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In this paper, we propose a fast multipole method (FMM) for 3-D linearized Poisson–
Boltzmann (PB) equation in layered electrolyte-dielectric media. We will extend our 
previous work on FMMs for Helmholtz and Laplace equations in layered media [1,2]
to the case of electrolyte and dielectric layered media for applications arising from 
biophysics and colloidal fluids, such as ion channel transport and Helmholtz double layers. 
Two key mathematical formulas are developed for this purpose: Firstly, a Funk–Hecke 
formula for purely imaginary wave numbers is derived, which facilitates the derivation of 
multipole expansions of the potential far fields of charges in layered electrolyte-dielectric 
media. Secondly, a recurrence formula is constructed for run-time computations of the 
Sommerfeld-type integrals used in the FMM algorithm. Numerical results show that the 
proposed FMM for interactions of charges embedded in layered media under screened PB 
potentials has the same accuracy and the O (N) computational complexity as the classic 
FMM for charge interactions in the free space.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Layered electrolyte-dielectric media frequently occur in biological systems, e.g., ion channels [3], where ionic solvents 
and protein membrane create a layered environment around the ion channels. The interaction of charged particles in layered 
electrolyte-dielectric media, such as ions moving through ion channels or in Helmholtz double layers of electrolyte fluids, is 
governed by the Poisson–Boltzmann (PB) electrostatic potential. In a L-layer media with horizontal interfaces at z = d� and 
the l-th layer defined by

�� = {r = (x, y, z), x ∈R, y ∈R,d� ≤ z ≤ d�−1} (1.1)

where dL = −∞, d−1 = ∞, the potential of a charge at r′ is given by the Green’s function of the PB or Poisson equation in 
the layered media which we denoted by u��′ (r, r′) in this paper. It is the solution of the equation

∇2u��′(r,r′) − λ2
�u��′(r,r′) = − 1

ε�

δ(r,r′), r ∈ ��, r′ ∈ ��′ (1.2)

with the following jump conditions (denoted by [·]):
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[u��′(r)] = 0,
[
ε
∂u��′(r)

∂n

]
= 0, at z = d�, (1.3)

for all 0 ≤ �, �′ ≤ L, where δ(r,r′) is the Dirac delta function, ε� and λ� are the dielectric constant and the inverse Debye–
Huckel length in the �-th layer in the layered medium. In layers where λ� = 0, such as in a membrane layer, we have the 
Poisson equation. For an 1:1 electrolyte solvent (monovalent:monovalent salts like NaCl),

λ ≈ 0.33
√

cs Å−1 (1.4)

at room temperature (25 ◦C), cs is the ionic concentration measured in molar units M, and Å = 10−10 m (cf. [4]).
In a homogeneous ionic solvent, the Green’s function of the linearized Poisson–Boltzmann equation is referred as the 

Yukawa potential or screened Coulomb potential (cf. [5,3,4]). The classic fast multipole method (FMM) for the Coulomb po-
tential has been successfully extended to the Yukawa potential (cf. [6,7]) for the reduction of the O (N2) cost for computing 
the interactions between N particles (or sources) to O (N), which has found many applications in computational biology, 
chemistry, colloidal sciences (cf. [8,9]). Similar to the FMM for the Coulomb potential [10,11], the mathematical foundation 
of the Yukawa-FMM is multipole expansions (MEs) based on addition theorems for modified Bessel functions. The MEs pro-
vide a low-rank approximation for far fields of charges in the homogeneous space (also referred as the free space in this 
paper). For applications involving layered electrolyte-dielectric media, a layered Green’s function defined via (1.2)–(1.3) is 
preferred to describe the interactions, which accounts for the polarization effects due to the presence of material interfaces 
(cf. [3,12]). However, the lack of a similar addition theory for the Green’s function of PB equation in layered media place a 
major obstacle in developing FMM for the potential in this situation.

However, besides the ME based FMMs, Taylor expansion based fast algorithms [13–15], kernel independent FMM (cf. [16,
17]), cylindrical wave decomposition together with 2-D FMMs for cylindrical waves [12], and matrix low rank representation 
based fast algorithms (cf. [18–22]) could also be applied to compute charge interaction potential in layered media. Though a 
smooth kernel satisfying some decaying conditions can be compressed using Taylor expansion, a truncated Taylor expansion 
with p-th order convergence for a 3-D problem will require O (p3) terms, compared with O (p2) for MEs. Other kernel 
independent fast algorithms require the computation of all entries (or those sampled using random row/column sampling 
approaches (cf. [21,22])) of the matrix, which is computationally prohibitive as each entry requires the computation of an 
oscillatory Sommerfeld-type integral. An O (p2) term ME based fast method, which takes advantage of the special geometry 
of the layered media and analytical properties of the Green’s functions of the layered media in deriving the MEs will produce 
more efficient algorithms with rigorous error controls. Recently, we have developed a mathematical theory to obtain low-
rank ME approximations for the far fields of source interactions represented by the layered Green’s function of Helmholtz 
and Laplace equations (cf. [1,23,2]). The main idea is to use the generating function of the Bessel function (2-D case) or 
an extended Funk–Hecke formula (3-D case) to connect Bessel and plane wave functions, which facilitates the derivation 
of the required MEs. The reason of using plane wave expressions is that the layered Green’s functions have Sommerfeld-
type integral representations where the plane waves are involved. With the ME for far field approximations, corresponding 
FMMs for the layered Green’s functions have been implemented. As the layered Green’s function of the linearized Poisson–
Boltzmann equation has a similar integral form as that of Helmholtz equation, we can extend our previous work on the 
FMMs of the Laplace and Helmholtz equations in layered media to PB equations.

A key result in this paper is an extension of the Funk–Hecke formula for purely imaginary wave numbers, which allows 
us to derive the MEs, local expansions (LEs) and multipole-to-local (M2L) translation operators for the reaction components 
of the PB layered Green’s function. Under a similar framework proposed in our previous work, the potential due to sources 
embedded in layered media is decomposed into free space and reaction components, and equivalent polarization charges are 
introduced for each reaction component. The FMM in layered media will then consist of the existing Yukawa-FMM for the 
free space components, and newly introduced FMMs for the reaction components based on equivalent polarization sources 
and the corresponding layered MEs, LEs and M2L translation operators. Moreover, in order to avoid memory consuming pre-
computed 3-D look-up tables (cf. [1]), we will develop a recurrence formula for efficient computation of the Sommerfeld-
type integrals used in the algorithm. The resulting FMMs for the reaction field components are much faster than that for the 
free space components, as the introduced equivalent polarization charges are always separated from the associated target 
charges by a material interface. As a result, the proposed FMM for sources in layered electrolyte-dielectric media costs 
almost the same as the Yukawa-FMM for the problem in free space.

The rest of the paper is organized as follows. In Section 2, to provide the application background for the FMM for 
PB potentials in layered electrolyte-dielectric media, we introduce a charge interaction problem arising from computing 
the electrostatic potentials in a hybrid model for ion channel transport. Then, we present the formulas for the potential 
induced by sources embedded in layered electrolyte-dielectric media. As in our previous work on Helmholtz and Laplace 
equation, equivalent polarization charges for each type of the reaction components are introduced to represent the reaction 
components. In Section 3, we first make a short review of the key formulas on which the classic FMM-Yukawa algorithm 
relies. Then, the MEs, LEs and M2L translation operators for the reaction components are derived based on an extended 
Funk–Hecke formula which provides a spherical harmonic expansion for the exponential functions involved in the integral 
representation of the layered media Green’s function of the PB equation. The FMMs for reaction components are constructed 
for the combined set of the original source charges and the equivalent polarization charges associated to each reaction 
component. In Section 4, we give numerical results to show the exponential accuracy and O (N) complexity of the proposed 
2



B. Wang, W. Zhang and W. Cai Journal of Computational Physics 439 (2021) 110379
Fig. 2.1. Schematic illustration of a hybrid ion channel model: �D indicates the atomistic region within which channel protein (indicated by curved outlines), 
water molecules (clusters of 2 hydrogen and 1 oxygen atoms), and ions (cations and anions indicated by circles with + or −) are given in explicit atomistic 
forms in terms of charges and positions while the layered medium outside �D given an implicit continuum form in terms of dielectric constant ε� and 
inverse Debye–Hückle length λ� .

FMM for interactions in layered electrolyte-dielectric media. A conclusion is given in Section 5. In addition, two appendices 
are included for the reaction densities in the spectrum domain for the Green’s function for a three-layered medium and 
addition theorems for the modified Bessel functions, respectively.

2. Background and problem setup

2.1. Electrostatic interactions in a hybrid model for ion channel transport

As an application of the FMM in layered electrolyte-dielectric media, we present an computational electrostatic problem 
arising from the ion transport in ion-channel or nanopores. A three-layer medium of materials with different dielectric 
constants and inverse Debye–Hückle lengths, corresponding to ionic solvents above and below and a membrane in the 
middle, is shown in Fig. 2.1. In the layer �� , 0 ≤ � ≤ 2, we denote the dielectric constants by ε� and the inverse Debye–
Hückle lengths by λ� . For the study of ion channels, we consider a simple hybrid model within the layered medium, 
which consists of a cylinder �D of height D within the three-layer medium with axis perpendicular to the interfaces of the 
layered media (see Fig. 2.1). The dielectric constant and inverse Debye–Hückle length inside the ion channel �D are denoted 
by ε�D and λ�D = 0 (i.e., Poisson equation is used inside the cylinder), respectively, which can take values different from 
the parameters outside the cylinder. The finite height cylinder represents a dividing interface in a hybrid solvation model for 
biomolecule simulations (refer to Section 4.5 in [4] and [24–27] for more details). In such a hybrid model, inside the cylinder 
an atomistic representation of the physical system is used, i.e., channel proteins, solvent molecules, and ions are described 
in terms of charged particles at their atomic centers and their interactions are governed by the Coulombic potential. The 
background media outside the cylinder, composed of a membrane and solvents above and below, are modeled as layered 
continuum dielectrics described by dielectric constants and Debye–Hückle screen length. The electrostatic potential in the 
layered media is then governed by the Poisson (for the membrane) and Poisson–Boltzmann (for the ionic solvents) equations.

