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Recapitulation

I Dealing with Endogeneity: Instrumental Variables (IV)
I Static Panel Data
I Instrumental Variables in Dynamic Panel Data: Anderson-Hsiao, Arellano-Bond,

Arellano-Bover
I Stationarity
I Panel Stationarity



Vector Autoregression

[
yt
zt

]
=

[
b11 b12
b21 b22

] [
yt−1
zt−1

]
+

[
ε1,t
ε2,t

]
(1)

yt = b11yt−1 + b12zt−1 + ε1,t

zt = b21yt−1 + b22zt−1 + ε2,t

I Captures mutual dependencies between time series
I Intuitive Forecasting on all variables (ARDL/DL only allows forecasts for yi,t)
I Takes account of the usual endogeneity between economic processes
I No simultaneity bias because the “other” variable appears in lags only.



VAR: Assumptions

I yt and zt are dynamically related, but not contemporaneously related.
I Error terms ε1,t and ε2,t are contemporaneously uncorrelated
I yt and zt are stationary

⇒ Estimation by OLS is efficient, consistent, and SUR estimation does not improve
efficiency. Standard Errors and Covariances can be estimated in standard form.
AIC/BIC are appropriate for lag selection.



VAR with exogenous variables

Adopt Lütkepohl notation, because it underlies the corresponding STATA package
(makes it easier to understand help files etc.)

yt = AYt−1 + B0xt + ut (2)

where yt the vector of endogenous variables, A the matrix of AR coefficients, B0 the
matrix of exogenous coefficients, xt the vector of exogenous covariates and ut a vector
of white noise disturbances (“innovations”).

Intercepts are included in xt .



VAR: Lütkepohl

Figure 1: Helmut Lütkepohl: “I see that you have not adopted full matrix notation yet.”



VAR: Advanced Lütkepohl Notation

Y = BZ + U (3)

Y = (y1, ..., yt) Y is K × T
B = (A,B0) B is K × (Kp + M)

Z =
[
Y0 ... YT−1
x1 ... xT

]
Z is (Kp + M)× T

U = (u1, ..., uT ) U is K × T

In STATA, this model is estimated using iterative seemingly unrelated regressions
(SUR).



Lag Selection for VAR

As for single equation auto-regressions, a variety of goodness of fit criteria can be
calculated for VAR.

I Akaike’s Final Prediction Error (FPE): the determinant of the average squared
prediction error matrix, normalized by ((1 + m/N)/(1−m/N))K (m is the
average number of coefficients between all models, K is the number of equations).

I Akaike Information Criterion (AIC): −2 LL
T + 2tP

T where LL is the log-likelihood of
the model, and tP is the total number of parameters in the evaluated model.

I Schwartz’ Bayesian Information Criterion (BIC): −2 LL
T + ln(T )

T tP
I Hannan-Quin Information Criterion (HQIC): −2 LL

T + 2ln[ln(T )]
T tP

The corresponding STATA command is varsoc, it can be used pre- and
postestimation.



Multivariate Impulse Response Function

Impulse Response Functions (IRF) estimate how a time series reacts to a disturbance
in the error terms.

Suppose that the estimated error structure ε is related to an underlying structural
shock vector ut .

εt = Aut (4)
E(ut , u′t) = I

A is related to the error covariance matrix Σ:

Σ = E [εtε′t ]
= E(Autu′tA′)
= AE [utu′t ]A′

= AA′

Because Σ̂ can be estimated in the regression (e.g. via VAR), Â can be retrieved.

In STATA, you can create post-estimation IRFs using irf create and irf graph.



Granger Causality

Granger Causality is not causality. Rather it measures which event happens first: zt is
said to “Granger cause” yt if (zt−1, ..., zt−p) contains information that helps predict yt
better than only (yt−1, ..., yt−p) does.

A simple way of testing Granger Causality is to compare the tests for joint
insignificance with and without (zt−1, ..., zt−p) in predicting yt . The corresponding
STATA command is vargranger.

Figure 2: Clive Granger: However, several writers stated that “of course, this is not real causality,
it is only Granger causality.”



Vector Error Correction

Let xt and yt be two first difference stationary processes, i.e. ∆y and ∆x are
covariance stationary.

According to Granger and Newbold (1974), OLS regression of y on x provides
spurious results, i.e. t-tests suggest significance of the coefficients where there is none
in the data generating process. Phillips (1986) shows this is due to the asymptotic
OLS properties not holding for first difference stationary processes.

If yt and xt cointegrate, a regression of ∆yt on ∆xt is also misspecified.

Remember cointegration:

I xt , yt are first difference stationary
I et = yt − α− βxt is covariance stationary



Engle-Granger VECM: Intuition

Re-Define the relationship between yt and xt as:

yt + βxt = εt εt = εt−1 + ξt (5)
yt + αxt = vt vt = ρvt−1 + ζt |ρ| < 1 (6)

Here ξt and ζt are i.i.d. but mutually correlated processes responsible for the
co-integration. εt is I(1), so consequently, so must be yt and xt .

Define δ = (1− ρ)/(α− β) and zt = yt + αxt .

∆yt = βδzt−1 + η1,t (7)
∆xt = −δzt−1 + η2,t (8)

In zt = 0, yt and xt are in equilibrium, and coefficients on zt−1 show how yt and xt
react to deviations from equilibrium.



Engle-Granger: Nobel Prize Winners 2002

Figure 3: Engle and Granger: Winning the Nobel Medal in 2003 for being really careful about
which relationships they call “causal” or spurious.



