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1. Introduction operation for the GMRES iterative solver). The fast multipole
method (FMM) for the free space Green’s function (the Coulomb
Solving Laplace equations in layered media is connected to potential) has been used in the development of FastCap (cf. [10])

many important applications in science and engineering. For in- ~ to accelerate this product to O(N). However, the original FMM
stance, finding the electric charge distribution over conductors ~ Of Greengard and Rokhlin (cf. [11,12]) is only de51gnzed for the
embedded in a layered dielectric medium has important appli-  free space Green’s function, which reduces the O(N*) compu-

cation in semi-conductor industry for calculating the capacitance ~ tational cost of N charge interactions in the free space to O(N).
of interconnects (ICs) in very large-scale integrated (VLSI) circuits 10 treat the dielectric material interfaces in the IC design, un-
for microchip designs (cf. [1-4]). Due to complex geometries of ~ KNOWNS representing the polarization charges from the dielectric

the ICs, the Laplace equation for charge potential is usually solved ~ inhomogeneities have to be introduced over the infinite material
by an integral method with the Green’s function of the layered  interfaces, thus creating unnecessary unknowns and contributing

media (cf. [4,5]), which results in a huge dense linear algebraic Fot la;ger llneaL syste.rgs.dTgl ese .extrgl uréknom'msf ovir matfegla 1
system to be solved by an iterative method such as GMRES intertaces can be avoided by Using the Lreen s unction of the

s . layered media in the formulation of the integral equations. To
(cf. [6].)’ etc. chgr appllcatlons. of the Laplace gq'uatmn can be find fast algorithms to solve the discretized linear system, image
found in medical imaging of brains (cf. [7]), elasticity of compos-

. . L charges are used to approximate the Green's function of the
ite materials (cf. [8]), and electrical impedance tomography for layered media [13-15], converting the reaction potential to the
geophysical applications (cf. [9]). !

D he full ) lting f he di o f free space Coulomb potential from the charges and their images,
| ue tot € lu matr}x resu ting rorr12 the lscret‘lzatlon 0 thus, the free space FMM can be used [16-18]. Apparently, this
integral equations, it will incur an O(N“) computational cost

h v > approach is limited to the ability of finding image charge approx-
for computing the product of the matrix with a vector (a basic  jmatjon for the layered media Green’s function. Unfortunately,

finding such an image approximation can be challenging, if not
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for Laplace equations through integral equation methods with a
layered media Green'’s function. We will first derive the multipole
expansions (MEs) and local expansions (LEs) for the reaction
components for the corresponding layered media Green’s func-
tion. Then, the original FMM for the interactions of charges in
free space will be extended to those of charges embedded in
layered media. The approach closely follows our recent work
for the Helmholtz equation in layered media (cf. [19,20]), where
the generating function of the Bessel function (2-D case) or a
Funk-Hecke formula (3-D case) were used to connect Bessel
functions and plane wave functions in order to derive the MEs,
LEs, and M2L operators. The reason of using Fourier (2-D case)
and spherical harmonic (3-D case) expansions of plane waves is
that the Green’s function of layered media has a Sommerfeld-
type integral representation also involving the plane waves. Even
though the Laplace equation could be considered as a zero limit of
the wave number k in the Helmholtz equation, special treatments
of the k — 0 limit are required to obtain a limit version of the
extended Funk-Hecke formula, which is the key in the derivation
of MEs, LEs, and M2L for the reaction components of the Lapla-
cian Green'’s function in layered media. Similar to our previous
work for the Helmholtz equation in layered media, the potential
due to sources embedded in layered media is decomposed into
free space and reaction components and equivalent polarization
charges are introduced to re-express the reaction components.
The FMM in layered media will then consist of classic FMM for
the free space components and FMMs for reaction components,
using equivalent polarization sources and the new MEs, LEs, and
M2L translations. Moreover, for fast and accurate calculations
of the Sommerfeld integrals in the M2L translation operators,
especially for charges very close to material interfaces, and to
avoid making pre-computed tables (cf. [19]), we will introduce a
recurrence formula as well as special integration contour defor-
mation techniques. As in the Helmholtz equation case, the FMMs
for the reaction field components are much faster than that for
the free space components due to the fact that the introduced
equivalent polarization charges are always separated from target
charges by a material interface. As a result, the new FMM for
charges in layered media costs almost the same as the classic
FMM for the free space case.

The rest of the paper is organized as follows. In Section 2, we
will consider the limit case of the extended Funk-Hecke formula
introduced in [19], which leads to a spherical harmonic expan-
sion of the exponential kernel in the Sommerfeld-type integral
representation of the Green’s function. By using this expansion,
we present new alternative derivations, via the Fourier spectral
domain, for the ME, LE, and M2L operators of the free space
Green’s function. The same approach will be then used to de-
rive MEs, LEs, and M2L translation operators for the reaction
components of the layered Green’s function. In Section 3, af-
ter a short discussion on the Green’s function in layered media
consisting of free space and reaction components, we present
the formulas for the potential induced by sources embedded
in layered media. Then, the concept of equivalent polarization
charge of a source charge is introduced for each type of the
reaction components. The reaction components of the layered
Green’s function and the potential are then re-expressed by using
the equivalent polarization charges. Further, we derive the MEs,
LEs, and M2L translation operators for the reaction components
based on expressions using equivalent polarization charges. Com-
bining the original source charges and the equivalent polarization
charges associated to each reaction component, the FMMs for
reaction components can be implemented. A recurrence formula
and contour deformation techniques are also introduced for the
computation of M2L operator related Sommerfeld integrals. Sec-
tion 4 will give numerical results to show the spectral accuracy
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and O(N) complexity of the proposed FMM for charge interactions
in layered media. A conclusion is given in Section 5 while two
appendices are included for addition theorems and a recursive
algorithm for computing reaction field density in the spectral
domain.

2. A new derivation for the multipole and local expansions for
the far field potential of charges in free space

In this section, we first briefly review the main idea of the free
space FMM and the conventional derivations of the key formulas,
i.e., the multipole and local expansions of the free space Green'’s
function of the Laplace equation, and the corresponding shifting
and translation operators. Then, we present a new derivation for
all the formulas by using the Sommerfeld-type integral represen-
tation of the Green’s function. The key expansion used in the new
derivation is a limiting case of the extended Funk-Hecke formula
introduced in [19]. This new technique shall be applied to derive
MEs and LEs for the reaction components of the layered media
Green’s function later on.

2.1. An introduction of the fast multipole method (FMM) in free
space

Given N source charges {Qj}}V:] at locations {"}}}V:p consider
the calculation of the Coulombic potential
N
9
D(r)= , 2.1
(r) ; —r (21)

at N target points {r = r,-}f’zl. Obviously, this can be seen as the
interactions of N charges if the target points {r,-}?’: ; are exactly
the source locations {r; ]Nz 1 (in this case, the sum will not include
the singular self-interaction term). Direct computation leads to
an O(N?) cost while the FMM is a fast method which reduces the
cost to O(N).

The key technique in the FMM is the multipole expansion
(ME) for the far field of the potential. Suppose the source charges
{Q;, rjf}j”’:] are enclosed in a sphere of radius a centered at 1%,
the far field potential in the FMM framework refers to the po-
tential at target points with a distance to the center of the
sphere greater than 2a. In such a scenery, the combined potential
from all source charges could be represented by one source,
at the center of the sphere, with multipole source components
beyond the mono-pole of the Coulombic potential, such as dipole,
quadrupole, etc.

To illustrate how this can be achieved, we need to introduce
the multipole expansion at the center r{ of a sphere for the
Coulombic potential of one single source charge at any given
point r’ inside the sphere, see Fig. 2.1. Given any point r far away
from the source point r’, the law of cosines gives
/|2

r—r " =r*+ (@'Y -2 cos y, (2.2)

where (1, 6, ¢)and (1, 6, ¢’) are the spherical coordinates of r, 1’
and the angle between them is y,
cosy = cos® cosf’ + sinf sinf’ cos(p — ¢’). (2.3)
Then, the Coulomb potential of a unit charge at r’ in the free space
is represented by the Green’s function of the Laplace equation

1 . 1
r—r'l  r/1—2ucosy + u?

= ! (2.4)

b
/ __ ocosy 1
r. /1 ZT + 2

Gr,r') =
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where . = r’/r and the scaling constant 1/47 has been omit-
ted through out this paper. Furthermore, we have the following
Taylor expansions

1 S Mn o rm
=Y P(cosy)— =Y Py(cosy)——.
ryl=2pcosy +u? 5 L — r

for u<1,

(2.5)
and
00 o
\/W ZP” cosy :gP(co V)— mr
for u>1.
(2.6)

By using the fact |P,(x)| < 1, x € [—1, 1], the expansions above
have exponential convergence

Z a(cos y )(r' )"
|r—r| ritl

and

1 /r/\pt!
< (—) , r>r, (27)
r—r'\r

p
1 r"

— P,(cos
r—r| HZ; a( y)(r/)n-H

1 r\Pt1 ,
fi(f) L r<r.
r—r\r

(2.8)
Let rf be a target center close to r and r: be a source center close
tor’ and assume |r' — | < |[r —r|and |r' — r| > |r — 1L, see
Fig. 2.1. Following the derivation in (2.2)-(2.6), we have Taylor
expansions

1 1 _ g Palcos ) my
Tl T R O R

and

1 1 >, P,(cos fe\"
_ = — -y nl ,Vf)<i,), (2.10)
[r =71 |r—r)—(" —rl) r r

n=0 t

where (75, 05, @s), (¢, 6, @) are the spherical coordinates of r —r?
and r —ri, (rs, 65/, @.), (r{, 8/, ¢;) are the spherical coordinates of

r' —rf and r’ — ri(see Fig. 2.1) and

oS ys = c0s 6 cos 0 + sin 6 sin 6; cos(¢s — ¢;), (2.11)

oS y; = €0s 6 cos O, + sin 0; sin ¢; cos(y; — ¢;). ’
Note that P,(cosys), Ps(cosy;) still mix the source and target
information (r and r’). Applying Legendre addition Theorem A.1
to expansions (2.9) and (2.10) gives a ME

Z Z Mt "' Y(6s, 95), (2.12)
n=0 m=—n

and a LE

; _r| = Z Z Lunt Yo' (O, @), (213)
n=0 m=-n

where

Mum = ¢, 2r"Y™(00, @), Lam = ¢, 21, "1Y™(6], ¢f), (2.14)

and, Y and ¢, are defined in (A.1) and (A.5), respectively.
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Fig. 2.1. Spherical coordinates used in multipole and local expansions.