Now, let us assume that inside the cylinder there are M charges with magnitudes qk, 1 ≤ k ≤ M , located at rk , which 
are the partial charges of the ions and membrane protein molecules inside the explicit atomistic cylinder. In a Monte Carlo 
or molecular dynamics simulation of the hybrid system, the electrostatic potential φ(r), thus forces on each charge through 
the gradient of the potential, is given by the following PB equation

∇2φ(r) − λ2(r)φ(r) = − 1

ε(r)

M∑
k=1

qkδ(r − rk), r ∈ ��, � = 0,1,2 (2.1)

with interface conditions (1.3). The function λ(r) is a perturbation of the piecewise constant λ� due to the presence of the 
cylinder representing the atomistic region, so

λ2(r) = λ2
� + 	(r)χ�D , 	(r) = λ2

�D
(r) − λ2

�, r ∈ ��, (2.2)

and the dielectric constant ε(r) will take different values in different regions (usually ε�D assuming a value between εvac

and 4εvac with εvac being the vacuum dielectric constant), see Fig. 2.1. In the middle membrane layer and inside the 
cylinder, we have λ1 = 0, λ�D = 0, so the Poisson equation is in fact used both inside the membrane layer and the explicit 
cylinder region. The region outside the cylinder is treated implicitly with the homogeneous PB (within the ionic solvent 
above and below the membrane) or Poisson equation (within the membrane). The cylindrical boundary is a mathematical 
interface defining where the explicit regions end and the implicit region begins. The hybrid model allows the ion channel 
to be modeled with atomistic details and accuracy. For biological ion channels of thickness about 3 nm, the height of the 
cylinder is taken to be around 400 Å and the diameter in the order of 100 Å. Considering the fact that the biological ionic 
concentration cs is in the range of milli − M (mM), which gives a Debye–Hückle length of 100 Å from (1.4), therefore, for 
this size of explicit region, the polarization effect of the solvent above and below the membrane will be strong on charges 
inside the cylinder, which is reflected in the definition of the Green’s function in (1.2) through a solvent reaction field 
component as defined in (2.8).
3
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Fig. 2.2. Sketch of the layer structure for general multi-layer media.

The solution to (2.1) can be obtained by solving a Lipmann–Schwinger type integral equation using the Green’s function 
u��′ (r, r′) defined by (1.2)-(1.3), i.e.,

φ(r) = − 1

ε(r)

M∑
k=1

qku��′(r, rk) +
∫

�D

	(r′)u��′(r, r′)φ(r′)dr′, r ∈ ��. (2.3)

The volume integral equation is then discretized by a Nyström collocation method with an appropriate quadrature for-
mula with {ri,ωi}M

i=1 as the nodes and weights for the domain �D . More precisely, the discretization at each point ri ∈ �D , 
is given by

φ(ri) = − 1

ε(ri)

M∑
k=1

qku��′(ri, rk) +
N∑

j=1

ω j	(r j)u��′(ri, r j)φ(r j), 1 ≤ i ≤ N, (2.4)

which forms a linear system

(I + A�)x = b, (2.5)

where x = (φ(r1), · · · , φ(rN ))� , matrix A = [u��′(ri, r j)]N×N , � = �′ = 1 is given by the layered Green’s function, � =
diag(ω1	(r1), · · · , ωM	(rN)) is a diagonal matrix and the right hand side b = (b1, · · · , bN)� , bi = 1

ε(ri)

∑M
k=1 qku��′(ri, rk). 

Once the potential φ(r) is obtained inside �D , then equation (2.3) can be used to find the potential anywhere in the layered 
medium. The linear system (2.5) is usually solved by using an iterative method when the system size N becomes very large. 
Iterative solvers based on Krylov subspace iterations such as GMRES require the product of the coefficient matrix and a 
vector, i.e., A�x ≡ Aq, which will lead to O (N2) cost if done directly. Note that the product Aq is exactly the interactions 
of N charges, defined by the q = (Q 1, · · · , Q N)�, Q i = ωi	(ri)xi , through the PB or Poisson electrostatic potential, i.e., the 
corresponding layered Green’s function. The speedup of computing the interaction from O (N2) to O (N log N) requires fast 
algorithm, such as the fast multipole method developed in this paper.

2.2. The potential due to sources embedded in layered media

In general, we will consider the computation of the potential due to sources in a multi-layered medium consisting 
of L-interfaces located at z = d�, � = 0, 1, · · · , L − 1 with material parameters given by {ε�, λ�}L

�=0, see Fig. 2.2. Suppose 
P� = {(Q � j, r� j), j = 1, 2, · · · , N�}, � = 0, 1, · · · , L are L + 1 groups of source particles distributed in the multi-layered 
medium where the group of particles in the �-th layer is denoted by P� . Then, the potential at r�i due to all other particles 
is given by


�(r�i) =
L∑

�′=0

N�′∑
j=1

Q �′ ju��′(r�i, r�′ j), (2.6)

where u��′(r, r′) is the layered Green’s function, i.e., the solution of the problem (1.2)–(1.3).
As presented in our previous papers (cf. [1,2]), the potential consists of free space and reaction field components. To 

present the decomposed formulation of the potential, let us first recall the spectral representation of the Green’s function 
of PB equation in the layered medium described above. Suppose we have a point source at r ′ = (x′, y′, z′) in the �′-th layer 
(d�′ < z′ < d�′−1), then the layered Green’s function of the linearized PB equation satisfies (1.2) at field point r = (x, y, z)
in the �-th layer (d� < z < d� − 1). By using partial Fourier transform along x- and y-directions, the analytical solution can 
be obtained by solving an ordinary differential equation in each layer with respect to z and then applying transmission 
4
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conditions (1.3) at the interfaces z = d�−1, � = 1, 2, · · · , L, as well as decaying conditions in the top-most and bottom-most 
layers for z → ±∞. The detailed derivation is an analogue to that for the layered Green’s function of the Laplace equation 
(cf. [2]). In physical domain, the layered Green’s function takes the form

u��′(r, r′) =
⎧⎨⎩ureact

��′ (r, r′) + e−λ�|r−r′|

4πε�|r − r′| , � = �′,

ureact
��′ (r, r′), otherwise,

(2.7)

where

ureact
��′ (r, r′) =

⎧⎪⎨⎪⎩
u11

0�′(r, r′) + u12
0�′(r, r′), � = 0

u11
��′(r, r′) + u12

��′(r, r′) + u21
��′(r, r′) + u22

��′(r, r′), 0 < � < L,

u21
L�′(r, r′) + u22

L�′(r, r′), � = L

(2.8)

is a reaction field induced by the layered media. In general, the reaction components uab
��′(r, r′), a,b = 1, 2, have 

Sommerfeld-type integral representations in the Fourier spectral domain:

uab
��′(r, r′) = 1

8π2

∞∫
0

2π∫
0

λρ

λ�z
Eab

��′ (r, r′)σ ab
��′ (λρ)dαdλρ, a,b = 1,2, (2.9)

where λ�z =
√

λ2
� + λ2

ρ , {Eab
��′ (r, r′)}a,b=1,2 are exponential functions defined as

E11
��′(r, r′) := eiλα ·(ρ−ρ ′)−λ�z(z−d�)−λ�′z(z′−d�′ ),

E12
��′(r, r′) := eiλα ·(ρ−ρ ′)−λ�z(z−d�)−λ�′z(d�′−1−z′),

E21
��′(r, r′) := eiλα ·(ρ−ρ ′)−λ�z(d�−1−z)−λ�′z(z′−d�′ ),

E22
��′(r, r′) := eiλα ·(ρ−ρ ′)−λ�z(d�−1−z)−λ�′z(d�′−1−z′),

(2.10)

λα = (λρ cosα, λρ sinα), ρ = (x, y), ρ ′ = (x′, y′) are the source and target coordinates in xy plane and {σ ab
��′ (λρ)}2

a,b=1 are 
reaction densities only dependent on the layer structure and the material parameter κ� and ε� . It is noted that the reaction 
components ua2

��′ or ua1
��′ will vanish if the source is in the top-most or bottom-most layer accordingly.

The reaction densities {σ ab
��′ (λρ)}2

a,b=1 can be calculated efficiently by using a recursive algorithm, see [2, Appendix B]
for a similar one used for Laplace equation in layered media. For a few layers, we can write down explicit expressions of 
the reaction densities. As an example, the expressions for a general three layer medium are given in Appendix A.

With the expression of u��′(r, r′), the potential given by (2.6) is decomposed into free space and reaction field compo-
nents as follows:


�(r�i) = 
free
� (r�i) +

L−1∑
�′=0

[
11
��′(r�i) + 
21

��′(r�i)] +
L∑

�′=1

[
12
��′(r�i) + 
22

��′(r�i)], (2.11)

where


free
� (r�i) :=

N�∑
j=1, j �=i

Q � j
e−λ�|r�i−r� j |

4πε�|r�i − r� j| , 
ab
��′(r�i) :=

N�′∑
j=1

Q �′ ju
ab
��′(r�i, r�′ j). (2.12)

It is clear that the free space component 
free
� (r�i) can be computed using the classic Yukawa-FMM (cf. [6,7]). Therefore, 

the main task is to develop FMMs to efficiently compute the reaction components {
ab
��′(r�i)}, a,b = 1, 2. As the reaction 

components of the Green’s function in layered media have different expressions (2.9) for source and target particles in 
different layers, it is necessary to perform calculation individually for interactions between any two groups of particles 
among the L + 1 groups {P�}L

�=0.

