the
roposed FMM has an exponential convergence with respect to
he truncation order p. The CPU time for the computation of all
hree free space components {Φ

free
ℓ (rℓi)}2ℓ=0 and sixteen reaction

omponents Φab
ℓℓ′ (rℓi) with fixed truncation number p = 5 are

ompared in Fig. 4.1(c) for up to 12 millions charges. It shows
hat all of them have an O(N) complexity while the CPU time for
he computation of reaction components is much shorter than
hat for free space components due to the fact that most of
he equivalent polarization sources are well-separated from the
argets. The CPU times with multiple cores are given in Table 4.1
nd they show that the speedup of the parallel computing for
eaction components is lower than that for the free space com-
onents as the pre-computation for the matrices {SnIabnm(ρ, z)}2pn=0
as not been implemented in parallel. Here, we only use paral-
el implementation within the FMM for each component. Note
hat the computation of each component is independent of all
ther components. Therefore, it is straightforward to implement
version of the code which computes all components in parallel.

harges in solar cell media with up to 32 layers. Next, to test
more practical problem and also to check the scaling of the
lgorithm with respect to the number of layers (L), we consider
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Fig. 4.1. Performance of FMM for problem in a three layers medium.
Fig. 4.2. Performance of FMM for problems in media with many layers.
typical layout of a multi-layered solar cell (cf. [30]) where the
ain components are Gallium Arsenide (GaAs), Indium Arsenide

InAs) and Silicon (Si), which have relative dielectric constants
2.9, 15.15 and 2.4, respectively. We will test different cases with
p to 32 layers and 32 million charges. In each case, the width
f the layers is fixed to be 1.2 and three materials: GaAs, InAs
nd Si are randomly selected in the layered structure. Moreover,
he source charges are randomly picked in cubic box of size 1
n each layer. For accuracy test, we consider a medium with 16
ayers and put 1000 randomly selected source charges in each
ox. Therefore, the total number of charges is 16 000. The errors
f the potentials in the 3th, 8th and 15th layers are depicted in
ig. 4.2(a). We can see that highly accurate results can be obtained
ith p less than 20. To show the dependence of the CPU time
n the number of layers L, we test examples of different L and
ut 1 million randomly selected source charges in each layer.
ultiple cores (40 cores) are used and the CPU time is depicted

n Fig. 4.2(b). The results show that the FMM can handle large
umber of sources in many layers efficiently. According to the
erivation in Appendix B, the number of free space and reaction
ield components are L and 4(L2 − 2L + 1), respectively, when a
-layers medium is considered. Therefore, the CPU time for free
pace and reaction field components is O(L) and O(L2) as we can
ee in Fig. 4.2(b). Moreover, it is worthy to point out that the
omputation of all reaction components are independent from
ach other, hence can be done in parallel.
15
5. Conclusion

In this paper, we have presented a fast multipole method
for the efficient calculation of the interactions between charged
particles embedded in 3-D layered media. The layered media
Green’s function of the Laplace equation is decomposed into a
free space and four types of reaction components. The associated
equivalent polarization sources are introduced to re-express the
reaction components. New MEs and LEs of O(p2) terms for the
far field of the reaction components and M2L translation oper-
ators are derived, accordingly. As a result, the traditional FMM
framework can be applied to both the free space and reaction
components once the polarization sources are used together with
the original sources. For systems of large number of charges,
the computational cost from the reaction components is only
a fraction of that of the FMM for the free space components.
Therefore, computing the interactions of many sources in layered
media basically costs the same as that for the interactions in the
free space and the proposed FMM scales as O(N) in terms of the
number of charges N in a layered medium and O(L2) in terms of
the number of layers L.

For the future work, we will carry out error estimate of the
FMM for the Laplace equation in 3-D layered media, which re-
quires careful analysis for the convergence of the new MEs and
M2L operators for the reaction components. The application of
the FMM in capacitance extraction of interconnects in VLSI will
also be considered in a future work.
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ppendix A. Addition theorems

The following presents the addition theorems (cf. [12,31]),
hich have been used for the derivation of the ME, LE and
orresponding shifting and translation operators of the free space
reen’s function. Here we adopt the definition

m
n (θ, ϕ) = (−1)m

√
2n + 1
4π

(n − m)!
(n + m)!