Applying the ME (2.12) to each term in the potential (2.1) gives
approximation

p

n
PD(r)~ Z Z Mnmr;n71Y:1(957 ®s) ,

n=0 m=-n

(2.15)

where the coefficients, which only depend on the location and
magnitude of the sources, are defined as

M = ;2 ZQJ/?]Y,’,’” 05. %), (2.16)

j=1

where (rg;, 0, w;j) are the spherical coordinates of r; — r; and
p is the truncation order of the ME. By error estimate (2.7), the

approximation (2.15) has exponential convergence as

‘ Z Z Mot Y605, 0)| < 2P+1a ZQJ

n=0 m=—n

vr st |r—r}| > 2a. (2.17)

Therefore, we can have a low rank approximation for the far field
of the potential ®@(r), i.e., (2.15) with small integer p. This implies
a fast linear cost method to compute potential at N far field target
locations {r;};_,. The fast method is implemented in the following
two steps:

Step 1: Pre-compute the ME coefficients 1\71,1,,, in (2.16) with a
cost of O(p°N),0 <n<p,—-n<m<n.
Step 2: Applying (2.15) to compute {P(r;) ’-\’:1 at a cost of O(p>N).

We can see that the overall cost for computing {®(r; )} , by using
the ME approximation will be O(N) instead of O(N?) usmg a direct
evaluation of the potential function in (2.1).

Note that the fast method described above requires the target
locations to be well separated from the source sphere. However,
such a condition will not hold in many N-body interaction prob-
lems as the source and target charges are usually the same set
of charges. Realizing the convergence result (2.17) of the ME
approximation holds for any scale a, the FMM utilizes an octree
hierarchical structure to partition a box containing all the source
and target charges and applies the low rank compression (2.15)
between any two boxes of a given scale a as long as they are
separated by distance a, namely, non-adjacent boxes.

In the FMM implementation, there will be one upward and
one downward recursive loops traversing the tree structure. An
upward loop along the tree is used to compute the MEs of all
boxes starting from the smallest boxes of the tree (the lowest
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level of the tree, the root of the tree taken as the highest level).
Once the MEs for the boxes at the lowest level are computed
according to (2.16), the ME of each box in the up next level can
be simply obtained by merging the MEs of its eight children with
the help of a M2M (ME to ME) shifting operator, which relates
the ME coefficients of two MEs at two different centers. Next, a
downward loop along the tree will be used to compute the local
expansion (LE) of all boxes, which represents the potential due
to charges outside a given box and its eight neighboring boxes.
This time, the loop starts from the largest box (namely, the largest
box containing all charges) whose local expansion (LE) is zero as
there is no charges outside. In the downward loop for the LEs, a
shifting for the LE at the center of a box to those at the centers
of its children will be needed. This can be done by a L2L (local to
local) shifting operator, which relates the LE coefficients of two
LEs at two different centers. In the downward loop for the LEs, we
will also need to translate MEs of boxes in the interaction list of a
given box to LEs at the centers of this box. This leads to the ME to
LE (M2L) translation operator, which translate the ME coefficients
of the far field of a group of charges to the LE coefficients of a LE
at the center of a far field target box.

The final step of the FMM is to compute the potential in each
one of the boxes at the lowest level of the tree (i.e., the smallest
boxes), which combines the LE of the box, the outcome of the
downward loop, and the potential contributions from charges
in the eight children of the box via direct calculations. For the
algorithmic details, please refer to [11,21,22].

All the shifting and translation operators mentioned above can
be derived by using the addition theorems in Appendix A, which
are summarized as follows.

e M2L translation. Applying the addition Theorem A.3 to
expansion functions in ME (2.12) provides a translation from
ME (2.12) to LE (2.13) as follows

n -~ n4n’

Lom = Z Z Am’ mntn'+1

n=0m'=—n ntn’ Tst

)n +rnAm Amym m(gsh ®st)

My, (2-18)

where (1, O, @5t ) is the spherical coordinate of S — rL.
e M2M and L2L translations.

n n m—m’
~ (=" AmA e Y ( Oss, @ss)
Mo — n—n’ 'ss ' n/ I
- ;m;n A T
(2.19)
i Z Z )’ _ncz Am mAmrt[ ny,;n:n (Bre» ur)
nm — n'm’»
- = 2 C2AT
(2.20)

can be derived by using addition Theorems A.2 and A.4.
Here, (7, Oss, ¢ss) and (rn, Gn, @y ) are the spherical coordi-

nates of r$ — # and r! — .,

My = ¢ 2F"YM(6,, 31),  Lum = ¢ 257 "1Ym(6,, @),

(2.21)

are the ME and LE coefficients with respect to new centers
# and ., respectively.

2.2. A new derivation of the multipole and local expansions in the
free space

Besides using the addition theorems as in the previous section,
the target/source separation in (2.12) can also be achieved in the
Fourier spectral domain. We shall give an alternative new deriva-
tion for (2.12) and (2.13) by using the integral representation of
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1/|r — r’|. The main motivation for this effort is that it can be
further applied to derive multipole and local expansions for the
reaction components of the Green’s function in layered media to
be discussed in Section 3.

For the Green’s function G(r,r’), we have the well known
identity

1 1 (> [ . / - /
| ,| — 7 / / elk/,((x—x )cos a+(y—y )sma)—kp |lz—z 'dadkp.
r—r T

(2.22)

By this identity, we straightforwardly have source/target separa-
tion in spectral domain as follows

1 T[> ) e koo (r S
| ,l — T/ / elkpk()-(r—rc)e—lkpk(y(r _rc)dadkp,
r—r T Jo 0

: | oot (2.23)
r—r 7/ / elkoko (r=ro)g=ikpko (" =)oy e,

- T Jo Jo
for z > z/ where
ko = (cosa, sina, i), (2.24)

and without loss of generality, here we only consider the case
z > 7' as an example.

A FMM for the Helmholtz kernel in layered media has been
proposed in [19] based on a similar source/target separation in
the spectral domain. One of the key ingredients is the following
extension of the well-known Funk-Hecke formula (cf. [23,24]).

Proposition 2.1. Givenr = (x,y,z) € R}, k > 0, a €
[0, 277 ) and denoted by (r, 6, ¢) the spherical coordinates of r, k =
\/kz — k2 cosa, \/kz — kZsina, k;) is a vector of complex entries.
Choosing branch (2.26) for \/k* — kZ in e*T and Pm("l) as defined
in (A.1), then

1kr_Z Z Am npm(f>efima
k.

n=0 m=-n

(2.25)

n=0 m=-n

holds for all k, € C, where
AN(r) = 4mju(kr)Y(0, ).

This extension enlarges the range of the classic Funk-Hecke
formula from k, € (—k, k) to the whole complex plane by
choosing the branch

Jek=-

for the square root function /k* — k2. Here (r;, 6;),i = 1,2 are
the modules and principal values of the arguments of complex
numbers k, + k and k, — k, i.e.,

91 +6,

rirpet T2 (2.26)

k,4+k =re?, —7 <0, <m, k—-k=re?2 —7<6 <.

It is worthy to point out that the normalized associated Legendre
function P'(x) has also been extended to the whole complex
plane by using the same branch.
Although we have k,ky = limy_o+(\/k? — k2 cosc,
VK —kZsina, k;), with k, = ik,, taking limit directly in the
expansion (2.25) will induce singularity in the associated Leg-
endre function. In the following, we will show how to cancel
the singularity to obtain a limit version of (2.25), which gives
an expansion for e%ekoT. For this purpose, we first recall the
corresponding extended Legendre addition theorem (cf. [19]).
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Lemma 2.1. Let w = (v/1—w?cosa,~1— w?sina, w) be a
vector with complex entries, 6, ¢ be the azimuthal angle and polar
angles of a unit vector . Define

B(w) =wcosd ++/1— w?sinb cos(a — @), (2.27)
then

4 m m 1m oa—
Pa(B(w)) = 5 =~ Z Py (cos 6)Py (w)e™ %), (2.28)
forallw € C.

From this extended Legendre addition theorem, the following
expansion can be obtained by choosing a specific ® and then
taking limit carefully.

Lemma 2.2. Let ko = (cos«, sina, i) be a vector with complex
entry, 0, ¢ be the azimuthal angle and polar angles of a unit vector
r. Then

’ . A n
Mo IV _ 3™ crpcosene™»), (229)
: m=—n
where
4
cn — e il . (2.30)
(2n+ 1)(n +m)!(n — m)!

Proof. For any k € R*, define k = (
i). By Lemma 2.1, we have

knp“<kkr) 2n+1 Z Fa( cosO)k”Pm(l> e,

Consider the limit of the above identity as k — 0T. Note that

k? + 1cosa, vk? + 1sina,

(2.31)

lim k -+ =k T,
k—0t

(2.32)

together with the knowledge on the coefficient of the leading
term in the Legendre polynomial P,(x) lead to

. k-t (2n)! N
n _ Ly
o k P"( K )_ oz Ko 1)

Recall the Rodrigues’ formula of the associated Legendre func-
tion

(2.33)

- Cnm yom dtm 2n+1(n—m)
P(x —x)2 ——(x*—1)", = —
n (X) 2,1”,( ) dx"+m( ) nm 4r (ntm)
(2.34)

for 0 < m < n, we have

nem l) _ Cam (2n)!
kP (k =

2 m
2"n! (n — m)!(k 1)

(2.35)

o)

where an(z) is a monic polynomial of degree n. Hence, we get
similarly

lim k"P’"( ): Com (20)N"T
k> 0+ k 2! (n —m)!’