2.3. Representation of the reaction components using equivalent polarization sources

According to the expressions in (2.9)–(2.10), we can see that the exponential decaying factors in (2.10) are actually 
determined by four groups of shifted z-coordinates {z − d�, z′ − d�′ }, {z − d�, d�′−1 − z′}, {d�−1 − z, z′ − d�′ } and {d�−1 −
z, d�′−1 − z′}. Based on this observation, our previous work on the Helmholtz equation [23,1] has shown that the exponential 
convergence of the ME and LE for the reaction components uab

��′(r, r′) in fact depends on the distance between the target 
and a polarization source defined for the source at r′ . Fig. 2.3 illustrates the location of the polarization charge r′ for each 
ab

5
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Fig. 2.3. Locations of equivalent polarization sources associated to reaction component uab
��′ .

of the four types of reaction fields uab
��′ , a, b = 1, 2. Specifically, the equivalent polarization sources associated to reaction 

components uab
��′ (r, r′), a, b = 1, 2 are set to be at coordinates (see Fig. 2.3)

r′
11 := (x′, y′,d� − (z′ − d�′)), r′

12 := (x′, y′,d� − (d�′−1 − z′)),
r′

21 := (x′, y′,d�−1 + (z′ − d�′)), r′
22 := (x′, y′,d�−1 + (d�′−1 − z′)),

(2.13)

and the reaction potentials are defined as

ũ1b
��′(r, r′

1b) := 1

8π2

∞∫
0

2π∫
0

λρ

λ�z
E+

��′(r, r′
1b)σ 1b

��′ (λρ)dαdλρ,

ũ2b
��′(r, r′

2b) := 1

8π2

∞∫
0

2π∫
0

λρ

λ�z
E−

��′(r, r′
2b)σ 2b

��′ (λρ)dαdλρ,

(2.14)

where

E+
��′(r, r′

1b) := eiλα ·(ρ−ρ ′
1b)e−λ�z(z−d�)−λ�′z(d�−z′

1b),

E−
��′(r, r′

2b) := eiλα ·(ρ−ρ ′
2b)e−λ�z(d�−1−z)−λ�′z(z′

2b−d�−1),
(2.15)

and ρ ′ = (x′ , y′ ), z′ denote the xy- and z-coordinate of r′ , respectively, i.e.,

ab ab ab ab ab

6
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Fig. 2.4. Equivalent polarized sources {r11
�′ j}, {r21

�′ j} and boxes in source tree.

z′
11 = d� − (z′ − d�′), z′

12 = d� − (d�′−1 − z′),
z′

21 = d�−1 + (z′ − d�′), z′
22 = d�−1 + (d�′−1 − z′).

We can see that the reaction potentials (2.14) represented using the equivalent polarization sources has similar form as 
the Sommerfeld-type integral representation (2.9). Recalling the expressions (2.10), one can verify that

E1b
��′ (r, r′) = E+(r, r′

1b), E2b
��′ (r, r′) = E−(r, r′

2b), b = 1,2. (2.16)

Therefore, the reaction components of layered Green’s function can be re-expressed using equivalent polarization coordinates 
as

u1b
��′(r, r′) = ũ1b

��′(r, r′
1b), u2b

��′(r, r′) = ũ2b
��′(r, r′

2b), b = 1,2. (2.17)

Substituting into the expression of 
ab
��′ (r�i) in (2.12), we obtain


ab
��′(r�i) :=

N�′∑
j=1

Q �′ j ũ
ab
��′(r�i, rab

�′ j), a,b = 1,2 (2.18)

where

r11
�′ j = (x�′ j, y�′ j,d� − (z�′ j − d�′)), r12

�′ j = (x�′ j, y�′ j,d� − (d�′−1 − z�′ j)),

r21
�′ j = (x�′ j, y�′ j,d�−1 + (z�′ j − d�′)), r22

�′ j = (x�′ j, y�′ j,d�−1 + (d�′−1 − z�′ j))
(2.19)

are equivalent polarization coordinates of r�′ j for the computation of reaction components in the �-th layer, see Fig. 2.4 for 
an illustration of {r11

�′ j}
N�′
j=1 and {r21

�′ j}
N�′
j=1.

By using the expression (2.18), the computation of the reaction components can be performed between targets and 
associated equivalent polarization sources. The definition given by (2.19) shows that the target particles {r�i}N�

i=1 and the 
corresponding equivalent polarization sources are always located on different sides of an interface z = d�−1 or z = d� , see 
Fig. 2.4. We want to emphasize that the introduced equivalent polarization sources are separated from the targets even in 
the computation of the reaction components for sources and targets in the same layer, see the numerical examples given in 
Section 3.2. This property implies significant advantage of introducing equivalent polarization sources and using expression 
(2.18) in the FMMs for the reaction components 
ab

��′(r�i), a, b = 1, 2. More details about this advantage will be discussed 
in Remark 3.3. The numerical results presented in Section 4 also validate that the FMMs for reaction components have high 
efficiency as a consequence of the separation of the targets and equivalent polarization sources by an interface.

3. FMM for charge interactions under PB potentials in 3-D layered media

In this section, we first briefly review the MEs and LEs for the free space Green’s function of the linearized PB equation 
and the corresponding shifting/translation operators. They are the key formulas used in the Yukawa-FMM, which we will 
adopt for the computation of the free space components given in (2.12). Then, a new technique will be established to derive 
MEs, LEs and M2L translations for the general reaction components given by (2.18). With these expansions and translations, 
the FMM for the PB potentials (2.6) or their equivalent formulations (2.11) is proposed.
7
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Fig. 3.1. Spherical coordinates used in multipole and local expansions.

3.1. Multipole and local expansions and translation operators for free-space components

Let us review the multipole and local expansions used in the Yukawa-FMM for Yukawa potential (cf. [6,7]). Consider the 
free space Green’s function of the linearized PB equation with a source and a target at r′ and r, respectively. By using the 
addition Theorem B.1, we obtain the ME with respect to a source center rs

c :

k0(λ|r − r′|) = π

2

e−λ|r−r′|

λ|r − r′| =
∞∑

n=0

n∑
m=−n

Mnmkn(λrs)Y m
n (θs,ϕs), (3.1)

and the LE with respect to a target center rt
c :

k0(λ|r − r′|) =
∞∑

n=0

n∑
m=−n

Lnmin(λrt)Y m
n (θt,ϕt), (3.2)

where {Y m
n (θ, ϕ)} are the spherical harmonic functions, {in(z)} and {kn(z)} are the modified spherical Bessel functions of 

the first and second kind, respectively,

Mnm = 4π in(λr′
s)Y m

n (θ ′
s,ϕ

′
s), Lnm = 4πkn(λr′

t)Y −m
n (θ ′

t ,ϕ
′
t), (3.3)

rs
c is the source center close to r′ , and rt

c is the target center close to r, (rs, θs, ϕs), (rt , θt , ϕt) are the spherical coordinates 
of r − rs

c and r − rt
c , (r′

s, θ ′
s, ϕ′

s), (r′
t, θ ′

t , ϕ′
t) are the spherical coordinates of r′ − rs

c and r′ − rt
c (see Fig. 3.1).

Applying the addition Theorem B.3 to kn(λrs)Y m
n (θs, ϕs) in (3.1), the translation from the ME (3.1) to the LE (3.2) is given 

by

Lnm =
∞∑

ν=0

ν∑
μ=−ν

Smμ
nν (rt

c − rs
c)Mνμ. (3.4)

Similarly, we can shift the centers of MEs and LEs via the following translations,

M̃nm =
∞∑

ν=0

ν∑
μ=−ν

Ŝmμ
nν (rs

c − r̃s
c)Mνμ, L̃nm =

∞∑
n=0

ν∑
μ=−ν

Ŝμm
νn (r̃t

c − rt
c)Lνμ, (3.5)

where

M̃nm = 4π in(λr̃′
s)Y m

n (θ̃ ′
s, ϕ̃

′
s), L̃nm = 4πkn(λr̃′

t)Y m
n (θ̃ ′

t , ϕ̃
′
t) (3.6)

are the coefficients of the ME and LE with respect to shifted centers r̃s and r̃t , respectively.
Two important features in (3.1)–(3.2) are (i) the source and target coordinates are separated; (ii) they both have expo-

nential convergence. These are the key features for the compression in the Yukawa-FMM (cf. [6,7]). Besides adopting the 
addition theorem, a new approach to handle Green’s functions in layered media as well has been proposed for Helmholtz 
and Laplace equations (cf. [1,23,2]), which will be extended to PB equation below.
8
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3.2. Multipole and local expansions and translation operators for a general reaction component

Before starting the derivation of the expansions for the general reaction components, we extend some expansion formulas 
which have been established for the development of the FMM for Helmholtz equation in layered media (cf. [1]).

We begin with an analytic extension of the well-known Funk–Hecke formula (cf. [28,29,1]).