Pm
n (cos θ )eimϕ

:= P̂m
n (cos θ )eimϕ,

(A.1)

or the spherical harmonics where Pm
n (x) (resp. P̂m

n (x)) is the
associated (resp. normalized) Legendre function of degree n and
rder m. Recall that

Pm
n (x) = (−1)m(1 − x2)

m
2

dm

dxm
Pn(x) (A.2)

for integer order 0 ≤ m ≤ n and

−m
n = (−1)m

(n − m)!
(n + m)!

Pm
n (x), so P̂−m

n (x) = (−1)mP̂m
n (x) (A.3)

for 0 < m ≤ n, where Pn(x) is the Legendre polynomial of de-
gree n. The so-defined spherical harmonics constitute a complete
orthogonal basis of L(S2) (where S2 is the unit spherical surface)
and

⟨Ym
n , Ym′

n′ ⟩ = δnn′δmm′ , Y−m
n (θ, ϕ) = (−1)mYm

n (θ, ϕ).

It is worthy to point out that the spherical harmonics with differ-
ent scaling constant defined as

Ym
n (θ, ϕ) =

√
(n − |m|)!
(n + |m|)!

P |m|

n (cos θ )eimϕ
= im+|m|

√
4π

2n + 1
Ym
n (θ, ϕ),

(A.4)

ave been frequently adopted in published FMM papers (e.g., [12,
1]). By using the spherical harmonics defined in (A.1) and con-
tants

n =

√
2n + 1
4π

, Am
n =

(−1)ncn
√
(n − m)!(n + m)!

, |m| ≤ n, (A.5)

he addition theorems in [12,31] can be represented as:

heorem A.1 (Addition Theorem for Legendre Polynomials). Let P
nd Q be points with spherical coordinates (r, θ, ϕ) and (ρ, α, β),
espectively, and let γ be the angle subtended between them. Then

n(cos γ ) =
4π

2n + 1

n∑
m=−n

Ym
n (α, β)Ym

n (θ, ϕ). (A.6)
16
Theorem A.2. Let Q = (ρ, α, β) be the center of expansion of
an arbitrary spherical harmonic of negative degree. Let the point
P = (r, θ, ϕ), with r > ρ, and P − Q = (r ′, θ ′, ϕ′). Then

Ym′

n′ (θ ′, ϕ′)
r ′n′+1

=

∞∑
n=0

n∑
m=−n

(−1)mAm
n A

m′

n′ ρ
nY−m

n (α, β)

c2nA
m+m′

n+n′

Ym+m′

n+n′ (θ, ϕ)

rn+n′+1
.

heorem A.3. Let Q = (ρ, α, β) be the center of expansion of
n arbitrary spherical harmonic of negative degree. Let the point
= (r, θ, ϕ), with r < ρ, and P − Q = (r ′, θ ′, ϕ′). Then

Ym′

n′ (θ ′, ϕ′)
r ′n′+1

=

∞∑
n=0

n∑
m=−n

(−1)n
′
+mAm

n A
m′

n′ · Ym′
−m

n+n′ (α, β)

c2nA
m′−m
n+n′ ρn+n′+1

rnYm
n (θ, ϕ).

Theorem A.4. Let Q = (ρ, α, β) be the center of expansion of
an arbitrary spherical harmonic of negative degree. Let the point
P = (r, θ, ϕ) and P − Q = (r ′, θ ′, ϕ′). Then

′n′

Ym′

n′ (θ ′, ϕ′) =

n′∑
n=0

n∑
m=−n

(−1)nc2n′Am
n A

m′
−m

n′−n · ρnYm
n (α, β)

c2n c
2
n′−nA

m′

n′ rn−n′
Ym′

−m
n′−n (θ, ϕ),

where Am
n = 0, Ym

n (θ, ϕ) ≡ 0 for |m| > n is used.