The identity P;™(x) = (—1)"P™(x) will give the limit for —n <
m < 0 cases. Now, let k — 07 in (2.31) and use results (2.33)
and (2.36), we complete the proof. O

(2.36)

Proposition 2.2. Givenr = (x,y,z) € R3 a € [0,2n)
and denoted by (r, @, ¢) the spherical coordinates of r, kg =
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(cosa, sinw, i) is a vector of complex entries. Then

co n
eik/)kOJ' — Z Z CrTrnYr'lﬂ(e’ (p)kze—ima
n=0 m=—n
= Z Z Yo, )kne™, (2.37)
n=0 m=—n

holds for all r > 0, k, > 0, where ("' is the constant defined in
(2.30).

Proof. By Taylor expansion, we have

- i (ko 17 Kot
n! P

n=0

ikpko T

e (2.38)

Then, (2.37) follows by applying Lemma 2.2 to each term in the
above expansion. [

Remark 2.1. By setting k, = ik, and using the limit values given
by (2.33) and (2.36), one can also verify that the expansions for
elkokoT in Proposition 2.2 are exactly the limiting cases of the
expansions in Proposition 2.1.

Applying spherical harmonic expansion (2.37) to exponential
. H S : ty . .
functions e~keko(r=r2) and ek(r=7c) in (2.23) gives

S IPI

n=0 m=—n

o] 2
x f / knelkoko r=re)eime oy i, (2.39)
o Jo
and
1 > .
r—r'| = Z Lym7e Yy (6, @), (2.40)
n=0 m=-—n
for z > z/, where M,,, is defined in (2.14) and
_ CTT © o K" ikoko-(rt—r') ,—ima
= E/o /0 o€ c e dadk,. (2.41)

Recall the identity

rY, 0, 0) =

n Zcm 21
/ / kn 1kpk0r ﬂmadadkp,

(2.42)

for z > 0, we see that (2.39) and (2.40) are exactly the ME (2.12)
and LE (2.13) in the case of z > Z'.

To derive the translation from the ME (2.12) to the LE (2.13),
we perform further splitting

eikﬂko«(r—ri) — eikpko(r—ré)eikpk(y(rg—rg) (243)
in (2.39) and apply expansion (2.37) again to obtain the transla-
tion

Lym —C Z Z Mnm’ HC:?

n=0m'=—n’
e 2 A t S
x / / kZJrn elk,oko re—r )el(m m)ozdadk
0

By using the identity (2.42), we can also verify that the above
integral form is equal to the entries of the M2L translation matrix
defined in (2.18).
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z,=0 R
z =D, A
D]
z =0 \4 s—d
z, :D2 !
yY z=d,
D, @ «—source
zZ, =0 \ 4 z=d
Z/ +1 :D 0'+1 .
A z=d,,
VDH
z, = 0 z=d,

Fig. 3.1. Sketch of the layer structure for general multi-layer media.

3. FMM for 3-D Laplace equation in layered media

In this section, the potential of charges in layered media is
formulated using layered Green'’s function and then decomposed
into a free space component and four types of reaction compo-
nents. Furthermore, the reaction components are re-expressed by
using equivalent polarization charges. The new expressions are
used to derive the MEs and LEs for the reaction components of the
layered Green’s function in the same spirit as in the last section.
Based on these new expansions and translations, FMM for 3-D
Laplace kernel in layered media can be developed.

3.1. Potential due to sources embedded in multi-layer media

Consider a layered medium consisting of L-interfaces located
atz =d,,£=0,1,...,L—1,see Fig. 3.1. The piecewise constant
material parameter is described by {85}2‘:0. Suppose we have a
point source at r’ = (x', ', z') in the £'th layer (dy <z’ < dy_1),
then, the layered media Green'’s function u(r, r’) for the Laplace
equation satisfies

Augp(r,r') = —=8(r, 1), (3.1)

at field point r = (x, y, z) in the ¢th layer (d;, < z < d,_1) where
8(r,r’) is the Dirac delta function. By using Fourier transforms
along x- and y-directions, the problem can be solved analytically
for each layer in z by imposing transmission conditions at the
interface between ¢th and (¢ — 1)th layer (z = dy_1), i.e.,

Up—1,0(X, ¥, 2) = Uy (X, Y, Z),
- oup_1,0(X,y,2) —e Ouger(ky, ky, z)’ (32)
0z 0z
as well as the decaying conditions in the top and bottom-most
layers as z — Fo0.
Here, we give the expression for the analytic solution with de-
tailed derivations included in Appendix B. In general, the layered
media Green’s function in the physical domain takes the form

1
T / 7
U (r,r)+ ———r, =1,
Uge(r, 1) = w(rT) A|r — 1| (3.3)
Uy (r, 1), otherwise,
where
uby (1. 1) + ugh (r. 1),
i (r ) = wp(r ¥+ u (e, 1)+ us (e ) + u(r, 1),
AT, =
“ 0<t<l,
udl (e v+ u(r, r).

(3.4)
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The reaction component “w( r’) is given in an integral form
2
ust,(r, 1) =: / / elka (0= 200 (7 7"y
x o5 (k,)dadk,, a,b=1,2, (3.5)
where,
ko = ky(cosa, sina), (3.6)
and {Zzl[’,(z z )}ih:1 are exponential functions defined as

—kp(z—dg+2' —dyr) —kp(z—de+dy_1—2")

Zp(z,7) =e
z(z,7)=e

Z5(z,7)=e

—kp(dg—1—z+2'—dyr) k/,(dg,l —z+dy_1-27)

z22(2,7) =
(3.7)

{o /w(kﬂ)}a »—1 are reaction densities only dependent on the layer
structure and the material parameter k, in each layer. The reac-
tion densities can be calculated efficiently by using a recursive
algorithm, see Appendix B for more details It is worthwhile to
point out that the reaction components u$ @, or u$, will vanish if
the source r’ is in the top or bottom most layer.

With the expression of the Green’s function in layered media,
we are ready to consider the potential due to sources in layered
media. Let 2, = {(Qqj, 1¢j),j = 1,2,...,N¢}, £ =0,1,...,L be
L groups of source charges distributed in a multi-layer medium
with L + 1 layers (see Fig. 3.1). The group of charges in ¢th layer
is denoted by &,. Apparently, the potential at ry; due to all other
charges is given by the summation

N/

Ny Ny Ql
J
o(Tei) ZZQE’ Uge (Tei, Terj) = Z S E———
— = ATy — 1]
j=1 j=1,j#i
Ny
+ Z ZQZ/ uu/ Fei, Ty/j ) (38)
=0 j=1
where u),(r, ') are the reaction field components defined in

(3.4)-(3.7). As the reaction components of the Green'’s function in
multi-layer media have different expressions (3.5) for sources and
targets in different layers, it is necessary to perform calculation
individually for interactions between any two groups of charges
among the L + 1 groups {Wz}ﬁzo. Applying expressions (3.4) and
(3.5)in (3.8), we obtain

Do(re) =P(re) + Py(re)
-1
=B (r ) + Z[¢glglf(rli) + @7 (re)]
= (3.9)

+ Z[% ra)+ @ (ra)l,

=1
where
N 0y Ny
i . 2l b . b
DS (ry) = E —, P(ry) = E Qujugy(Tei, Terj).
= ATT|r — Ty —
=LA =1

(3.10)

According to (3.9), the potential due to charges in layered
media has L free space and 4(1> — 2L + 1) reaction components.
Obviously, all free space components dﬁfee(rﬁ) can be computed
using the traditional FMM. Thus, the main task of this paper is
to develop FMMs for the reaction components {d>gf,(rg,~) ﬁ,h:r
The key step to achieve this task is to derive MEs, LEs and
corresponding shifting and translation operators for the reaction
components defined in (3.5).
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3.2, Equivalent polarization sources for reaction components

The expressions of the components given in (3.10) show that
the free space components only involve interactions between
charges in the same layer. Interactions between charges in dif-
ferent layers are all included in the reaction components. Two
groups of charges involved in the computation of a reaction
component could be physically very far away from each other as
there could be many layers between the source and target layers
associated to the reaction component, see Fig. 3.2 (left).

Our recent work on the Helmholtz equation [19,20], of which
the Laplace equation can be considered as a special case where
the wave number k = 0, has shown that the exponential con-
vergence of the ME and LE for the reaction components uw(r, r)
in fact depends on the distance between the target charge r and
a polarization charge defined for the source charge r’, which
uses the distance between the source charge r’ and the nearest
material interface and always locates next to the nearest interface
adjacent to the target charge. Fig. 3.3 illustrates the location of the
polarization charge r/, for each of the four types of reaction fields
uM,, a,b =12 Spec1ﬁcally, the equivalent polarization sources
associated to reaction components u r’), a,b = 1,2 are set
to be at coordinates (see Fig. 3.3)

U”(

ry=EYde = —dp)), 1=y, de—(de1 —2),
1= Y dea + (2 —dp)), 1y =K.y, deq +(dey = 2),
(3.11)
and the reaction potentials are
~ab iy 1 Rl iky-(p—p') j—kplz—2., |
Upp(r,ry) = @/ / e e P a
X aw(kp)dadkp, a,b=1,2, (3.12)

where z;; denotes the z-coordinate of 1, i.e,,

ab?
zy =d¢—(Z —dp), zjp =d¢ — (de-1 = 2),
Zé] = d5_1 + (Z/ — dg/), Zéz = d(ﬁ—l —+ (de/7] — Z,).

We can see that the reaction potentials (3.12) represented
by the equivalent polarization sources has similar form as the
Sommerfeld-type integral representation (2.22) of the free space
Green’s function except for the extra density functions o w(k ).
Moreover, recall the definition in (3.11) we have

z>2zy,, and z<z,, b=12.