Proposition 3.1. Given r = (x, y, z) ∈ R3 , k > 0, α ∈ [0, 2π) and denoted by (r, θ, ϕ) the spherical coordinates of r, k =
(
√

k2 − k2
z cosα, 

√
k2 − k2

z sinα, kz) is a vector of complex entries. Choosing branch (3.8) for 
√

k2 − k2
z in eik·r and ̂Pm

n ( kz
k ), we have

eik·r =
∞∑

n=0

n∑
m=−n

Am
n (r)in P̂m

n

(kz

k

)
e−imα =

∞∑
n=0

n∑
m=−n

Am
n (r)in P̂m

n

(kz

k

)
eimα (3.7)

holds for all kz ∈C, where

Am
n (r) = 4π jn(kr)Y m

n (θ,ϕ).

This extension enlarges the range of the classic Funk–Hecke formula from kz ∈ (−k, k) to the whole complex plane by 
choosing the branch√

k2 − k2
z = −i

√
r1r2ei

θ1+θ2
2 (3.8)

in the square root function 
√

k2 − k2
z . Here (ri, θi), i = 1, 2 are the moduli and principal values of the arguments of complex 

numbers kz + k and kz − k, i.e.,

kz + k = r1eiθ1 , −π < θ1 ≤ π, kz − k = r2eiθ2 , −π < θ2 ≤ π.

There, it is enough to consider the case when k > 0 is a positive real number. Note that the linearized PB equation can 
be obtained from Helmholtz equation via modification k → iλ. Therefore, it suffices to prove an alternative version of the 
Funk–Hecke formula for purely imaginary k = iλ.

By using the branch defined in (3.8) for the square root function, we have the extension (cf. [1]) of the well-known 
Legendre addition theorem [30, p. 395].

Lemma 3.1. Let w = (
√

1 − w2 cosα, 
√

1 − w2 sinα, w) be a vector with complex components, θ, φ be the azimuthal angle and 
polar angles of a unit vector r̂. Define

β(w) = w cos θ +
√

1 − w2 sin θ cos(α − φ), (3.9)

then

Pn(β(w)) = 4π

2n + 1

n∑
m=−n

P̂m
n (cos θ) P̂m

n (w)eim(α−φ) (3.10)

for all w ∈C.

The following Lemma states the same conclusion of Lemma 4 in [1]. Here, we make it more general by an analytic 
extension to C.

Lemma 3.2. For any complex number a, there holds

eaz =
∞∑

n=0

(2n + 1)in(a)Pn(z), ∀z ∈C, (3.11)

where in(a) =
√

π
2a In+1/2(a) is the modified spherical Bessel function of the first kind, Pn(z) is the Legendre polynomial extended to 

the complex plane.

Proof. Recall the series (cf. [31, 10.60.8])

ea cos θ =
∞∑

(2n + 1)in(a)Pn(cos θ), (3.12)

n=0

9
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we can see that (3.11) holds for all z ∈ [−1, 1]. Next, we consider its analytic extension to C. Apparently, eaz is an entire 
function of z. Meanwhile, the spherical Bessel function in(a) has the following upper bound (cf. [32, 9.1.62])

|in(a)| = |i−n jn(ia)| ≤ �( 3
2 )

�(n + 3
2 )

(a

2

)n
e|�a| ≤ 1

n!
(a

2

)n
e|�a|, (3.13)

where �a is the real part of a. The extension of the Legendre polynomial Pn(z) to C is a polynomial of degree n with n
distinct roots {z j}n

j=1 in the interval [−1, 1]. Therefore,

|Pn(z)| = |an|
n∏

j=1

|z − z j | ≤ 2n(|z| + 1)n, ∀z ∈ C, (3.14)

here the estimate an = (2n)!
2n(n!)2 ≤ 2n for the coefficient of the leading term of Pn(z) is used. In total, the upper bounds for 

|in(a)| and |Pn(z)| give an estimate

∞∑
n=0

(2n + 1)|in(a)Pn(z)| ≤
∞∑

n=0

(2n + 1)
an(|z| + 1)n

n! e|�a| = (2a(|z| + 1) + 1)ea(|z|+1)e|�a|. (3.15)

Therefore, we have proved that the series on the right-hand side of (3.11) converges uniformly in any compact set D ⊂ C
and hence converges to an entire function of z. By the analytic extension theory, we complete the proof. �

From Lemma 3.1 and 3.2, we have the following expansion formulas:

Proposition 3.2. Given r = (x, y, z) ∈ R3 , λ > 0, α ∈ [0, 2π) and denote the spherical coordinates of r by (r, θ, ϕ), and let λ =
(iλρ cosα, iλρ sinα, −

√
λ2 + λ2

ρ) be a vector of complex entries. By choosing the branch (3.8) for λz =
√

λ2 + λ2
ρ in eiλ·r and ̂Pm

n ( λz
λ

), 
we have

eλ·r =
∞∑

n=0

n∑
m=−n

Bm
n (r) P̂m

n

(λz

λ

)
eimα =

∞∑
n=0

n∑
m=−n

Bm
n (r) P̂m

n

(λz

λ

)
e−imα (3.16)

for all λρ ∈C, where

Bm
n (r) = 4π(−1)nin(λr)Y m

n (θ,ϕ).

Proof. Let

β =
√

1 + λ2
ρ

λ2
cos θ + i

λρ

λ
sin θ cos(α − φ),

then, −λrβ = λ · r. Setting a = λr, z = β in (3.11), we have

eλ·r =
∞∑

n=0

(2n + 1)in(−λr)Pn(β). (3.17)

Then, the spherical harmonic expansion (3.16) follows by applying Lemma 3.1 together with the property in(−z) =
(−1)nin(z). �

Now, we are ready to derive key mathematical formulas for the development of the FMM for a general reaction compo-
nent 
ab

��′ (r�i). We will use expression (2.18) with equivalent polarization coordinates. Therefore, MEs, LEs and corresponding 
translation operators for ũab

��′ (r, r′
ab

) are required. Recall that the source/target separation in the expansions is a key fea-
ture for the compression. Further, the coordinates of the equivalent polarization source and target are only involved in the 
exponential kernels E±

��′ in the integral representation (2.14). Therefore, the following source/target separation

E+
��′(r, r′

1b) = E+
��′(r, r1b

c )eiλα ·(ρ1b
c −ρ ′

1b)−λ�′z(z1b
c −z′

1b)

E−
��′(r, r′

2b) = E−
��′(r, r2b

c )eiλα ·(ρ2b
c −ρ ′

2b)+λ�′z(z2b
c −z′

2b)
(3.18)

and

E+
��′(r, r′

1b) = E+
��′(rt

c, r′
1b)eiλα ·(ρ−ρt

c)−λ�z(z−zc),

E− (r, r′ ) = E− (rt , r′ )eiλα ·(ρ−ρt
c)+λ�z(z−zc)

(3.19)

��′ 2b ��′ c 2b

10
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can be obtained for b = 1, 2 by inserting the polarization source centers rabc = (xabc , yabc , zabc ) and the target center rt
c =

(xt
c, yt

c, zt
c), respectively. Here we also use notations ρab

c = (xabc , yabc ) and ρt
c = (xt

c, yt
c). Moreover, Proposition 3.2 gives 

spherical harmonic expansions:

eiλα ·(ρ1b
c −ρ ′

1b)−λ�′z(z1b
c −z′

1b) =
∞∑

n=0

n∑
m=−n

4π(−1)nin(λ�′r1b
s )Y m

n (π − θ1b
s ,π + ϕ1b

s ) P̂m
n

(λ�′z
λ�′

)
eimα,

eiλα ·(ρ2b
c −ρ ′

2b)+λ�′z(z2b
c −z′

2b) =
∞∑

n=0

n∑
m=−n

4π(−1)nin(λ�′r2b
s )Y m

n (θ2b
s ,π + ϕ2b

s ) P̂m
n

(λ�′z
λ�′

)
eimα,

eiλα ·(ρ−ρt
c)−λ�z(z−zt

c) =
∞∑

n=0

n∑
m=−n

4π(−1)nin(λ�rt)Y m
n (θt,ϕt) P̂m

n

(λ�z

λ�

)
e−imα,

eiλα ·(ρ−ρt
c)+λ�z(z−zt

c) =
∞∑

n=0

n∑
m=−n

4π(−1)nin(λ�rt)Y m
n (π − θt,ϕt) P̂m

n

(λ�z

λ�

)
e−imα,

where (rabs , θabs , ϕab
s ) are the spherical coordinates of r′

ab
− rabc . Since

Y m
n (π − θ,ϕ) = (−1)n+mY m

n (θ,ϕ), Y m
n (θ,π + ϕ) = (−1)mY m

n (θ,ϕ),

the above spherical harmonic expansions together with source/target separation (3.18) and (3.19) implies

E+
��′(r, r′

1b) = E+
��′(r, r1b

c )

∞∑
n=0

n∑
m=−n

4π in(λ�′r1b
s )Y m

n (θ1b
s ,ϕ1b

s ) P̂m
n

(λ�′z
λ�′

)
eimα,

E−
��′(r, r′

2b) = E−
��′(r, r2b

c )

∞∑
n=0

n∑
m=−n

4π(−1)n+min(λ�′r1b
s )Y m

n (θ1b
s ,ϕ1b

s ) P̂m
n

(λ�′z
λ�′

)
eimα,

(3.20)

and

E+
��′(r, r′

1b) = E+
��′(rt

c, r′
1b)

∞∑
n=0

n∑
m=−n

4π(−1)nin(λ�rt)Y m
n (θt,ϕt) P̂m

n

(λ�z

λ�

)
e−imα,

E−
��′(r, r′

2b) = E−
��′(rt

c, r′
2b)