Appendix B. A stable recursive algorithm for computing reac-
tion densities

Denote the solution of the problem (3.1)–(3.2) in the ℓth
layer by uℓℓ′ (r, r ′) and its partial Fourier transform along x− and
y−directions by

uℓℓ′ (kx, ky, z) = F [uℓℓ′ (r, r ′)](kx, ky, z)

:=

∫
∞

−∞

∫
∞

−∞

uℓℓ′ (r, r ′)e−i(kxx+kyy)dxdy.

hen, ûℓℓ′ (kx, ky, z) satisfies second order ordinary differential
quation

d2̂uℓℓ′ (kx, ky, z)
dz2

− k2ρ ûℓℓ′ (kx, ky, z) = −e−i(kxx′+kyy′)δ(z, z ′), z ̸= dℓ.

(B.1)

Here, we consider the following general interface conditions

aℓ−1̂uℓ−1,ℓ′ (kx, ky, z) = aℓ̂uℓℓ′ (kx, ky, z),

ℓ−1
d̂uℓ−1,ℓ′ (kx, ky, z)

dz
= bℓ

d̂uℓℓ′ (kx, ky, z)
dz

, (B.2)

in the frequency domain for ℓ = 1, 2, . . . , L, where {aℓ, bℓ} are
given constants. Apparently, the classic transmission condition
(3.2) will lead to a special case of (B.2) with aℓ = 1, bℓ = εℓ. In
the top and bottom-most layers, we also have decaying condition

u0ℓ′ (kx, ky, z) → 0, ûLℓ′ (kx, ky, z) → 0, as z → ±∞. (B.3)

This interface problem has a general solution⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
û0ℓ′ (kx, ky, z) = σ 1

0ℓ′e−kρ (z−d0),

ûℓ′ℓ′ (kx, ky, z) = σ 1
ℓ′ℓ′e−kρ (z−dℓ′ )

+σ 2
ℓ′ℓ′e−kρ (dℓ′−1−z)

+ δℓℓ′ Ĝ(kx, ky, z, z ′),

ûLℓ′ (kx, ky, z) = σ 2
Lℓ′e−kρ (dL−1−z),

(B.4)

where δℓℓ′ is the Kronecker symbol, and

G(kx, ky, z, z ′) = ϑe−kρ |z−z′|, ϑ =
e−i(kxx′+kyy′)

2kρ

, (B.5)

is the Fourier transform of the free space Green’s function. We
will use the decomposition

G(k , k , z, z ′) = Ĝ1(k , k , z, z ′) + Ĝ2(k , k , z, z ′), (B.6)
x y x y x y
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here the two components are defined as

1(kx, ky, z, z ′) := H(z ′
− z)ϑe−kρ (z′−z),

G2(kx, ky, z, z ′) := H(z − z ′)ϑe−kρ (z−z′), (B.7)

nd H(x) is the Heaviside function.
We first consider the ℓth layer without source (ℓ ̸= ℓ′), where

he right hand side of (B.1) becomes zero, the solution is given by

ûℓℓ′ (kx, ky, z) = σ 1
ℓℓ′ (kx, ky)e−kρ (z−dℓ) + σ 2

ℓℓ′ (kx, ky)e−kρ (dℓ−1−z).

(B.8)

Applying the interface condition (B.2) at z = dℓ−1 gives

aℓ−1σ
1
ℓ−1,ℓ′ + aℓ−1e−kρDℓ−1σ 2

ℓ−1,ℓ′ = aℓe−kρDℓσ 1
ℓℓ′ + aℓσ

2
ℓℓ′ ,

bℓ−1σ
1
ℓ−1,ℓ′ − bℓ−1e−kρDℓ−1σ 2

ℓ−1,ℓ′ = bℓe−kρDℓσ 1
ℓℓ′ − bℓσ

2
ℓℓ′ ,

(B.9)

or in matrix form

S(ℓ−1)
(

σ 1
ℓ−1,ℓ′

σ 2
ℓ−1,ℓ′

)
= S̃(ℓ)

(
σ 1

ℓℓ′

σ 2
ℓℓ′

)
, (B.10)

where

S(ℓ)
:=

(
aℓ aℓeℓ

bℓ −bℓeℓ

)
, S̃(ℓ)

:=

(
aℓeℓ aℓ

bℓeℓ −bℓ

)
, ℓ = 2, 3, . . . , L− 1,

(B.11)

and

eℓ := e−kρDℓ , d−1 := d0,
dL+1 := dL, Dℓ = dℓ−1 − dℓ, ℓ = 0, 1, . . . , L.