Therefore, the absolute value in the integral form (3.12) can be
removed according to the index a. More precisely, define

et(r, 1) = ek r=Peko@=2) o= (p 1) = elkalp=ghp(z=2)

(3.13)
then
2
o (r, 1) = 8”2 / / “(r, v )o bk, )dadk,,
U (r,rhy) = F) / /Zn ET(r, vl ol (k,)dadk,.
Recall the expressions (3.7), we verify that
£ (r,1y,) = eketerzglbz 20y,
et(r,rh,) = ket z20z 7) p=1,2. (3.14)

Therefore, the reaction components (3.5) is equal to the reaction
potentials defined for associated equivalent polarization sources,
ie,

b=1,2.

wb(r, ¥y =00, ry),  ulh(r,r) = ak(r, rh,),

Computer Physics Communications 259 (2021) 107645

(3.15)

A substitution into the expression of @eé,(rﬁ) in (3.10) leads to

Ny

ZQ,@/ u”, i, r[j) a,b=1,2,

D0 (rei) (3.16)

where

rih = (xej, Yej, de — (zej — dp)),

Xerjs Yerj, de — (der—1 — 2¢5)),

=
=

3.17
_( (3.17)
=

’f

Xeris Yerj, de—1 + (25 — dp)),
Xpj, Yej, de—1 + (dp—1 — 2¢7)),

are coordinates of the associated equivalent polarization sources
for the computation of reaction components @g?,(r(,-), see Fig. 3.2
for an illustration of {rl}]}r1 and {r zi}JNf’]

By using the expression (3.16), the computation of the reaction
components can be performed between targets and associated
equivalent polarization sources. The definition given by (3.17)
shows that the target particles {r/g,-}ﬁvi1 and the corresponding
equivalent polarization sources are always located on different
sides of an interface z = d,_; or z = d,, see Fig. 3.2. We still
emphasize that the introduced equivalent polarization sources
are separate with the target charges even in considering the
reaction components for source and target charges in the same
layer, see the numerical examples given in Section 3.4. This
property implies significant advantage of introducing equivalent
polarization sources and using expression (3.16) in the FMMs for
the reaction components ¢M,(r(i), a,b = 1,2. The numerical
results presented in Section 4 show that the FMMs for reaction
components have high efficiency as a direct consequence of the
separation of the targets and equivalent polarization sources by
interface.

3.3. The fast multipole algorithm

In the development of FMM for reaction components 45”,(1'[,-),
we will adopt the expression (3.16) with equivalent polarization
sources. Therefore, multipole and local expansions and corre-
sponding translation operators for ”z ,(r,r,) are derived first.
Inspired by source/target separation in (2.23), similar separations

E(r.rly) = £ (r, b el ) (3.18)
E(r, rh) = EF(r, 120)elha =P kG202 '
and

E(r, 1) =& (re, l‘/u,)e”‘a'(p—pé)—kp(l—zé), 319
E¥(r, 1hy) = £F(rt, rpyJelko (0= e '

for b = 1, 2 are introduced by inserting the source center re® =
(x%0, yob, zg") and the target center rt = (xt, yL, z!), respectively.
Here, we also use notations p% = (x2,y®), pt = (x,yt) for
coordinates projected in xy-plane. Now, applying Proposition 2.2

gives us the following spherical harmonic expansions:

o0 n
e (20 2b _ —_————— :
elka (Pg" =Py JHkp(2e" —25,) § § : C,Z"(rczb)"Y,Q”(th, T+ wgb)kzelma’

n=0 m=-—n

[o¢] n
e 16\ (0 .
eika(oc" =Py )—kp(z"—23,) — E E cmrloyym(n — 60, 7 + Pl e,

n=0 m=-—n

(3.20)
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Fig. 3.2. Equivalent polarized sources {r},‘j}, {r%,lj} and boxes in source tree.
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and

lka (p— PC) kpZ ZC — Z Z Cmrnym(et’(‘ﬂt)kzefimc(’

n=0 m=-—n

(3.21)
1ka (p— pC)Jrkpz zC — Z Z CmT m(n, _Qt (pt)kne—ima
b p b
n=0 m=—n
where (rf, 62, ¢2) is the spherical coordinates of r/, — r®. By
equalities
Yr:n(n - 97 (P) = (_1)Tl+erll’n(97 ‘PL

Y (0. +¢) = (=1)"Y(0, ),

the above spherical harmonic expansions (3.20)-(3.21) together
with source/target separation (3.18) and (3.19) lead to

)Z Z( 'y,

e (r,ry) =€ ( (Olb,wg")k eme

n=0 m=—n
e, 1y,) = e¥(r, )Z Z( MR Y020, 920 )Kne™,
n=0 m=—n
(322)
and
o] n
e(r ) = (rlri) D> > GO, poKie ™,
n=0 m=-—n
o] n
EX(r,rh) =Tl rh) > Y (=0 O, oK e ™,
n=0 m=-—n

(3.23)

for b = 1, 2. Then, a substitution of (3.22) and (3.23) into (3.15)
gives a ME

uge,(r, iy, M F (1, po0),

;n;n mn” (3.24)
My = ¢ 2(rE YO, i),
at equivalent polarization source centers r® and LE
use(r,rl,) = Z Z LS rY ™6, ¢1) (3.25)

n=0 m=—n

at target center r., respectively. Here, 72 (r
forms of Sommerfeld-type integrals

- 1n2cm 27
Foor,rl) (8)712 //

1 m 2cm 2
(r,r? _( ) / / er(r, r?) aw(kp)k”e‘m”‘dadkp,

b . .
,1d") are given in

)6 5 (k, K™ dacdlk,,

=20
]:nm vl

(3.26)

and the LE coefficients are given by

2w
L =8n2 / / “(r ook ke ™ dadk,,
2b n+mCm o + n ,—imo
L = errt, rh ook, Jkpe™ " dadk,.

(3.27)

Let us give some numerical examples to show the convergence
behavior of finite truncated MEs in (3.24). Consider the MEs of

uli(r, ;) and @%3(r, r},) in a three-layer media with eg = 21.2,
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g1 = 475,y = 62.8,dy = 0,d; = —1.2. In all the following
examples, we fix 1 = (0.625,0.5, —0.1) in the middle layer
and use definition (3.11) to determine r}; = (0.625, 0.5, —2.3),
ry, = (0.625,0.5, 0.1). The centers for MEs are set to be r!! =
(0.6,0.6, —2.4), 12 = (0.6, 0.6, 0.2) which implies |}, — r“l =
Ir, —r?| ~ 0. 1436. For both components, we shall test three
targets given as follows

ri =(0.5,0.625,—0.1), r,=
r; = (0.5,0.625, —1.1).

(0.5, 0.625, —0.6),

The relative errors against truncation number p are depicted in
Fig. 3.4. We also plot the convergence rates similar with that of

ab; \ P+1
the ME of free space Green’s function, i.e., O[(llf Tc “L|> as
reference convergence rates. The results clearly show that the
MEs of the reaction components u$$(r, /) have spectral conver-

ab p+1
gence rate O[(lrIr e [ll) ] similar as that of free space Green’s
b

function. Actually, thelr exponential convergence has been deter-
mined by the Euclidean distance between target and polarization
source. Therefore, the MEs (3.24) can be used to develop FMM
for efficient computation of the reaction components as in the
development of classic FMM for the free space Green's function.

According to the definition of £~(r, r’) and £ (r, r’) in (3.14),
the centers rf and r® have to satisfy

1o 2 t ~1b /N
z; <dy, z >doq, 2z, >dg for u,,(r,r);
t N (3.28)
~ /
z; < dp—q for uy,(r,ry,),
to ensure the exponential decay in £ (r,r!"), £7(r,r?) and

e~(rt,r,), EX(rl, ) as k, — oo and hence the convergence
of the corresponding Sommerfeld-type integrals in (3.26) and
(3.27). These restrictions can be met easily in practice, as we are
considering targets in the £th layer and the equivalent polarized
coordinates are always located either above the interface z =
dy_1 or below the interface z = d,. More details will be discussed
below in the presentation of the FMM algorithm.

We still need to consider the center shifting and translation
operators for ME (3.24) and LE (3.25). A desirable feature of the
expansions of reaction components discussed above is that the
formula (3.24) for the ME coefficients and the formula (3.25)
for the LE have exactly the same form as the formulas of ME
coefficients and LE for the free space Green’s function. Therefore,
the center shifting for MEs and LEs of reaction components are
exactly the same as free space case given in (2.19)-(2.20).

Next, we derive the translation operator from the ME (3.24)
to the LE (3.25). Recall the definition of exponential functions in
(3.13), &=(r, rl*) and £¥(r, r?) can have splitting

E(r, 1) = & (rf, el lepde ko2,
EX(r, 12) = ¥ (rl, el (bmptlehn(e =20,
Applying spherical harmonic expansion (2.37) again, we obtain

[e¢) n
ettt E) = 5 ) ) L F IO pr)ken ™

n=0 m=-n

Substituting into (3.24), the ME is translated to LE (3.25) via

00 n
16 __ 16
an - 2 : § Tnm n’ m/Mn 'm’ >

n=0m'=—n

n+m 2b
z : 2 : Tnm n m’Mn 'm’»
—n

n=0m'=

(3.29)

26 __
an -
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——|r; —rl'| ~ 2.3023
—7—|rs — rl'| ~ 1.8030
|r3 —rlt| ~ 1.3048
P+l
~-0(%=)

ol

e

[rr—re]

e

ra ]
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—o—|r; —r??| ~ 0.3172|]
—7—|rs — r??| ~ 0.8066
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~-o(k rn‘)pﬂ
[
~-o(fH)
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(b) afi(r,rhy)

Fig. 3.4. Spectral convergence of the MEs for reaction components.

Algorlthm 1 FMM for general reaction component <D o (Tei),
1,2,---,Ny

Determine equivalent polarized coordinates for all source
particles.
Generate an adaptive hierarchical tree structure according

Ny
to polarization sources {Qgj, I'y 1‘1 and targets {"z:}, ;- Pre-

compute {S"I% (p, z) "o using recurrence formula (3.37) and
DE-SE quadrature and formula (3.50) for initial values.
Upward pass:
forl=H — 0do
for all boxes j on source tree level [ do
if j is a leaf node then
form the free-space ME using Eq. (3.24).
else
form the free-space ME by merging children’s ex-
pansions using the free-space center shift translation operator
(2.19).
end if
end for
end for
Downward pass:
for/=1— Hdo
for all boxes j on target tree level | do
shift the LE of j's parent to j itself using the free-space
shifting (2.20).
collect interaction list contribution using the source box
to target box translation operator in Eq. (3.29) while Trj‘r‘;1 n /A€

computed using (3.35) and pre-computed {S"I** (p, z)}
end for
end for
Evaluate LEs:
for each leaf node (childless box) do
evaluate the LE at each particle location.
end for
Local Direct Interactions:
fori=1— N do
compute Eq. (3.16) of target particle i with sources in
the neighboring boxes using the mixed DE-SE quadrature and
formula (3.50) for Ig(p, 2).
end for

10

and the M2L translation operators are given in integral forms as

follows
Dnm 2
T,},ﬁyn/m/— / [ (rL. 1) 5k KE e =M oy,
Dnm 2
T2 o = / / EX(rL 1202 (kK e M dy
(3.30)
where

nm _ 2 ~mp-~m'
Dy, =y ClCy .