∞∑
n=0

n∑
m=−n

4π(−1)min(λ�rt)Y m
n (θt,ϕt) P̂m

n

(λ�z

λ�

)
e−imα,

(3.21)

for b = 1, 2. Then, a substitution of (3.20) into (2.14) gives the ME

ũab
��′(r, r′

ab) =
∞∑

n=0

n∑
m=−n

Mab
nmF̃ab

nm(r, rabc ), Mab
nm = 4π in(λ�′rabs )Y m

n (θabs ,ϕab
s ) (3.22)

at equivalent polarization source centers rabc , and the LE

ũab
��′(r, r′

ab) =
∞∑

n=0

n∑
m=−n

Labnmin(λ�rt)Y m
n (θt,ϕt) (3.23)

at target center rt
c . Here, F̃ab

nm (r, rabc ) are represented by Sommerfeld-type integrals

F̃1b
nm(r, r1b

c ) = 1

8π2

∞∫
0

2π∫
0

λρ

λ�z
E+

��′(r, r1b
c )σ 1b

��′ (λρ) P̂m
n

(λ�′z
λ�′

)
eimαdαdλρ,

F̃2b
nm(r, r2b

c ) = (−1)n+m

8π2

∞∫
0

2π∫
0

λρ

λ�z
E−

��′(r, r2b
c )σ 2b

��′ (λρ) P̂m
n

(λ�′z
λ�′

)
eimαdαdλρ,

(3.24)

and the LE coefficients are given by
11
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L1b
nm = (−1)n

2π

∞∫
0

2π∫
0

λρ

λ�z
E+

��′(rt
c, r′

1b)σ 1b
��′ (λρ) P̂m

n

(λ�z

λ�

)
e−imαdαdλρ,

L2b
nm = (−1)m

2π

∞∫
0

2π∫
0

λρ

λ�z
E−

��′(rt
c, r′

2b)σ 2b
��′ (λρ) P̂m

n

(λ�z

λ�

)
e−imαdαdλρ.

(3.25)

According to the definition of E−
��′ (r, r′) and E+

��′ (r, r′) in (2.16), the centers rabc and rt
c must satisfy

z1b
c < d�, z2b

c > d�−1, (3.26)

and

zt
c > d� in FMM for ũ1b

��′(r, r′
1b); zt

c < d�−1 in FMM for ũ2b
��′(r, r′

2b), (3.27)

respectively, to ensure the exponential decay in E+
��′(r, r1b

c ), E−
��′ (r, r2b

c ) and E+
��′ (rt

c, r′
1b), E−

��′ (rt
c, r′

2b) as λρ → ∞ and hence 
the convergence of the corresponding Sommerfeld-type integrals in (3.24) and (3.25). These restrictions can be met in 
practice, since we are considering targets in the �-th layer and the equivalent polarization coordinates are always located 
above the interface z = d�−1 or below the interface z = d� .

Next, we discuss the center shifting and translation for ME (3.22) and LE (3.23). A desirable feature of the expansions 
of reaction components discussed above is that the formula (3.22) for the ME coefficients and the formula (3.23) for the LE 
have exactly the same form as the formulas of ME coefficients and LE for free space Green’s function. Therefore, we can see 
that center shifting for MEs and LEs are the same as free space case given in (3.5).

It suffices to derive the translation from ME (3.22) to LE (3.23). Recall the definition of exponential functions in (2.15), 
E+

��′ (r, r1b
c ) and E−

��′ (r, r2b
c ) have the following splitting

E+
��′(r, r1b

c ) = E+
��′(rt

c, r1b
c )eiλα ·(ρ−ρt

c)e−λ�z(z−zt
c),

E−
��′(r, r2b

c ) = E−
��′(rt

c, r2b
c )eiλα ·(ρ−ρt

c)eλ�z(z−zt
c).

Applying spherical harmonic expansion (3.16) again, we obtain

eiλα ·(ρ−ρt
c)+λ�z(z−zt

c) = 4π

∞∑
n=0

n∑
m=−n

(−1)min(rt)Y m
n (θt ,ϕt) P̂m

n

(λ�z

λ�

)
e−imα,

eiλα ·(ρ−ρt
c)−λ�z(z−zt

c) = 4π

∞∑
n=0

n∑
m=−n

(−1)nin(rt)Y m
n (θt,ϕt) P̂m

n

(λ�z

λ�

)
e−imα.

Substituting into (3.22), the ME is translated to the LE (3.23) via

L1b
nm =

∞∑
ν=0

ν∑
|μ|=0

T 1b
nm,νμM1b

νμ, L2b
nm =

∞∑
ν=0

ν∑
|μ|=0

T 2b
nm,νμM2b

νμ, (3.28)

and the M2L translation operators are given in integral forms as follows

T 1b
nm,νμ = (−1)n

2π

∞∫
0

2π∫
0

λρ

λ�z
E+(rt

c, r1b
c )σ 1b

��′ (λρ)Q νμ
nm (λρ)ei(μ−m)αdαdλρ,

T 2b
nm,νμ = (−1)m+ν+μ

2π

∞∫
0

2π∫
0

λρ

λ�z
E−(rt

c, r2b
c )σ 2b

��′ (λρ)Q νμ
nm (λρ)ei(μ−m)αdαdλρ,

(3.29)

where

Q νμ
nm (λρ) = P̂m

n

(λ�z

λ�

)
P̂μ

ν

(λ�′z
λ�′

)
.

Again, the convergence of the Sommerfeld-type integrals in (3.29) is ensured by the conditions in (3.26)-(3.27).
To end this subsection, we give some numerical examples to show the convergence behavior of the MEs in (3.22). 

Consider the MEs of ũ11
11(r, r′

11) and ũ22
11(r, r′

22) in a three-layer medium with ε0 = 1.0, ε1 = 8.6, ε2 = 20.5, λ0 = 1.2, 
λ1 = 0.5, λ2 = 2.1, d0 = 0, d1 = −1.2. In the following examples, we fix r′ = (0.625, 0.5, −0.1) in the middle layer and 
use definition (2.13) which gives r′ = (0.625, 0.5, −2.3), r′ = (0.625, 0.5, 0.1). The centers for MEs are set to be r11

c =
11 22

12



B. Wang, W. Zhang and W. Cai Journal of Computational Physics 439 (2021) 110379
Fig. 3.2. Exponential convergence of the MEs for reaction components.

(0.6, 0.6, −2.4), r22
c = (0.6, 0.6, 0.2), which implies |r′

11 − r11
c | = |r′

22 − r22
c | ≈ 0.1436. For both components, we test three 

targets given by

r1 = (0.5,0.625,−0.1), r2 = (0.5,0.625,−0.6), r3 = (0.5,0.625,−1.1).

The relative errors against truncation number p are depicted in Fig. 3.2. We also plot the convergence rates similar with 

that of the ME for free space Green’s function, i.e., O
[( |r−rab

c |
|r′
ab

−rab
c |

)p+1]
as reference convergence rates. The results clearly 

show that ME of reaction components u11
11(r, r′

11) and u22
11(r, r′

22) have an exponential convergence rate O
[( |r−rab

c |
|r′
ab

−rab
c |

)p+1]
similar as that of free space Green’s function. Therefore, the ME (3.22) can be used to develop FMM for efficient computation 
of the reaction components as in the Yukawa-FMM for the free space Green’s function.

Remark 3.1. Although the derivation of ME (3.22) is based on the spherical harmonic expansion (3.16), the final expansion 
does take advantage of the specific symmetry of the layered media. In fact, the expansion basis functions (3.24) can be seen 
as a superposition of cylindrical Bessel functions, which have symmetry in the xy-plane. This fact is clear in the simplified 
expressions in (3.38). This symmetry is surely related to the special geometry of the layered media, i.e., cylindrical symmetry 
in the xy-plane.

Remark 3.2. The technique presented above can also be applied to the Green’s function of the PB equation in free space. 
A remarkable fact is that it will give the classic theoretical results (3.1)–(3.4) which was derived from well-known addition 
theorem.

Actually, the Green’s function of the linearized PB equation in free space has a Sommerfeld-type integral representation

k0(λ|r|) = π

2

e−λ|r|

λ|r| = 1

4λ

∞∫
0

2π∫
0

λρeiλρ(x cosα+y sinα) e−λz|z|

λz
dαdλρ, (3.30)

where λz =
√

λ2 + λ2
ρ . In the spectral domain, the source-target separation can be achieved straightforwardly as

k0(λ|r − r′|) = 1

4λ

∞∫
0

2π∫
0

λρ
eλ·(r−rs

c)e−λ·(r′−rs
c)

λz
dαdλρ,

k0(λ|r − r′|) = 1

4λ

∞∫
0

2π∫
0

λρ
eλ·(r−rt

c)e−λ·(r′−rt
c)

λz
dαdλρ,

(3.31)

for z ≥ z′ , where λ = (iλρ cosα, iλρ sinα, −λz). Without loss of generality, here we only consider the case z ≥ z′ for an 
illustration. Applying the spherical harmonic expansion (3.16) to exponential functions e−λ·(r′−rs

c) and e−λ·(r−rt
c) in (3.31)

gives
13
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k0(λ|r − r′|) =
∞∑

n=0

n∑
m=−n

Mnm

4λ

∞∫
0

2π∫
0

λρ
eλ·(r−rs

c)

λz
P̂m

n

(λz

λ

)
eimαdαdλρ, (3.32)

and

k0(λ|r − r′|) =
∞∑

n=0

n∑
m=−n

L̂nmin(krt)Y m
n (θt, φt), (3.33)

for z ≥ z′ , where Mnm is defined in (3.3) and

L̂nm = (−1)n

4λ

∞∫
0

2π∫
0

λρ
eλ·(rt

c−r′)

λz
P̂m

n

(λz

λ

)
e−imαdαdλρ. (3.34)

For the convergence of the Sommerfeld-type integrals in the above expansions, we only consider centers with properties 
zs

c < z and zt
c > z′ . Recalling the identity

kn(λ|r|)Y m
n (θ,ϕ) = 1

4λ

∞∫
0

2π∫
0

λρ
eλ·r

λz
P̂m

n

(λz

λ

)
eimαdαdλρ (3.35)

for z ≥ 0, we see that (3.32) and (3.33) are exactly the multipole and local expansions (3.1)–(3.2) for the case of z ≥ z′ , 
respectively.