(B.12)

Solving the above equations for {σ 1
ℓ−1,ℓ′ , σ

2
ℓ−1,ℓ′}, we obtain(

σ 1
ℓ−1,ℓ′

σ 2
ℓ−1,ℓ′

)
= Tℓ−1,ℓ

(
σ 1

ℓℓ′

σ 2
ℓℓ′

)
(B.13)

or ℓ = 2, 3, . . . , L − 1, where

Tℓ−1,ℓ
=

(
aℓ−1 aℓ−1eℓ−1

bℓ−1 −bℓ−1eℓ−1

)−1 (aℓeℓ aℓ

bℓeℓ −bℓ

)
=

1
2eℓ−1

(
eℓ−1 0
0 1

)
T̂ℓ−1,ℓ

(
eℓ 0
0 1

)
,

(B.14)

and

Tℓ−1,ℓ
:=

⎛⎜⎜⎝
aℓ

aℓ−1
+

bℓ

bℓ−1

aℓ

aℓ−1
−

bℓ

bℓ−1
aℓ

aℓ−1
−

bℓ

bℓ−1

aℓ

aℓ−1
+

bℓ

bℓ−1

⎞⎟⎟⎠ . (B.15)

For the top and bottom most layers, we have σ
↓

0ℓ′ = 0 and
σ

↑

Lℓ′ = 0, we can also verify that(
σ 1
0ℓ′

0

)
= T01

(
σ 1
1ℓ′

σ 2
1ℓ′

)
,

(
σ 1
L−1,ℓ′

σ 2
L−1,ℓ′

)
= TL−1,L

(
0

σ 2
Lℓ′

)
. (B.16)

Next, we consider the solution in the layer with source r ′

inside, i.e., the solution in the ℓ′th layer. The general solution is
given by

uℓ′ℓ′ (kx, ky, z) = σ 1
ℓ′ℓ′eikℓ′z (z−dℓ′ ) +σ 2

ℓ′ℓ′eikℓ′z (dℓ′−1−z)
+ Ĝ(kx, ky, z, z ′).

(B.17)
17
At the interfaces z = dℓ′−1 and z = dℓ′ , the interface conditions
(B.2) lead to equations

aℓ′−1
(
σ 1

ℓ′−1,ℓ′ + eℓ′−1σ
2
ℓ′−1,ℓ′

)
= aℓ′

(
eℓ′σ 1

ℓ′ℓ′ + σ 2
ℓ′ℓ′

+ Ĝ2(kx, ky, dℓ′−1, z ′)
)
,

bℓ′−1
(
σ 1

ℓ′−1,ℓ′ − eℓ′−1σ
2
ℓ′−1,ℓ′

)
= bℓ′

(
eℓ′σ 1

ℓ′ℓ′ − σ 2
ℓ′ℓ′

)
−

bℓ′

kρ

∂z Ĝ2(kx, ky, dℓ′−1, z ′),

(B.18)

and

aℓ′

(
σ 1

ℓ′ℓ′ + eℓ′σ 2
ℓ′ℓ′

)
= aℓ′+1

(
eℓ′+1σ

1
ℓ′+1ℓ′ + σ 2

ℓ′+1,ℓ′

)
− aℓ′ Ĝ1(kx, ky, dℓ′ , z ′),

bℓ′

(
σ 1

ℓ′ℓ′ − eℓ′σ 2
ℓ′ℓ′

)
= bℓ′+1

(
eℓ′+1σ

1
ℓ′+1ℓ′ − σ 2

ℓ′+1,ℓ′

)
+

bℓ′

kρ

∂z Ĝ1(kx, ky, dℓ′ , z ′).