Again, the convergence of the Sommerfeld-type integrals in (3.30)
requires the conditions in (3.28).

The framework of the traditional FMM together with ME
(3.24), LE (3.25), M2L translation (3.29)-(3.30) and free space ME
and LE center shifting (2.19) and (2.20) constitute the FMM for
the computation of reaction components 45”,(r41-), a,b = 1,2.
In the FMM for each reaction component, a large box is defined
to include all equivalent polarization sources associated to the
reaction component and corresponding target charges, and an
adaptive tree structure will be built by a bisection procedure,
see. Fig. 3.2. Note that the validity of the ME (3.24), LE (3.25)
and M2L translation (3.29) used in the algorithm imposes re-
strictions (3.28) on the centers, accordingly. This can be ensured
by setting the largest box for the specific reaction component to
be equally divided by the interface between equivalent polarized
sources and corresponding targets, see. Fig. 3.2. Thus, the largest
box for the FMM implementation will be different for different
reaction components. With this setting, all source and target
boxes of higher than zeroth level in the adaptive tree structure
will have centers below or above the interfaces, accordingly.
The fast multipole algorithm for the computation of a general
reaction component @M(M) is summarized in Algorithm 1. Total
interactions given by (3.9) will be obtained by first calculating all
components and then summing them up where the algorithm is
presented in Algorithm 2.

3.4. Efficient computation of Sommerfeld-type integrals
It is clear that the FMM demands efficient computation of the

double integrals involved in the MEs, LEs and M2L translations.
In this section, we present an accurate and efficient way to
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compute these double integrals. Firstly, the double integrals can
be simplified by using the following identity

2 .
Jn(z) — / elzcos@+1n9d9.
0

py— (3.31)

Algorithm 2 3-D FMM for (3.9)

for ! =0— Ldo
use free space FMM to compute &/ *(ry), i =1,2, -
end for
for(=0—L—1do
for!/ =0—-L—1 do
use Algorithm 1 to compute @,,,(r;),
end for
for¢/! =1— L do
use Algorithm 1 to compute @7 (ry), i=1,2, -
end for
end for
for{=1— Ldo
for!/! =0—L—1 do
use Algorithm 1 to compute @7 (r),
end for
for?{/ =1— L do
use Algorithm 1 to compute @77 (ry), i=1,2, -
end for
end for

, No.

i=1,2,--- Ny

, Ng.

i=1,2,---,Ny.

) NZ-

In particular, multipole expansion functions in (3.26) can be
simplified as

-m ima e
" (71)”CZC’"1’”e””‘7’s o0 _ 16
Fan(rr) = | (ko p)e ™ ok, Kk,
0
-m ima2b
- (_1)mCZleme1m¢:S 0 3 2y
Famr, w8 ==t | (ke ek,
0

and the expression (3.27) for LE coefficients can be simplified as

(—1)m Cm me—lmwr
A4

(- Ucm
Lim =

Ly = / Jnlkppl®)e K@ 2o 15k, K dk,,

—lmrp
: / Ik, p2*)e 0@ —20625 (k ki dk,

for b = 1, 2, where (p®, ) and (pf®, ) are polar coordinates
of r — r® and rt — r/, projected in the xy-plane, respectively.
Moreover, the M2L translation (3.30) can be simplified as

(— 1)n Dn m' (¢ ) o0 , ~ -
Tn]:l wm = Tw k;-M ]m/—m(kpptlsb) kolzt—2¢") 1/("0 )dkm
0
(=1 D (p2°) 22t
Tnzmnm’ ZT[S kn+ ]m m(kpp e ol 2&0=20) iz[;(kp)dkp,
0

(3.32)

where (p%°, %) is the polar coordinates of rt
the xy plane,

— r® projected in

~ 1

Dnm

n'm’ :m’'—m ,i(m'—m)p
nm Dnm 1 e .

(p) =

Define integral

V= [t
0

no—kpz
ke

(n+m)l(n —m)!

[ (3.33)

o ih(ky)dk,

11
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then
~ caeimes’
Fibr,rl') = 7"47[ I,z —z[%),
16 (=" 16, 16
Lo = arc, elmwlh nm(pr ’Zc - Zlb)
T
2% (3.34)
~ (=1)"*"Mcyeimes 200 26 26
Iy (rr by = Tnm(s,zc —2),
2b
26 (=1)meimei 20 2
Lin = 4rc, Inm(ptb7 Zéh - Zé)v
—_ 'm’ i(m’ —m)pl?
16 ( 1)n+m nm el ts - 1o
Tnm,n’m’ = z;nj-[ In+n’ m— (pts ,Z - Z )
g (SAETEQENE TN e ey
nm,n’'m’ — A7 n+n’,m'—m pts s ~c c/»
(3.35)
where
Q;‘/m/ @+ )m+n +m —m)ln+n —m +m)!
™\ @n+ D)+ m)(n —m)i(n 4+ m)(n —m)

Therefore, we actually need efficient algorithm for the computa-
tion of the Sommerfeld-type integrals IS (p, z) defined in (3.33).
It is clearly that they have oscillatory integrands. These integrals
are convergent when the target and source particles are not
exactly on the interfaces of the layered medium. High order
quadrature rules could be used for direct numerical computation
at runtime. However, this becomes prohibitively expensive due
to a large number of integrals needed in the FMM. In fact, (p +
1)(2p + 1) integrals will be required for each source box to target
box translation. Moreover, the involved integrand decays more
slowly as n increases.

An important aspect in the implementation of FMM concerns
scaling. Since M ~ (|r —r®)", [ ~ (|r* —rL|)™", a naive
use of the expansions (3.24) and (3.25) in the implementation
of FMM is likely to encounter underflow and overflow issues. To
avoid this, one must scale expansions, replacing My, with M2% /S™
and L% with L% -S" where S is the scaling factor. To compensate
for this scaling, we replace 72 (r, r%®) with 7 (r, ro).S", T4

nm,n’m’
with T w - ST " Usually, the scaling factor S is chosen to be
the 51ze of the box in which the computation occurs. Therefore,

the following scaled Sommerfeld-type integrals

(k,SY'e~*oz a2 (k )
Iub 2) / o e ,
v Intker) i =y
n>0, m=0,1,...,n, (3.36)
are involved in the implementation of the FMM.
Recall the recurrence formula
2m
IJmi1(2) = 7],11(2) — Jmn-1(2),
and define a, = «/n(n + 1). We have
[eS] (k S) —kpz nb/(k )
S (. z :f k Te e dk
nm+1 (p,2) Jma( pp «/(n+m+ N —m = 1) %)
_2ms (k,S)y e koZ o2 (k)
/ ]m(l,op =
m+m—-—1(n—m-—1)!
(n+m-—1)
——dk,
(n+m+1)
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_ (koS)'e 0% arfp (k)

/0 ]m,l(kpp)\/(n Fm—Dn—m+1)
\/(n+m—])(n_m+l)

« di

Ko,
nm+m+1Dn—m-—1)!
which gives the forward recurrence formula

2m S

Zgn- lIab (,0, Z)
Antm P notm

Inmgnyab (p,2),

SnlgfnJrl(p’ z)=
n4m

(3.37)

for m > 1,n > m + 1. The stability of this recurrence formula
requires that

2m
<2 (3.38)
Antm S
In the computation of F (r, r®) . S" and L% - S", o and

pf® could be arbitrary small. Therefore, the forward recurrence
formula (3.37) may not be able to be applied to calculate them.
Nevertheless, it is unnecessary to calculate f“" o (r, %) - S" and
L% .S" directly in the FMM. The coefficients L“" S“ are calculated
from ME coefficients via M2L translations and then the potentials
are obtained via LEs (3.25). Therefore, we only need to consider
the computation of the integrals involved in the M2L translation
matrices T;,‘; »m- FOT any polarization source box in the interac-
tion list of a given target box, one can find that p is either 0 or
larger than the box size S. If p&* = 0, we directly have

I (i, 2) =

In all other cases, we have p¥ > S and the forward recurrence
formula (3.37) can always be applied as we have

2m 1 e
Vin+m+1)(n+m)

0, Vm>0, Vz>0. (3.39)

, n>m+1, m>1.

< <

J3 S

Given a truncation number p, we still need to use quadratures
to calculate 4p+1 initial values {I“"( )}i o and {I} (p 4} el 2 , for
each M2L translation. Moreover, mtegrals {Ioo(P z)}ﬁ b1 are also
required in the computation of the direct interactions between
particles in neighboring boxes. These calculations require an ef-
ficient and robust numerical method. Note that {I$}(p, z)}ﬂb 1
are exactly the Sommerfeld integrals involved in the calcula-
tion of the layered Green’s function. A multitude of papers have
been published until now, devoted to their efficient calculation
(see [25] and the references there in).