3.3. The FMM algorithm and efficient calculation of the Sommerfeld-type integrals

The framework of the traditional FMM together with ME (3.22), LE (3.23), M2L translation (3.28)–(3.29), and ME and LE 
center shifting (3.5) constitute the FMM for the computation of reaction components 
ab

��′ (r�i), a, b = 1, 2. In the FMM for 
each reaction component, a large box is defined to include all equivalent polarization charge coordinates and corresponding 
target particles, where the adaptive tree structure will be built by a bisection procedure, see Fig. 2.4 (right). Note that 
the validity of the ME (3.22), LE (3.23), and M2L translation (3.28) used in the algorithm imposes restrictions (3.27) on 
the centers, accordingly. This can be ensured by setting the largest box for the specific reaction component to be equally 
divided by the interface between equivalent polarization coordinates and targets, see Fig. 2.4. Thus, the largest box for the 
FMM implementation will be different for different reaction components. With this setting, all source and target boxes of 
level higher than zeroth level in the adaptive tree structure will have centers below or above the interfaces, accordingly. 
The fast multipole algorithm for the computation of the reaction component 
ab

��′ (r�i) is summarized in Algorithm 1. All the 
interactions given by (2.11) will be obtained by first calculating all components and then summing them up. Framework of 
the algorithm is presented in Algorithm 2.

The double integrals involved in the ME, LE and M2L translations can be simplified by using the following identity

Jn(z) = 1

2π in

2π∫
0

eiz cos θ+inθdθ. (3.36)

With the definitions

Z+
��′(z, z′) := e−λ�z(z−d�)−λ�′z(d�−z′), Z−

��′(z, z′) := e−λ�z(d�−1−z)−λ�′z(z′−d�−1), (3.37)

the ME functions in (3.24) can be simplified as

F̃1b
nm(r, r1b

c ) =eimϕ1b
s

4π

∞∫
0

λρ Jm(λρρ1b
s )

Z+
��′(z, z1b

c )

λ�z
σ 1b

��′ (λρ)im P̂m
n

(λ�′z
λ�′

)
dλρ,

F̃2b
nm(r, r2b

c ) = (−1)n+meimϕ2b
s

4π

∞∫
0

λρ Jm(λρρ2b
s )

Z−
��′(z, z2b

c )

λ�z
σ 2b

��′ (λρ)im P̂m
n

(λ�′z
λ�′

)
dλρ,

(3.38)

and the expression (3.25) for LE coefficients can be simplified as
14
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Algorithm 1 FMM for general reaction component 
ab
��′ (r�i), i = 1, 2, · · · , N�.

Determine z-coordinates of equivalent polarization sources for all source particles.

Generate an adaptive hierarchical tree structure with polarization sources {Q �′ j , rab
�′ j }N�′

j=1 and targets {r�i}N�

i=1.
Upward pass:
for l = H → 0 do

for all boxes j on source tree level l do
if j is a leaf node then

form the free-space ME using Eq. (3.22).
else

form the free-space ME by merging children’s expansions using the free-space center shift translation operator (3.5).
end if

end for
end for
Downward pass:
for l = 1 → H do

for all boxes j on target tree level l do
shift the LE of j’s parent to j itself using the free-space shifting (3.5).
collect interaction list contribution using the source box to target box translation operator in Eq. (3.28) while Tab

nm,νμ are computed using (3.41), 
(3.46) and forward recursion (3.48) for Sab

nm,i j .
end for

end for
Evaluate LEs:
for each leaf node (childless box) do

evaluate the LE at each particle location.
end for
Local Direct Interactions:
for i = 1 → N do

compute Eq. (2.18) of target particle i in the neighboring boxes using DE quadrature for Iab
00 (ρ, z, z′).

end for

L1b
nm =(−1)ne−imϕ1b

t

∞∫
0

λρ J−m(λρρ1b
t )

Z+
��′(zt

c, z′
1b)

λ�z
σ 1b

��′ (λρ)i−m P̂m
n

(λ�z

λ�

)
dλρ,

L2b
nm =(−1)me−imϕ2b

t

∞∫
0

λρ J−m(λρρ2b
t )

Z−
��′(zt

c, z′
2b)

λ�z
σ 2b

��′ (λρ)i−m P̂m
n

(λ�z

λ�

)
dλρ,

for b = 1, 2, where (ρab
s , ϕab

s ) and (ρab
t , ϕab

t ) are polar coordinates of r − rabc and rt
c − r′

ab
projected onto xy plane. 

Moreover, the M2L translation (3.29) can be simplified as

T 1b
nm,νμ =(−1)n D(1)

mμ(ϕ1b
st )

∞∫
0

λρ Jμ−m(λρρ1b
st )

Z+
��′(zt

c, z1b
c )

λ�z
Q νμ

nm (λρ)σ 1b
��′ (λρ)dλρ,

T 2b
nm,νμ =(−1)ν D(2)

mμ(ϕ2b
st )

∞∫
0

λρ Jμ−m(λρρ2b
st )

Z−
��′(zt

c, z2b
c )

λ�z
Q νμ

nm (λρ)σ 2b
��′ (λρ)dλρ,

(3.39)

where (ρab
st , φab

st ) is the polar coordinates of rc − rabc projected in xy plane, respectively, and

D(1)
mμ(ϕ) = iμ−mei(μ−m)ϕ, D(2)

mμ(ϕ) = (−1)m+μiμ−mei(μ−m)ϕ.

Next, defining integrals

I1b
nm,νμ(ρ, z, z′) =

∞∫
0

λρ Jμ−m(λρρ)
Z+

��′(z, z′)σ 1b
��′ (λρ)

λ�z
iμ−m Q νμ

nm (λρ)dλρ,

I2b
nm,νμ(ρ, z, z′) =

∞∫
0

λρ Jμ−m(λρρ)
Z−

��′(z, z′)σ 2b
��′ (λρ)

λ�z
iμ−m Q νμ

nm (λρ)dλρ,

(3.40)

we have
15
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Algorithm 2 3-D FMM for (2.11).
for � = 0 → L do

use classic FMM-Yukawa algorithm to compute 
 f ree
� (r�i), i = 1, 2, · · · , N� .

end for
for � = 0 → L − 1 do

for �′ = 0 → L − 1 do
use Algorithm 1 to compute 
11

��′ (r�i), i = 1, 2, · · · , N� .
end for
for �′ = 1 → L do

use Algorithm 1 to compute 
12
��′ (r�i), i = 1, 2, · · · , N� .

end for
end for
for � = 1 → L do

for �′ = 0 → L − 1 do
use Algorithm 1 to compute 
21

��′ (r�i), i = 1, 2, · · · , N� .
end for
for �′ = 1 → L do

use Algorithm 1 to compute 
22
��′ (r�i), i = 1, 2, · · · , N� .

end for
end for

F̃1b
nm(r, r1b

c ) = eimϕ1b
s√

4π
I1b
00,nm(ρ1b

s , z, z1b
c ), F̃2b

nm(r, r2b
c ) = (−1)n+meimϕ2b

s√
4π

I2b
00,nm(ρ2b

s , z, z2b
c ),

L1b
nm = (−1)n

√
4πe−imϕ1b

t I1b
nm,00(ρ

1b
t , zt

c, z′
1b), L2b

nm = (−1)m
√

4πe−imϕ2b
t I2b

nm,00(ρ
2b
t , z′

2b, zt
c),

T 1b
nm,νμ = (−1)nei(μ−m)ϕ1b

st I1b
nm,νμ(ρ1b

st , zt
c, z1b

c ), T 2b
nm,νμ = (−1)ν+m+μei(μ−m)ϕ2b

st I2b
nm,νμ(ρ2b

st , zt
c, z2b

c ).

(3.41)

The FMM demands efficient computation of the Sommerfeld-type integrals Iabnm,νμ defined in (3.40). These integrals 
are convergent when the target and source particles are not exactly on the interfaces of a layered medium. High order 
quadrature rules could be used for direct numerical computation at runtime. However, this becomes prohibitively expensive 
due to a large number of integrals needed in the FMM. In fact, O (p4) integrals are required for each source box to target 
box translation, where p is the truncation index of the ME in the algorithm. Moreover, the involved integrand decays more 
slowly as the order of the involved associated Legendre function increases.

The Sommerfeld-type integrals Iabnm,νμ involves Q νμ
nm (λρ), the product of two associated Legendre functions. This term 

can be simplified by expressing its polynomial part into Legendre polynomials. Define

cnm =
√

2n + 1

4π

(n − m)!
(n + m)! , a j

nm = (−1)n− j(2 j)!cnm

2n j!(n − j)!(2 j − n − m)! , (3.42)

and

bs
nm =

n∑
j=q

(−1)sa j
nm( j − r)!

s!( j − r − s)! , q = max
(⌈n + m

2

⌉
, s + r

)
. (3.43)

The derivation in [1] gives

P̂m
n

(λ�z

λ�

)
P̂μ

ν

(λ�′z
λ�′

)
=

n−r+ν−r′∑
s=0

C s
nνmμλ

|m|+|μ|+2s
ρ

( λ�

λ�z

)i( λ�′

λ�′z

) j
(3.44)

for all n, ν = 0, 1, · · · , and −n ≤ m ≤ n, −ν ≤ μ ≤ ν , where i = (n + |m|)( mod 2), j = (ν + |μ|)( mod 2), r = ⌊
(n +

|m|)/2
⌋
, r′ = ⌊

(ν + |μ|)/2
⌋

, and

C s
nνmμ =

min(s,n−r)∑
t=max(s−ν+r′,0)

τmτμbt
n|m|b

s−t
ν|μ|(|m| + |μ| + 2s)!