(B.19)

Note that

∂z Ĝ2(kx, ky, dℓ′−1, z ′) = −kρ Ĝ2(kx, ky, dℓ′−1, z ′),

∂z Ĝ1(kx, ky, dℓ′ , z ′) = kρ Ĝ1(kx, ky, dℓ′ , z ′).

Then, Eqs. (B.18)–(B.19) can be reformulated as(
σ 1

ℓ′−1,ℓ′

σ 2
ℓ′−1,ℓ′

)
= Tℓ′

−1,ℓ′

(
σ 1

ℓ′ℓ′

σ 2
ℓ′ℓ′

)
+ S̆(ℓ′

−1)
(
aℓ′

bℓ′

)
Ĝ2(kx, ky, dℓ′−1, z ′)

(B.20)

and(
σ 1

ℓ′ℓ′

σ 2
ℓ′ℓ′

)
= Tℓ′ℓ′

+1

(
σ 1

ℓ′+1,ℓ′

σ 2
ℓ′+1,ℓ′

)
+ S̆(ℓ′)

(
−aℓ′

bℓ′

)
Ĝ1(kx, ky, dℓ′ , z ′),

(B.21)

where

S̆(ℓ)
=
(̂
S(ℓ))−1

=
1
2

(
1 0

0 e−1
ℓ

)⎛⎜⎜⎝
1
aℓ

1
bℓ

1
aℓ

−
1
bℓ

⎞⎟⎟⎠ :=

(
S̆(ℓ)11 S̆(ℓ)12

S̆(ℓ)21 S̆(ℓ)22

)
.

(B.22)

Define

Tℓ−1,ℓ
= 2eℓ−1Tℓ−1,ℓ, C (ℓ)

=

ℓ−1∏
j=0

1
2ej

,

A(ℓ)
= T̃01T̃12

· · · T̃ℓ−1,ℓ
:=

(
α
(ℓ)
11 α

(ℓ)
12

α
(ℓ)
21 α

(ℓ)
22

)
, (B.23)

for ℓ = 1, 2, . . . , L. Then, recursions in (B.13), (B.20) and (B.21)
result in the system(

σ 1
0ℓ′

0

)
=C (L)A(L)

(
0

σ 2
Lℓ′

)
+ C (ℓ′

−1)A(ℓ′
−1)S̆(ℓ′

−1)

(
aℓ′

bℓ′

)
Ĝ2(kx, ky, dℓ′−1, z ′)

+ C (ℓ′)A(ℓ′)S̆(ℓ′)

(
−aℓ′

bℓ′

)
Ĝ1(kx, ky, dℓ′ , z ′).

(B.24)

It is not numerically stable to directly solve (B.24) for σ 1
0ℓ′ and

σ 2
Lℓ′ then apply recursions (B.13), (B.20) and (B.21) to obtain all

other reaction densities due to the exponential functions involved
in the formulations. According to the expression (B.14), the recur-
sions (B.13), (B.20) and (B.21) are stable for the computation of



B. Wang, W. Zhang and W. Cai Computer Physics Communications 259 (2021) 107645

t
n
u

σ

w

a

A

w
w

w

κ

A
t

he components σ 1
ℓℓ′ (kρ). As for the computation of the compo-

ents σ 2
ℓℓ′ (kρ), we need to form linear systems similar as (B.24)

sing recursions (B.13), (B.20) and (B.21) and then solve it.
We first solve the second equation in (B.24) to get

2
Lℓ′ = σ 21

Lℓ′ Ĝ1(kx, ky, dℓ′ , z ′) + σ 22
Lℓ′ Ĝ2(kℓ′z, dℓ′−1, z ′),

here

σ 21
Lℓ′ = −

C (ℓ′
+1)

C (L)α
(L)
22

(
α
(ℓ′)
21 α

(ℓ′)
22

)
2eℓ′ S̆(ℓ′)

(
−aℓ′

bℓ′

)
, 0 ≤ ℓ′ < L,

σ 22
Lℓ′ = −

C (ℓ′)

C (L)α
(L)
22

(
α
(ℓ′

−1)
21 α

(ℓ′
−1)

22

)
2eℓ′−1S̆(ℓ′

−1)
(
aℓ′

bℓ′

)
, 0 < ℓ′

≤ L.