Basically, we will adopt the mixed DE-SE quadrature
(cf. [25,26]) in this paper for efficient computations of the
Sommerfeld-type integrals. Nevertheless, we still need to con-
sider the case of large n which has not been covered in the
literature. We have found that the formulation (3.36) is not
adequate for two reasons: (i) the integrand may decay very slowly
if z is small; (ii) the integrand may have increasing oscillating
magnitude as n increases if p > z. As a matter of fact, the
asymptotic formula (B.32) and

2 mrm T
Jm(z) ~ —cos(z - — = —), Z — 00,
nz 2 4

imply that the integrand in (3.36) has an asymptotic form

(koSY'e ™ %o (k) \/? . mr 7w
Inlkop) T s i cos(kop — 5= = 7)
n—1 en —kp(z+¢® by
ol 25 = (3.40)
(n+m)i(n —m)!
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as k, — oo. Given p, z > 0, define

(kpp)nf%sne—"p(l'*'f;;/)

Sum(kps P2 +E50) = D (3.41)
which has a maximum value
mannm(kp;,O,Z—i-C;;) _ sn (211— 1)n_l
kp=0 (n+m)!(n —m)! 2
x ( p )"7%e%*", (3.42)
zZ+ {M

— _n_ _
at k, = ) 2(Z+{w) for n > 1. Applying Stirling formula

n! ~ +/2wnn"/e" yields
(2n — 1)

mannm(kp» 0,z + Zg(/) ~ 2

kp>

as n— oo. (3.43)

(2 ) s
(n+m)(n—m)! \z 4+ C”,
Considering the case m = 0 and setting S = /2 + z2, we have

@n—1)z+¢)e s pS \"
Ko. 0.2+ 5p) ~ - ( )
gazégno( pr P22+ ) \/ 2p zZ+ Qw
N \/(2;1— 1)z +¢8)e ( P )”
= 2p z+¢i/
if p>z+ Qz’

(3.44)

From the above estimate, we can see that the formulation (3.36)
have very large cancellations in the integrand if p/(z + ;“e“;,) and
n are large, see Fig. 3.5(a) for an example. Therefore, simply ap-
plying a quadrature to formula (3.36) will not get correct results
in all cases.

To overcome the problem discussed above, we will change
the contour of the integral (3.36). For this purpose, let us first
reformulate the integral (3.36) into

1 [ (Sk, yre~ko?

S (p, z f HV(k £ )k, )dk,
np D) =5 | B ko) ot k)
(_1)m ° (1) (_Skﬂ)”ekpl ab
2 /,OOH"‘ N Crao ey A e
(3.45)
by using identities
HyY(x) + HY(x) o) m+1y(1)

Jm(X)Zf, Hy/(=x) = (=1)""H’(x).  (3.46)
According to the analysis in [27], the density function o “,(k ) is

analytic and bounded in the right half complex plane. Therefore,
we can change the contour of the first integral from [0, co) to
I‘; = {k, = £&(1 4+ 1i),& > 0} and the contour of the second

integral from (—oo0, 0] to Iy = {k, =&(1—1),& < 0} to obtain
(o, 2)= o [ Hpe1+0)
0
n A\ ,—zE(1+i)
o CEVAT VT a4 4 ey
(n+ m)!(n — m)! (3.47)
11 —1i) [° ’
SEEEER [ e - )

(—SEy(1 —iyret-D
* (n+ m)!(n —m)! oy ((i = 1)E)dt.
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Fig. 3.5. A comparison of the integrand in (3.36) and the first integrand in (3.50)

dq

=—1.2,6 =212, &y = 47.5, & = 62.8).

Recalling the asymptotic formulation (cf. [28, Eq. (10.7.8)])
(+0)
Jrz

where § is an arbitrary small positive number, we can obtain

HV(z) ~ z— 00, —m+8<phz<2m—6, (3.48)

. (T+1) e
(1) ~ §olkE
H;,'(p&(141)) A i)e s plP 0, &— +oo,
H,(nl)(pf(l —i)~ Ll).epéeipf -0, &— —o0,
wpE(1—1)
(3.49)
for all p > 0. Defining
Gin(p, 2, )
1+ 0 (SE (1 i)re 24D
T M (PE( D) (n+m)!(n — m)!
) oxog(+i), if =0,
Sl EDT-1) g (—Sg)"(1 — iyres(1-D
2 i (8 (1= 1) (n+m)!(n —m)!
x ol ((i— 1), if £ <0,
then, we have
st = [ W@z@@+/<%mm—w@(wm
0

By the asymptotic formulas (B.32) and (3.49), we have

1 ab
n—3 gnp—tEo+gh)
Gt (p,2,6) ~ =
(n+m)(n — m)!
:gnm(%';lvz“l‘p'*‘é‘({u;)’ & — +o0, (351)
g_-n—— 7S —E(z+p ) ’
Gom(p. 2, =€) ~
(n+ m)!(n —m)!
=gm(&; 1 Z+p+§u/) § — +oo.
Recalling (3.43) to get
2n—1)e
mannm(%' Lp+z+ Cu/) %
n! ( 1 )"—%Sn (3.52)
m+min—m!\p+z+% ’ '
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with n = 10,m = 0, p = 0.1, z_OOOZanda (k)glVEIllIl(B35)(dg—0

As an example, we consider the case m = 0 and set S = /p? + 22
/IOZ + ZZ

again, i.e.,
n
2n—1)e
Ap+z+ep) \p+z+iy )

(353)

Apparently, the large cancellation in the case p > z + {;[",
can be significantly suppressed by using the formulation (3.50).
At the same time, the oscillating term Jy(k,p) is turned to be
exponentially decaying functions Hf"”( p&(1+1i)) and thus produce
faster exponential decaying term. A comparison of the integrands
in (3.36) and (3.50) are plotted in Fig. 3.5.

To end this section, we will give some numerical results to
show the accuracy and efficiency of the algorithm using mixed
DE-SE quadrature together with formulations (3.36) and (3.50)
for the computation of the Sommerfeld type integrals. We test
the integral with densities o”,(kp) = 1 as the asymptotic formula

(B.32) implies that O'N,(k ) tends to be either the constant Cg‘é’, or0

rapidly as k, — oo. Letting S = r := \/p? + 22, then the identity
(2.42) yields To end this section, we will give some numerical
results to show the accuracy and efficiency of the algorithm using
mixed DE-SE quadrature together with formulations (3.36) and
(3.50) for the computation of the Sommerfeld type integrals. We
test the integral with densities o,(k,) = 1 as the asymptotic
formula (B.32) implies that au,(kp) tends to be either the constant
le‘é’, or 0 rapidly as k, — oc. Letting S = r := /p? + 22, then the
identity (2.42) yields

4 1~ /2
nIah z 7Pm(7)
m(p:2) = Van+1r " \r

We fix z 0.001 and test p 0.0005, 0.01, 0.1 by using
two different quadratures: (i) the composite Gaussian quadrature
applied to the integral (3.36); (ii) the mixed DE-SE quadrature
applied to (3.50). For the composite Gaussian quadrature, the
asymptotic formula (3.41) is used to determine the truncation
points such that the magnitude of the integrand decays to smaller
than 1.0e—15. Then, a uniform mesh with mesh size equal to 2
and 30 Gauss points in each interval is used to achieve machine
accuracy in regular cases. Due to the small value of z, a very
large truncation is needed if the formulation (3.36) is used. The
numerical results are compared in Table 3.1, while the reference
values are calculated by (3.54). We can see that the integral
domain truncation is larger than 47834 for the composite Gauss
quadrature approach when p = 0.0005,n = 5and m = 0, 1.
The truncations in all other tested cases are even larger. Thus, a
large number of quadrature points have to be used to achieve a

mannO(s 1L,p+z+ Qz')

(3.54)
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Table 3.1
A comparison of two quadrature rules for the computation of Sommerfeld integrals with z = 0.001.
P n m Composite Gauss Mixed DE-SE
Number of points Error Number of points Error
5 0 717523 —3.307e—12 52 7.105e—14
0.0005 1 716016 2.576e—11 52 1.421e—14
10 0 892278 6.954e—12 72 —2.842e—14
1 891431 1.882e—11 72 —9.059¢e—14
5 0 872989 —1.427e—10 56 4.441e—16
001 1 871511 —2.716e—11 64 3.108e—15
10 0 1246898 1.147e—5 56 —1.443e—15
1 1246090 —6.755e—6 56 6.883e—15
5 0 1039851 —8.793e—7 72 7.632e—17
01 1 1038393 —9.250e—7 72 —4.996e—16
10 0 1610764 —10615.95 48 1.943e—16
1 1609974 1334.402 48 2.775e—17
good accuracy when the composite Gauss quadrature is applied Table 4.1

to (3.36). In contrast, the mixed DE-SE quadrature can obtain
machine accuracy using no more than 100 points. Moreover, as
the ratio p/z increases, applying composite Gauss quadrature to
(3.36) cannot produce reasonable results due to the large can-
cellation in (3.36). Instead, the mixed DE-SE quadrature applied
to (3.50) can still provide results with almost machine accuracy
using no more than 100 quadrature points.

Remark 3.1. In the FMM for reaction components, the most time
consuming part is still the computation of the M2L matrices. Nev-
ertheless, the equations in (3.35) show that we can pre-compute
{S"%E (p, z)}ﬁio, m=20,1,...,nforall possible (p, z) determined
by the target box and all source boxes in its interaction list.
As target and equivalent polarization source boxes are always
separated by a material interface, we only have no more than
29 different (p, z) cases for all M2L in a fixed level of the tree
structure. Denoted the depth of the tree structure used in the
FMM by H, then the total number of pre-computed matrices is
equal to 29H.

4. Numerical results

In this section, we present numerical results to demonstrate
the performance of the proposed FMM. The algorithm is imple-
mented based on an open-source adaptive FMM package
DASHMM (cf. [29]) on a workstation with two Xeon E5-2699 v4
2.2 GHz processors (each has 22 cores) and 500GB RAM using
the GCC compiler version 6.3. The main improvement in the
numerical results compared with that presented in [19] for the
Helmholtz equation is that no off-line computation is needed and
numerical tests with media of many layers and charges very close
to interfaces are presented.

Charges in a 3 layer medium. We first test problems in a three
layers medium with interfaces placed at zg = 0, z; —1.2.
Charges are set to be uniformly distributed in irregular domains
which are obtained by shifting the domain determined by r =
0.599 —a+ §(35 cos*# —30 cos* §+3) with a = 0.1, 0.15, 0.05 to
new centers (0, 0, 0.6), (0,0, —0.6) and (0, 0, —1.8), respectively
(see Fig. 4.1(a) for the cross section of the domains). Particle
locations are generated randomly with a uniform distribution in a
larger cube within corresponding irregular domains. We can see
that the minimum distance between charges and the interfaces is
0.001 in all three layers, i.e., the numerical examples have charges
very close to the interfaces. In the layered medium, the material
parameters are set to be g = 21.2, &1 = 47.5, & = 62.8. Let
@y(r ;) be the approximated values of @,(r;) calculated by FMM.