(iλ�)|m|+2t(iλ�′)|μ|+2(s−t)
, τν =

{
1, ν ≥ 0,

(−1)−ν, ν < 0.

Defining integrals

S1b
nm,i j(ρ, z, z′) =

∞∫
0

λn
ρ Jm(λρρ)Z+

��′(z, z′)√
(n + m)!(n − m)!

σ 1b
��′ (λρ)

λ�z

( λ�

λ�z

)i( λ�′

λ�′z

) j
dλρ,

S2b
nm,i j(ρ, z, z′) =

∞∫
λn
ρ Jm(λρρ)Z−

��′(z, z′)√
(n + m)!(n − m)!

σ 2b
��′ (λρ)

λ�z

( λ�

λ�z

)i( λ�′

λ�′z

) j
dλρ,

(3.45)
0
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for i, j = 0, 1, we have

Iabnm,νμ(ρ, z, z′) = iμ−m
n−r+ν−r′∑

s=0

C̃ s
nνmμSab

|m|+|μ|+2s+1,μ−m,i j(ρ, z, z′), (3.46)

where

C̃ s
nνmμ = √

(|m| − m + |μ| + μ + 2s + 1)(|m| + m + |μ| − μ + 2s + 1)C s
nνmμ.

Another important technical aspect in the implementation of the FMM involves scaling. Since Mab
nm ≈ (|r − rabc |)n , Labnm ≈

(|rab−rt
c|)−n , a naive use of the expansions (3.22) and (3.23) in the implementation of FMM is likely to encounter underflow 

and overflow issues. To avoid this, one need to scale various expansions, replacing Mab
nm by Mab

nm/Sn and Labnm by Labnm · Sn

where S is the scaling factor. To compensate for this scaling, we replace F̃ab
nm (r, rabc ) with F̃ab

nm (r, rabc ) · Sn , T ab
nm,n′m′ with 

T ab
nm,n′m′ · Sn+n′

. Usually, the scaling factor S is chosen to be the size of the box in which the computation occurs. Therefore, 
the following scaled Sommerfeld-type integrals

SnS1b
nm,i j(ρ, z, z′) = Sn

∞∫
0

λn
ρ Jm(λρρ)Z+

��′(z, z′)√
(n + m)!(n − m)!

σ 1b
��′ (λρ)

λ�z

( λ�

λ�z

)i( λ�′

λ�′z

) j
dλρ,

SnS2b
nm,i j(ρ, z, z′) = Sn

∞∫
0

λn
ρ Jm(λρρ)Z−

��′(z, z′)√
(n + m)!(n − m)!

σ 2b
��′ (λρ)

λ�z

( λ�

λ�z

)i( λ�′

λ�′z

) j
dλρ,

(3.47)

for all n ≥ m ≥ 0 are computed in the implementation. Recalling the recurrence formula

Jm+1(z) = 2m

z
Jm(z) − Jm−1(z),

and defining an = √
n(n + 1), we have

SnSab
nm+1,i j(ρ, z, z′) =

∞∫
0

(λρ S)n Jm+1(λρρ)Z±
��′(z, z′)√

(n + m + 1)!(n − m − 1)!
σ ab

��′ (λρ)

λ�z

( λ�

λ�z

)i( λ�′

λ�′z

) j
dλρ

= 2mS

an+mρ

∞∫
0

(λρ S)n−1 Jm(λρρ)Z±
��′(z, z′)√

(n + m − 1)!(n − m − 1)!
σ ab

��′ (λρ)

λ�z

( λ�

λ�z

)i( λ�′

λ�′z

) j
dλρ

−an−m

an+m

∞∫
0

(λρ S)n Jm−1(λρρ)Z±
��′(z, z′)√

(n + m − 1)!(n − m + 1)!
σ ab

��′ (λρ)

λ�z

( λ�

λ�z

)i( λ�′

λ�′z

) j
dλρ,

which directly gives the following forward recurrence formula

SnSab
nm+1,i j = 2m

an+m

S

ρ
Sn−1Sab

n−1,m,i j − an−m

an+m
SnSab

nm−1,i j, n ≥ m ≥ 1. (3.48)

We adopt the forward recurrence when

2m

an+m

S

ρ
< 1, (3.49)

or equivalently

n > 2

√
m2 S2

ρ2
+ 1 − m − 1

2
. (3.50)

Otherwise, the backward recursion

Sn−1Sab
n−1m,i j = an+m

2m

ρ

S
SnSab

nm+1,i j + an−m

2m

ρ

S
SnSab

nm−1,i j (3.51)

will be adopted instead.
Let us first consider the computation of the integrals involved in the M2L translation matrices T ab

nm,n′m′ . For any polariza-

tion source box in the interaction list of a given target box, one will see that ρab
ts is either 0 or larger than the box size S . 

If ρab
ts = 0, we directly have
17
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Fig. 3.3. Boxes in the source (shadowed) and target tree for the computation of 
22
��′ (r�i).

SnSab
nm,i j(0, z, z′) = 0, ∀n ≥ m > 0 (3.52)

for any z and z′ so the integrals are convergent. In all other cases, we have ρab
ts ≥ S and the forward recurrence formula 

(3.48) is always used as we have

2m√
(n + m + 1)(n + m)

<
1√
3

<
ρab

ts

S
, n ≥ m + 1, m ≥ 1.

If the distribution of particles in the problem is not uniform, adaptive tree structure is usually used in the implementation 
of the FMM for a better performance. In these adaptive versions, computation of LE coefficients and potential directly using 
(3.25) and ME (3.22) will be performed if some conditions are satisfied (cf. [33]). In the computation of F̃ab

nm (r, rabc ) · Sn and 
Labnm · Sn , ρab

s and ρab
t could be arbitrarily small. Therefore, the backward recurrence formula (3.51) is required. Nevertheless, 

these direct computations are rarely used even in the FMM with an adaptive tree structure.
Given a truncation number p, the initial values {Sab

n0,i j(ρ, z, z′)}2p+3
n=0 and {Sab

n1,i j(ρ, z, z′)}2p+3
n=1 for the forward recursion 

(3.48) or the initial values {Sab
(2p+3)m,i j(ρ, z, z′)}2p+3

m=0 for the backward recursion (3.51) are computed by using the DE quadra-
ture (cf. [34,35]) rule along the positive real axis for ρ ≤ z + z′ . As in [2], the contour are changed to the positive imaginary 
axis when ρ > z + z′ .

Remark 3.3. In the computation of a general reaction component 
ab
��′ (r�i), i = 1, 2, · · · , N� , the targets and equivalent 

polarization sources will locate at different sides of the material interface z = d�−1 (if a = 1) or z = d� (if a = 2). Therefore, 
most, if not all, target boxes on the leaves of the target tree are far away from all source boxes on the leaves of the source 
tree. Usually, no direct interactions between sources and targets are calculated once the size of the smallest box is smaller 
than the minimum distance between sources and the corresponding interface. That means the time consuming computation 
of integrals Iab00 (ρ, z) for direct interaction is rarely performed in the FMM for reaction components. By the same reason, 
the interaction list of most target boxes in the target tree are empty. Therefore, the number of M2L translations in the FMM 
for reaction components are much less than that in the normal FMM for free space problems. To make it clear, we give 
an illustration in Fig. 3.3 using a 2-D tree structure for reaction component 
22

��′(r�i). The number of sources boxes in the 
interaction list of all target boxes in the fourth level of the target tree are counted (see the numbers in the 3rd subplot in 
Fig. 3.3). The discussions above explain the fact that the FMMs for reaction components are much more efficient than FMM 
for free space components when the number of sources and targets is large enough.

4. Numerical results

In this section, we present numerical results to demonstrate the performance of the proposed FMM for linearized 
Poisson-Boltzmann equation in layered media. This algorithm is implemented based on an open-source adaptive FMM pack-
age DASHMM [33] on a workstation with two Xeon E5-2699 v4 2.2 GHz processors (each has 22 cores) and 500 GB RAM 
using the GNU GCC compiler version 6.3.

We test the problem in a three-layer medium with interfaces placed at z0 = 0, z1 = −1.2. Particles are set to be uni-
formly distributed in irregular regions which are obtained by shifting the domain determined by r = 0.5 − a + a

8 (35 cos4 θ −
30 cos2 θ + 3) with a = 0.1, 0.15, 0.05 to new centers (0, 0, 0.6), (0, 0, −0.6) and (0, 0, −1.8), respectively (see Fig. 4.1(a) 
for the cross section of the regions). All particles are generated by keeping the uniform distributed particles in a larger 
cube within the corresponding irregular regions. In the layered medium, the dielectric constants {ε�}2

�=0 and the inverse 
Debye–Huckel lengths {λ�}2

�=0 are set to be

ε0 = 1.0, ε1 = 8.6, ε2 = 20.5, λ0 = 1.2, λ1 = 0.5, λ2 = 2.1.