(B.25)

According to the recursion (B.13), (B.20) and (B.21), all other
reaction densities also have decompositions

σ 1
ℓℓ′ = σ 11

ℓℓ′ Ĝ1(kx, ky, dℓ′ , z ′) + σ 12
ℓℓ′ Ĝ2(kx, ky, dℓ′−1, z ′),

σ 2
ℓℓ′ = σ 21

ℓℓ′ Ĝ1(kx, ky, dℓ′ , z ′) + σ 22
ℓℓ′ Ĝ2(kx, ky, dℓ′−1, z ′).

(B.26)

For each 0 ≤ ℓ < L, we first calculate {σ 11
ℓℓ′ , σ

12
ℓℓ′} by using

one of the recursions (B.13), (B.20) and (B.21), then formulate a
linear system for {σ 1

0ℓ′ , σ
2
ℓℓ′} as the linear system (B.24). Next, we

solve the second equation in the linear system to obtain reaction
densities {σ 21

ℓℓ′ , σ
22
ℓℓ′}. In summary, the formulations are given as

follows:

σ 11
ℓℓ′ =

⎧⎪⎨⎪⎩
T ℓ′ℓ′

+1
11 σ 11

ℓ′+1,ℓ′ + T ℓ′ℓ′
+1

12 σ 21
ℓ′+1,ℓ′

−S̆(ℓ
′)

11 aℓ′ + S̆(ℓ
′)

12 bℓ′ , ℓ = ℓ′,

T ℓℓ+1
11 σ 11

ℓ+1,ℓ′ + T ℓℓ+1
12 σ 21

ℓ+1,ℓ′ , else,

(B.27)

σ 12
ℓℓ′ =

⎧⎪⎨⎪⎩
T ℓ′

−1,ℓ′

11 σ 12
ℓ′ℓ′ + T ℓ′

−1,ℓ′

12 σ 22
ℓ′ℓ′ + S̆(ℓ

′
−1)

11 aℓ′

+S̆(ℓ
′
−1)

12 bℓ′ , ℓ = ℓ′
− 1,

T ℓℓ+1
11 σ 12

ℓ+1,ℓ′ + T ℓℓ+1
12 σ 22

ℓ+1,ℓ′ , else,
(B.28)

σ 21
ℓℓ′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
1

α
(ℓ)
22

(
0 1

) [C (ℓ′
+1)

C (ℓ) A(ℓ′)2eℓ′ S̆(ℓ′)

×

(
−aℓ′

bℓ′

)
+ A(ℓ)

(
σ 11

ℓℓ′

0

)]
, ℓ > ℓ′,

−
α
(ℓ)
21

α
(ℓ)
22

σ 11
ℓℓ′ , else,

(B.29)

σ 22
ℓℓ′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
1

α
(ℓ)
22

(
0 1

) [C (ℓ′)

C (ℓ) A
(ℓ′

−1)2eℓ′−1

S̆(ℓ′
−1)

(
aℓ′

bℓ′

)
+A(ℓ)

(
σ 12

ℓℓ′

0

)]
, ℓ ≥ ℓ′,

−
α
(ℓ)
21

α
(ℓ)
22

σ 12
ℓℓ′ , else.

(B.30)

Substituting (B.26) and (B.7) into (B.4) and taking inverse Fourier
transform, we obtain expressions (3.3)–(3.7).