14

Comparison of CPU time (sec) using multiple cores (p = 5).

cores N time for all {q){m}ﬁ:o time for all {®g}
4164016 426.66 67.76
1 6229016 436.30 57.75
8883960 455.32 75.97
12202880 527.56 132.06
4164016 80.78 21.86
6 6229016 82.96 20.76
8883960 86.54 25.74
12202880 100.08 42.94
4164016 2497 20.58
36 6229016 25.71 18.81
8883960 26.02 23.45
12202880 28.51 36.72

Define ¢ and maximum errors as

~ 2
Z:& |Do(1ei) — Do(ry)]
221 | @y (r i)l
¢ . @y (1) — Pe(re)|
= max —— &7 Tt as
| @1yl

For accuracy test, we put N 1168 + 856 + 1504 charges
in the irregular domains in three layers, see Fig. 4.1(a). Con-
vergence rates against p are depicted in Fig. 4.1(b). Clearly, the
proposed FMM has an exponential convergence with respect to
the truncation order p. The CPU time for the computation of all
three free space components {difee(n,-)}fzo and sixteen reaction
components @gf,(rg,-) with fixed truncation number p = 5 are
compared in Fig. 4.1(c) for up to 12 millions charges. It shows
that all of them have an O(N) complexity while the CPU time for
the computation of reaction components is much shorter than
that for free space components due to the fact that most of
the equivalent polarization sources are well-separated from the
targets. The CPU times with multiple cores are given in Table 4.1
and they show that the speedup of the parallel computing for
reaction components is lower than that for the free space com-

: : nyab 2p
ponents as the pre-computation for the matrices {S"I}; (0, Z)},o
has not been implemented in parallel. Here, we only use paral-
lel implementation within the FMM for each component. Note
that the computation of each component is independent of all
other components. Therefore, it is straightforward to implement
a version of the code which computes all components in parallel.

Erry =
(4.1)
Err,

max 1<i<N,

Charges in solar cell media with up to 32 layers. Next, to test
a more practical problem and also to check the scaling of the
algorithm with respect to the number of layers (L), we consider
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Fig. 4.1. Performance of FMM for problem in a three layers medium.
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Fig. 4.2. Performance of FMM for

a typical layout of a multi-layered solar cell (cf. [30]) where the
main components are Gallium Arsenide (GaAs), Indium Arsenide
(InAs) and Silicon (Si), which have relative dielectric constants
12.9, 15.15 and 2.4, respectively. We will test different cases with
up to 32 layers and 32 million charges. In each case, the width
of the layers is fixed to be 1.2 and three materials: GaAs, InAs
and Si are randomly selected in the layered structure. Moreover,
the source charges are randomly picked in cubic box of size 1
in each layer. For accuracy test, we consider a medium with 16
layers and put 1000 randomly selected source charges in each
box. Therefore, the total number of charges is 16 000. The errors
of the potentials in the 3th, 8th and 15th layers are depicted in
Fig. 4.2(a). We can see that highly accurate results can be obtained
with p less than 20. To show the dependence of the CPU time
on the number of layers L, we test examples of different L and
put 1 million randomly selected source charges in each layer.
Multiple cores (40 cores) are used and the CPU time is depicted
in Fig. 4.2(b). The results show that the FMM can handle large
number of sources in many layers efficiently. According to the
derivation in Appendix B, the number of free space and reaction
field components are L and 4(L*> — 2L + 1), respectively, when a
L-layers medium is considered. Therefore, the CPU time for free
space and reaction field components is O(L) and O(L?) as we can
see in Fig. 4.2(b). Moreover, it is worthy to point out that the
computation of all reaction components are independent from
each other, hence can be done in parallel.

—¥—time for all @2}’,

—©—time for all CD{W’
O(L)

| —=-0(L?)

10 15 20 25 30
Layers
(b) CPU time (sec) vs. layers L

problems in media with many layers.

5. Conclusion

In this paper, we have presented a fast multipole method
for the efficient calculation of the interactions between charged
particles embedded in 3-D layered media. The layered media
Green’s function of the Laplace equation is decomposed into a
free space and four types of reaction components. The associated
equivalent polarization sources are introduced to re-express the
reaction components. New MEs and LEs of O(p?) terms for the
far field of the reaction components and M2L translation oper-
ators are derived, accordingly. As a result, the traditional FMM
framework can be applied to both the free space and reaction
components once the polarization sources are used together with
the original sources. For systems of large number of charges,
the computational cost from the reaction components is only
a fraction of that of the FMM for the free space components.
Therefore, computing the interactions of many sources in layered
media basically costs the same as that for the interactions in the
free space and the proposed FMM scales as O(N) in terms of the
number of charges N in a layered medium and O(L?) in terms of
the number of layers L.

For the future work, we will carry out error estimate of the
FMM for the Laplace equation in 3-D layered media, which re-
quires careful analysis for the convergence of the new MEs and
M2L operators for the reaction components. The application of
the FMM in capacitance extraction of interconnects in VLSI will
also be considered in a future work.
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Appendix A. Addition theorems

The following presents the addition theorems (cf. [12,31]),
which have been used for the derivation of the ME, LE and
corresponding shifting and translation operators of the free space
Green’s function. Here we adopt the definition

2n+1(n—m)!
47 (n+m)!

Y0, )= (—1)" P (cos 0)e'm = f’\f(cose)eim“’,

(A1)

for the spherical harmonics where P'(x) (resp. f’\g"(x)) is the
associated (resp. normalized) Legendre function of degree n and
order m. Recall that

PIx) = (—1)"(1 = )% b (A2)
dxm
for integer order 0 < m < n and
— e BTy S0 Pt = (1PN (A3)
(n + m)’ n ’ n n

for 0 < m < n, where P,(x) is the Legendre polynomial of de-
gree n. The so-defined spherical harmonics constitute a complete
orthogonal basis of L(S?) (where S? is the unit spherical surface)
and

(YY) = 8o S, Y0, @) = (—1)"Y(B, @).

It is worthy to point out that the spherical harmonics with differ-
ent scaling constant defined as

(n — |m|)!

. %4
(P (cos 0)e™ = ™M, | m a0, 9),

OO = my
(A4)

have been frequently adopted in published FMM papers (e.g., [12,
21]). By using the spherical harmonics defined in (A.1) and con-
stants

2+ 1 1y
S i L ) R )
47 J(n—=m)l(n+ m)!

the addition theorems in [12,31] can be represented as:
Theorem A.1 (Addition Theorem for Legendre Polynomials). Let P

and Q be points with spherical coordinates (r, 0, ¢) and (p, o, ),
respectively, and let y be the angle subtended between them. Then

Pp(cosy) =

Z Yie. BYY;'(0. ). (A6)

2n+1
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Theorem A.2. Let Q = (p,«, B) be the center of expansion of
an arbitrary spherical harmonic of negative degree. Let the point
P=(r,0,¢) withr > p,and P —Q = (r',0’, ¢'). Then

Ym 0/ / (— 1)mAmAm m(a,ﬂ)ym+m
Z >

i (05 9)
rmn o+ 2 pam—+m’ n+n'+1
=0 m=—n CnAn+n/ r

Theorem A.3. Let Q = (p, «, B) be the center of expansion of
an arbitrary spherical harmonic of negative degree. Let the point
P=(r,0,¢)withr < p,and P —Q =(r',0', ¢'). Then

Yr(e', ¢) (- 1)"+mAmA Y™, B)

Z >
rm +l A

n+n'+1
=0 m=—n n+ n’ '0

Y0, ).

Theorem A4. Let Q = (p,a, B) be the center of expansion of
an arbitrary spherical harmonic of negative degree. Let the point
P=(r0, <p)andP—Q:(r/ 0', ¢'). Then

( 1)”C2AmAm —-m
Z )

n'ntn'—n nym(a’ﬂ) m'—m
Yy
=0 m=—n n n

Am rn— n
—n
where AT' =0, Y,T(@, @) =0 for |m| > n is used.

r/n Ym

. (0,9),

Appendix B. A stable recursive algorithm for computing reac-
tion densities

Denote the solution of the problem (3.1)-(3.2) in the ¢th
layer by uy(r, r’') and its partial Fourier transform along x— and
y—directions by

Uppr (kys ky, 2) = Fluee (r, 1))(ky, ky, 2)

/ / UN’ T, T —1 I<xx+kyy)dxdy

Then, U (k, ky, z) satisfies second order ordinary differential
equation

d?te (kx, ky, 2)

—i(keX' +kyy'
dz? Ko (K, ky, 2) = —e~9705(2, 2),

z # dy.
(B.1)
Here, we consider the following general interface conditions

al—lﬁﬁ—l,z’(kx’ ky, z)= aZﬁM’(an ky, z),

dﬁl—l,l’(kx» ky,z) ditge(ky, ky,z)
dz dz

in the frequency domain for £ = 1, 2, ..., L, where {a, b,} are

given constants. Apparently, the classic transmission condition

(3.2) will lead to a special case of (B.2) with a, = 1, by = .. In

the top and bottom-most layers, we also have decaying condition

be—+ , (B.2)

Uoer(kys ky, 2) = 0, Tper(ky, ky,z) — 0, as z — +oo.  (B.3)
This interface problem has a general solution
aOl’(k)u ky, Z) = a(}g/e_kp(z_do),
Uprpr(ky, ky, 2) = o) e k0@ 5.4)
+o2, e o172 4 5, Glky, ky, 2, 2), '
Upp(ky, ky, 2) = o e Fold-172)]
where §;, is the Kronecker symbol, and
R , efi(kxx#kyy/)
Glke, ky, 2,2y = e 71 9 = ————— (B.5)
2k,

is the Fourier transform of the free space Green’s function. We
will use the decomposition

Glky, ky, 2, 2') = G'(ky, ky, 2, 2') + G2 ke, Ky, 2, 2'), (B.6)
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where the two components are defined as

G'(ke, ky, 2,2') := H(Z' — z)pre "0,
Gk, ky,2,2') := H(z — 2')pre *0@=7), (B.7)
and H(x) is the Heaviside function.