Let 
̃�(r�i) be the approximated values of 
�(r�i) calculated by the proposed FMM. Define �2 and maximum errors as

Err�
2 :=

√√√√√√√√
N�∑

i=1
|
�(r�i) − 
̃�(r�i)|2

N�∑ |
�(r�i)|2
, Err�

max := max
1≤i≤N�

|
�(r�i) − 
̃�(r�i)|
|
�(r�i)| . (4.1)
i=1
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Fig. 4.1. Performance of FMM for a three layers media problem.

Table 4.1
Comparison of CPU time with multiple cores (p = 5).

Cores N Time for all {
 f ree
� }2

�=0 Time for all {
ab
��′ }

1

618256 40.36 17.06
1128556 86.72 62.47
1862568 269.05 74.93
2861288 292.42 81.47

6

618256 7.653 3.613
1128556 16.29 12.50
1862568 50.72 15.52
2861288 54.85 17.27

36

618256 2.042 1.639
1128556 4.308 4.459
1862568 14.94 6.104
2861288 15.21 7.673

For an accuracy test, we first consider N = 912 + 640 + 1296 particles in the irregular domains in three layers see Fig. 4.1
(a). Convergence rates against p are depicted in Fig. 4.1(b). Next, we test the FMM for up to 3 millions particles, and 
the CPU time for the computation of all three free space components {
 f ree

� (r�i)}2
�=0, three selected reaction components 

{
11
00, 


11
11, 


22
22} and all sixteen reaction components 
ab

��′ (r�i) with truncation p = 5 are compared in Fig. 4.1(c). It shows 
that all of them have an O (N) complexity while the CPU time for the computation of reaction components has a much 
smaller linear scaling constant due to the fact that most of the equivalent polarization sources are well-separated from the 
targets. CPU time with multiple cores is given in Table 4.1 and it shows that, due to the small amount of CPU time in 
computing the reaction components, the speedup of the parallel computing is mainly decided by the computation of the 
free space components. Here, we only use parallel implementation within the computation of each component. Note the 
computation of each component is independent of others, so it is straightforward to implement a version of the code, which 
computes all components in parallel.

5. Conclusion

In this paper, we have presented a fast multipole method for charge interactions under the Poisson–Boltzmann potential 
in a 3-D layered electrolyte-dielectric media. The electrostatic potential of interest has been decomposed into a free space 
and four types of reaction field components. By extending the Funk-Hecke formula to pure imaginary wave numbers, we are 
able to develop the ME of O (p2) terms for the far field of the reaction components, which are associated with polarization 
sources at specific locations for each type of the reaction field components. M2L translation operators are also developed 
for the reaction components. As a result, the traditional FMM framework can be applied to both the free space and re-
action components once the polarization sources are used together with the original targets. Due to the separation of the 
polarization sources and the corresponding target positions by a material interface, the computational cost for the reaction 
component is only a fraction of that of the FMM for the free space component. Hence, computing the potential in layered 
media basically costs the same as that for the electrostatic interactions in the free space.

For the future work, we will carry out error estimate of the FMM for the linearized Poisson–Boltzmann potential in 3-D 
layered media, which will require an error analysis for the MEs and M2L operators for the reaction components. The com-
bination of the FMM with integral method for efficient simulation of ion channel transport in hybrid models as discussed 
in Section 2 will be naturally our next research work.
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Appendix A. Reaction densities for a three layers medium

For a three layers medium with material parameters {ε�, λ�}2
�=0, the expressions for the reaction densities are given as 

follows.

• Source in the top layer:

σ 11
00 (λρ) = (ε0λ0z − ε1λ1z)(ε1λ1z + ε2λ2z) + (ε0λ0z + ε1λ1z)(ε1λ1z − ε2λ2z)e2d1λ1z

2ε0κ(λρ)
,

σ 11
10 (λρ) =ε0λ1z(λ1λ1z − ε2λ2z)ed1λ1z

ε0κ(λρ)
, σ 21

10 (λρ) = ε0λ1z(ε1λ1z + ε2λ2z)

ε0κ(λρ)
,

σ 21
20 (λρ) =2ε0ε1λ1zλ2zed1λ1z

ε0κ(λρ)
.

• Source in the middle layer:

σ 11
01 (λρ) =ε1λ0z(ε1λ1z − ε2λ2z)ed1λ1z

ε1κ(λρ)
, σ 12

01 (λρ) = ε1λ0z(ε1λ1z + ε2λ2z)

ε1κ(λρ)
,

σ 11
11 (λρ) = (ε1λ1z − ε2λ2z)(ε1λ1z + ε0λ0z)

2ε1κ(λρ)
,

σ 12
11 (λρ) = (ε1λ1z − ε2λ2z)(ε1λ1z − ε0λ0z)ed1λ1z

2ε1κ(λρ)
,

σ 21
11 (λρ) = (ε1λ1z − ε2λ2z)(ε1λ1z + ε0λ0z)ed1λ1z

2ε1κ(λρ)
,

σ 22
11 (λρ) = (ε1λ1z + ε2λ2z)(ε1λ1z − ε0λ0z)

2ε1κ(λρ)
,

σ 21
21 (λρ) =ε1λ2z(ε0λ0z + ε1λ1z)

ε1κ(λρ)
, σ 22

21 (λρ) = ε1λ2z(ε1λ1z − ε0λ0z)ed1λ1z

ε1κ(λρ)
.

• Source in the bottom layer:

σ 12
02 (λρ) =2ε1λ1zε2λ0zed1λ1z

ε2κ(λρ)
,

σ 22
12 (λρ) =ε2λ1z(ε1λ1z − ε0λ0z)ed1λ1z

ε2κ(λρ)
, σ 12

12 (λρ) = ε2λ1z(ε0λ0z + ε1λ1z)

ε2κ(λρ)
,

σ 22
22 (λρ) = (ε0λ0z + ε1λ1z)(ε2λ2z − ε1λ1z) + (ε1λ1z − ε0λ0z)(ε1λ1z + ε2λ2z)e2d1λ1z

2ε2κ(λρ)
,

where

κ(λρ) = 1 [(ε0λ0z + ε1λ1z)(ε1λ1z + ε2λ2z) + (ε0λ0z − ε1λ1z)(ε1λ1z − ε2λ2z)e2d1λ1z ].
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Appendix B. Addition theorems

The following presents the addition theorems, which have been used for the derivation of the ME, LE and corresponding 
shifting and translation operators of the free space Green’s function (cf. [6,7]). Here, we adopt the definition

Y m
n (θ,ϕ) = (−1)m

√
2n + 1

4π

(n − m)!
(n + m)! Pm

n (cos θ)eimϕ := P̂m
n (cos θ)eimϕ, (B.1)

for the spherical harmonics where Pm
n (x) (resp. P̂m

n (x)) is the associated (resp. normalized) Legendre function of degree n
and order m. The so-defined spherical harmonics constitute a complete orthogonal basis of L(S2) (where S2 is the unit 
spherical surface) and

〈Y m
n , Y m′

n′ 〉 = δnn′δmm′ , Y −m
n (θ,ϕ) = (−1)mY m

n (θ,ϕ).

It is worthy to point out that the spherical harmonics with different scaling constant defined as

Ỹ m
n (θ,ϕ) =

√
(n − |m|)!
(n + |m|)! P |m|

n (cos θ)eimϕ = im+|m|
√

4π

2n + 1
Y m

n (θ,ϕ), (B.2)

have been frequently adopted in published FMM papers (e.g., [11,6,7]).
By the relations

kn(z) = −π

2
inh(1)

n (iz), in(z) = i−n jn(iz), (B.3)

and the addition theorems of spherical Bessel functions (cf. [28,29]), we have the following modified addition theorems (cf. 
[36]).

Theorem B.1. Let r2 = r1 + b. Then

k0(λr2) = 4π

∞∑
n=0

n∑
m=−n

(−1)nkn(λb)Y m
n (α,β)in(λr1)Y m

n (θ1,ϕ1) (B.4)

for r1 < b, and

k0(λr2) = 4π

∞∑
n=0

n∑
m=−n

(−1)nin(λb)Y m
n (α,β)kn(λr1)Y m

n (θ1,ϕ1) (B.5)

for r1 > b.

Theorem B.2. Let r2 = r1 + b. Then

in(λr2)Y m
n (θ2,ϕ2) =

∞∑
ν=0

ν∑
μ=−ν

Ŝmμ
nν (b)iν(λr1)Y μ

ν (θ1,ϕ1), (B.6)

where

Ŝmμ
nν (b) = 4π

∞∑
q=0

(−1)ν−n+m+qiq(λb)Y μ−m
q (α,β)G(n,m;ν,−μ;q), (B.7)

with G(n, m; ν, −μ; q) being the Gaunt coefficient.

Theorem B.3. Let r2 = r1 + b. Then

kn(λr2)Y m
n (θ2,ϕ2) =

∞∑
ν=0

ν∑
μ=−ν

Smμ
nν (b)iν(λr1)Y μ

ν (θ1,ϕ1), (B.8)

for r1 < b, and

k(1)
n (λr2)Y m

n (θ2,ϕ2) =
∞∑ ν∑

(−1)ν−n+m Ŝmμ
nν (b)k(1)

ν (λr1)Y μ
ν (θ1,ϕ1), (B.9)
ν=0 μ=−ν
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for r1 > b, where ̂Smμ
nν (b) is given by (B.7) and

Smμ
nν (b) = 2π2(−1)m+ν+1

∞∑
q=0

kq(λb)Y μ−m
q (α,β)G(n,m;ν,−μ;q), (B.10)

and G(n, m; ν, −μ; q) is a Gaunt coefficient.
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