From the definition (B.14) and (B.23), we have

T ℓℓ+1
11 =

aℓ+1bℓ + aℓbℓ+1

2aℓbℓ

eℓ+1, T ℓℓ+1
12 =

aℓ+1bℓ − aℓbℓ+1

2aℓbℓ

,

2eℓS̆(ℓ)
=

(
a−1

ℓ eℓ b−1
ℓ eℓ

a−1
ℓ −b−1

ℓ

)
,

C (ℓ1)

(ℓ ) =

{
1 ℓ1 = ℓ2,

ℓ2−ℓ1 −kρ (dℓ −1−dℓ −1)
C 2 2 e 1 2 0 ≤ ℓ1 < ℓ2,

18
nd an asymptotic behavior

(ℓ)
∼

(
α̃
(ℓ)
11 e0e1 · · · eℓ α̃

(ℓ)
12 e0

α̃
(ℓ)
21 eℓ α̃

(ℓ)
22

)
, kρ → ∞, (B.31)

where {α̃
(ℓ)
11 , α̃

(ℓ)
12 , α̃

(ℓ)
21 , α̃

(ℓ)
22 } are constants independent of kρ . By

using these formulations in (B.25)–(B.30), we can show that all
reaction densities {σ ab

ℓℓ′ (kρ)}2a,b=1 have an asymptotic behavior

σ ab
ℓℓ′ (kρ) ∼ Cab

ℓℓ′e−kρζ ab
ℓℓ′ , kρ → ∞, (B.32)

here Cab
ℓℓ′ and ζ ab

ℓℓ′ are constants independent of kρ . For example,
e have

σ 21
Lℓ′ (kρ) ∼ 2L−ℓ′

−1 α̃
(ℓ′)
22

α
(L)
22

e−kρ (dℓ′−dL−1), kρ → ∞,

σ 22
Lℓ′ (kρ) ∼ 2L−ℓ′ α

(ℓ′)
22

α
(L)
22

( aℓ′

aℓ′−1
+

bℓ′

bℓ′−1

)
e−kρ (dℓ′−1−dL−1), kρ → ∞.

(B.33)

If the number of layers is not large, we are able to write
down explicit expressions of the reaction densities. Here, we give
expressions for the case of a three layers media with aℓ = 1,
bℓ = εℓ as an example.

• Source in the top layer:

σ 11
00 (kρ) =

(ε0 − ε1)(ε1 + ε2) + (ε0 + ε1)(ε1 − ε2)e2d1kρ

2κ(kρ)
,

σ 21
10 (kρ) =

ε0(ε1 + ε2)
κ(kρ)

, σ 11
10 (kρ) =

ε0(ε1 − ε2)ed1kρ

κ(kρ)
,

σ 21
20 (kρ) =

2ε0ε1ed1kρ

κ(kρ)
.

(B.34)

• Source in the middle layer:

σ 12
01 (kρ ) =

ε1(ε1 + ε2)
κ(kρ )

, σ 11
01 (kρ ) =

ε1(ε1 − ε2)ed1kρ

κ(kρ )
,

σ 11
11 (kρ ) =

(ε1 − ε2)(ε1 + ε0)
2κ(kρ )

, σ 21
11 (kρ ) =

(ε1 − ε2)(ε1 − ε0)ed1kρ

2κ(kρ )
,

σ 12
11 (kρ ) =

(ε1 − ε2)(ε1 − ε0)ed1kρ

2κ(kρ )
, σ 22

11 (kρ ) =
(ε1 + ε2)(ε1 − ε0)

2κ(kρ )
,

σ 22
21 (kρ ) =

ε1(ε1 − ε0)ed1kρ

κ(kρ )
, σ 21

21 (kρ ) =
ε1(ε0 + ε1)

κ(kρ )
.

(B.35)

• Source in the bottom layer:

σ 12
02 (kρ) =

2ε1ε2ed1kρ

κ(kρ)
,

σ 22
12 (kρ) =

ε2(ε1 − ε0)ed1kρ

κ(kρ)
, σ 12

12 (kρ) =
ε2(ε0 + ε1)

κ(kρ)
,

σ 22
22 (kρ) =

(ε1 − ε0)(ε1 + ε2) + (ε0 + ε1)(ε2 − ε1)e2d1kρ

2κ(kρ)
,

(B.36)

here

(kρ) =
1
2

[
(ε0 + ε1)(ε1 + ε2) + (ε0 − ε1)(ε2 − ε1)e2d1kρ

]
.

pparently, these expressions also verify our conclusion (B.32) on
he asymptotic behavior of the reaction densities.
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