We first consider the £th layer without source (¢ # £'), where
the right hand side of (B.1) becomes zero, the solution is given by

Uper(ky, Ky, 2) = 0} (ks Ky )e ™ 02790 1 62, (ky, Ky Yoo de=172),

(B.8)
Applying the interface condition (B.2) at z = d,_; gives
(15710'[]_1 vt ag,1e”‘f’Df-1oZ_1 o= aeeik”DZO'Z[/ + Cle'ezl/,
1 koD 2 koDy 1 2 (B.9)
bﬁ—“’hu’ —by_q1e7" lflagilye/ = be™ KO'N/ - b@au/,
or in matrix form
1 1
o , ~ ,
e ((j;”) =5 (Z[f) , (B.10)
-1, [7%
where
Qw0 . e aeey ) . [ Ae€e Qg _ _
SR (be _bm), SO = (bm _b), €=2,3,..., L1,
(B.11)
and
—k,D,
ey i=e Pt d_q:=dy,
¢ T (B.12)
d}_+1 I:dL, Dg:dgfl—d@, Z:O,l,...,L.
Solving the above equations for {a 10 Z_L ], we obtain
1 1
Op 1 o,
( 52 1,[) — Téfl,ﬁ ( g@) (B]B)
O-1e O
for =2,3,...,L—1, where
-1
-1t _ (0571 ag_1€¢—1 ) (aeez a )
be_1 —be_ 1€ bie, —b
-1 —1€¢—1 4 4 (B.14)
_ 1 €r_1 0 ’rHTlfl,Z €y 0
2ep_q 0 1 0o 1)’
and
a be a b,
~e—1,0 . | Ge—1 b1 ap be_1
T =g, b, a b, (B.15)
Qg1 b1 a1 b
For the top and bottom most layers, we have aoi, = 0 and

GLTZ’ = 0, we can also verify that

1 1 1
O o1 (%1 Or1,e - O
<0>=11‘ (2 s =T ) (B.16)
O1p Ol 1¢ Lo

/

Next, we consider the solution in the layer with source r
inside, i.e., the solution in the ¢’th layer. The general solution is
given by
ko2 —1=2) L Gk, kyr 2, 2').

(B.17)

Upp(ky, ky, 2) = o) 0270 62 e

17
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At the interfaces z = dy_; and z = d,, the interface conditions
(B.2) lead to equations

1 2 1 2
a_1(op_1p +eva10p_yp) = v (evopy + oy,
~2 /
+ G (k)h ky7 de/f'la z ) )a

be - 1("451’ IR 32’710/52/—1,15’) = by (eé"’e]’w - Uezuz’) (B.18)
- %3 (ke iy, o1, 2),

and

ay (Ue]’z’ + eé”f’ez’e’) = ag/+1(€g/+10'l1,+]e, + 0z2’+1,z’)
— ay 1k, ky,dy,z'),

be (o = evoy) = besi(ers10 10 = 04110 (B.19)

%az Tk, ky,dy,z").
Note that

0,G* (ks ky, dyr_1,2') = —k, G*(ky, kyr dpr 1, 2'),
3,G (k. ky, dpr, 2') = k,G (ks Ky, dyr, 2').
Then, Egs. (B.18)-(B.19) can be reformulated as

1

(7/ ! ’ ! ’ /
( ) =1 (7Y 4500 () Bk e, 2)
Ov_10 u/ 4

(B.20)
and
e v (O | xe (—0\
) =T ST ) 48O G' (k. ky, dyr, 2'),
Oy O b
(B.21)
where
1 1
- T ) g
50 = @)~ <1 0 ) a b | _ (5 Su
o eg'/{1 _1 ST
ay bg
(B.22)
Define
-1 1
F1e = ge, TV, O = .
. 2€j
Jj=0
0{(( a(f)
A — Forgz | ge-te . [T 12 (B23)
’ (€) o]’ )
U1 Oy
for £ = ., L. Then, recursions in (B.13), (B.20) and (B.21)

result in the system

ol 0 / (0 ap
0 ) =cWa® [ ) 4 @A (N Bk Ky, g, 2)
0 ol by

/ ey [ —Aer | ~
+ CcUAENSE) ( , ¢ ) Gl(kx’ ky, d(’,Z’).
o

(B.24)

It is not numerically stable to directly solve (B.24) for o} o and
w then apply recursions (B.13), (B.20) and (B.21) to obtain all
other reaction densities due to the exponential functions involved
in the formulations. According to the expression (B.14), the recur-
sions (B.13), (B.20) and (B.21) are stable for the computation of
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the components a&,(kp ). As for the computation of the compo-
nents au,(kp) we need to form linear systems similar as (B.24)
using recursions (B.13), (B.20) and (B.21) and then solve it.

We first solve the second equation in (B.24) to get

01_2[’ = Gl_zgl/cl(km ky’ dy,z ) + UL[/G (kerz,der—1,2 )7

where
C(l’+1) , —ay
21 _ @) o) ¢ /
O = — D) ("‘21 ol ) 2e, 8! b, | 0= <L
C(L)azz (4
22 e (e'-1) -1) 5 gw-n ag 0<t <L
O = — D) (a21 o2 ) -1 be) TS =h
C(L)azz g4

(B.25)

According to the recursion (B.13), (B.20) and (B.21), all other
reaction densities also have decompositions

ol = ol Gl (ky, ky, dp, 2') + aggz,ﬁz(kx, ky, dy_1,2),

2 2171 (B.26)
0y = 0,pG (ky, ky, dp, Z') + UM,G (ky, ky, dpr—1,2").

For each 0 < ¢ < L, we first calculate {o] M,, w} by using
one of the recur510ns (B.13), (B.20) and (B.21), then formulate a
linear system for {o;! Ogprs [2[,} as the linear system (B.24). Next, we
solve the second equatlon in the linear system to obtain reaction
densities {aézel,, “,} In summary, the formulations are given as
follows:

TK 4 +1O_[/ [/ + T[ o +]U[2/:_1 p
4
Oy = 5(1)%' 5be, =1, (B27)

et u+1
T} e+1 v+ Ty else,

Ue+1 2
01,0 -1, -1
T o2+ T o2, + 5 Ve,

o2 =1 45 by, e=10-1,
00+1 00+1
T ot + T o else,
(B.28)
1 c+n
. )9e, &)
0 (0 1)[ ca A 2eS
22
11
—dy 0,,
=1 x (b )+A“>< é‘)], 0>, (B.29)
Z/
()
%1 11
=% else,
Uy
1 cr
— 1) [A“ “D2e,_;
() ( (£)
L) ¢
22 &(0—1) ay 0 UZ]ZZ’ ,
ol = S ) +A 0 , >/, (B.30)
l/
()
o
- ?1)02(52,, else.
22

Substituting (B.26) and (B.7) into (B.4) and taking inverse Fourier
transform, we obtain expressions (3.3)-(3.7).
From the definition (B.14) and (B.23), we have

Tl _ gy 1be + aghgy . e _ ae1by — agbyi
Zagbg e Za(b(
2o = (5 %)
4 4
cten) 1 0 =40,
@ = {242—416.*’91(‘1(1—1*‘1(2—1) 0<¢; <4l
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and an asymptotic behavior

() ~(0)

ai epei---e  as,e

AO ~ ( 1 0( % 4 3@)0) i kp — 00, (B.31)
21e Ay

where {&(f]), &(1(2), &(2(1), 6{(2[2)} are constants independent of k,. By

using these formulations in (B.25)-(B.30), we can show that all
reaction densities {o; 2/( )}ib:l have an asymptotic behavior

ol (ky) ~ Che oSt k, — o0, (B.32)

where C% oy and {l“j, are constants independent of k,. For example,
we have
&(l/)
o l—0-1%22  —ky(dy—d;_1)
ow(kp) 2 —iye PRy == g, — o0,
oY)

(D)
o ay by N o, —d
o(k,) ~ 2170 22 ( —|——)e ldo=di-1) s o0,
Ll( ﬂ) (L) ay b[’—l P

(B.33)

If the number of layers is not large, we are able to write
down explicit expressions of the reaction densities. Here, we give
expressions for the case of a three layers media with a, = 1,
b, = ¢; as an example.

e Source in the top layer:

(g0 — €1)(e1 + &2) + (80 + £1)(e1 — £2)e%d1ke

11
k - )
%00 (ko) = 2 (k,)
21 eo(e1 + €2) 1 go(e1 — Ez)edlkﬂ
k,) =———, k)= —————,
oiolk) =45 @wlk) w(k,)
28081€d1k/’
21 k)=
720 () == 103
(B.34)
e Source in the middle layer:
e1(e1+ €2) 1 e1(g1 — &2)eke
k = k)= "~ "em
( ) (kp) s Go](<p) K(’(p) ’
(1 —&2)(e1 + €0) (81 — &2)(&1 — €9 )ehkr
1l o1 7 C2¢1 T ©0) 21 _
k) ==y i) 2ic(k,) :
— e2)(e1 — o)™ (e1 + £2)(e1 — £0)
12 :(81 £)(&1 — &o)e ’ 201y — 1—’
o7 (kp) 2(k,) o1 (kp) 20c(k,)
— go)elikr e1(eo +€1)
a2 (k ):M’ o2 (k,) = L0 T
21 Kp K(kp) 21 \Kp K(kp)
(B.35)
e Source in the bottom layer:
2e165ed1ke
12
k) =——"—,
o0 (ko) == 003
2 ga(e1 — go)edtke 12 &2(&0 + €1)
ok, =—"—-—""— o5k, = ——,
R e(k,) 1235 c(ky)
o2(k,) (1 — &o)(e1 + £2) + (80 + £1)(e2 — £1)e2 10
2ee 2ic(k,) :
(B.36)
where

1
K(kp) = [ g0 + &1)(&1 + £2) + (g0 — £1)(&2 — £1)*1].

Apparently, these expressions also verify our conclusion (B.32) on
the asymptotic behavior of the reaction densities.

18
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