Engle-Granger VECM: General Case

Any VAR can be written and estimated as a VECM.

yt = vt + A1yt−1 + A2yt−2 + ...+ Apyt−p + εt (9)

∆yt = vt + Πyt−1 +
p−1∑
i=1

Γi∆yt−i + εt (10)

One last re-writing for Johansen maximum likelihood estimation:

∆yt = αβ′yt−1 +
p−1∑
i=1

Γi∆yt−i + v + δt + εt (11)

The important STATA commands are varsoc for lag selection, vecrank for the
number of cointegrating equations and vec for the estimation.



Auto-Regressive Distributed Lag Models

I Model the relationship between variables in a single-equation setup
I Error Correction Representation (EC) is equivalent to co-integration of

non-stationary variables
I EC representation is used to test for a long-run cointegrating relationship
I This allows for testing without knowing if the co-integrating variables are I(0) or

I(1) themselves
I Examples: Wages and Labor Productivity, Foreign Direct Investment and Capital

Intensity



Engle-Granger (1987) Test for long-run relationships

Assume (yt , xt)′ is a vector of I(1) variables

First Step: Run levels OLS yt = α1 + x ′tβ + vt

Test if vt is stationary (e.g. Adjusted Dickey Fuller or KPSS test)

Second Step: Estimate an error correction model and include lagged residuals v̂t−1 (if
they are stationary):

∆yt = α2 + γv̂t−1 +
p−1∑
i

φyi∆yt−i +
p−1∑
j

φxj∆xt−j + ut

Test whether −1 ≤ γ < 0.



Engle-Granger (1987): Downsides

variables must be I(1) and tested beforehand.

In short panels, first-step OLS estimates may be biased because of omitted short-run
dynamics (no xt as covariate), which influences the second step.

Standard significance testing in the first step is not available because asymptotic
distribution of β̂ is non-normal.



Engle-Granger (1987): Application

use usa.dta, clear
gen date = tq(1984q1) + _n-1
tsset date

dfuller f
dfuller D.f // f is integrated of order 1

dfuller b
dfuller D.b // b is integrated with order 1

reg b f
predict e, resid
dfuller e, noconstant
tsline e



Engle-Granger (1987): Results

. dfuller e, noconstant

Dickey-Fuller test for unit root Number of obs = 103

---------- Interpolated Dickey-Fuller ---------
Test 1% Critical 5% Critical 10% Critical

Statistic Value Value Value
------------------------------------------------------------------------------
Z(t) -3.188 -2.600 -1.950 -1.610



Engle-Granger (1987): Results 2



Possible Models for long-run relationships

(https://davegiles.blogspot.com/2013/06/ardl-models-part-ii-bounds-tests.html)

If one wants to understand the dynamic relationship between two variables, there is a
number of possible cases:

I Both are I(0), i.e. stationary. Then an OLS on the variable levels will be unbiased
and efficient.

I The variables are integrated of the same order (eg. I(1)) but not cointegrated.
Appropriate differentiation (i.e. first difference for first order integration) allows
for OLS estimation.

I The variables are integrated of the same order and co-integrated. Then a level
OLS provides the long-run relationship, whereas an Error Correction Model
(ECM) (which can be estimated using OLS) represents the short-run dynamics.

I Data might be of different orders and/or co-integrated (“things are not as clear
cut”). ARDL analyzes both short-run dynamics and long-run relationships.

https://davegiles.blogspot.com/2013/06/ardl-models-part-ii-bounds-tests.html


ARDL: Pre-Requisites and Procedure

I none of the variables must be I(2)
I The model is written as an unrestricted ECM

∆yt = α+
∑p−1

i β1∆yt−i +
∑p−1

j β2∆xt−j + γ1yt−1 + γ2xt−1 + εt
I an appropriate lag structure is determined, e.g. using information criteria
I test for serially independent errors
I test for dynamic stability
I Pesaran-Shin-Smith Bounds test for long-run relationship (later in semester)
I estimate long-run “levels” model and short-run ECM



ARDL in STATA

. ardl eur us, aic //Use Akaike Information Criterion to decide on optimal model structure

ARDL(4,0) regression

Sample: 424 - 614 Number of obs = 191
F( 5, 185) = 3004.38
Prob > F = 0.0000
R-squared = 0.9878
Adj R-squared = 0.9875

Log likelihood = -75.256023 Root MSE = 0.3646

------------------------------------------------------------------------------
eur | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
eur |
L1. | 1.055477 .0698777 15.10 0.000 .9176176 1.193337
L2. | .0733688 .1042555 0.70 0.482 -.1323138 .2790513
L3. | .1138271 .1057457 1.08 0.283 -.0947953 .3224496
L4. | -.2835677 .0690439 -4.11 0.000 -.4197823 -.147353

|
us | .0526194 .0142578 3.69 0.000 .0244906 .0807482

_cons | -.0077393 .0609519 -0.13 0.899 -.1279894 .1125109
------------------------------------------------------------------------------



ARDL in STATA 2: Interpretation

(http://repec.org/usug2018/uk18_Kripfganz.pdf)

yt = α0 + α1t +
p∑
i

φiyt−i +
q∑
j

β′j xt−j + ut

I Coefficients represent the long-term relationship between variable levels
I Include auto-regressive terms
I Include a time trend (trend stationarity)

http://repec.org/usug2018/uk18_Kripfganz.pdf


ARDL in STATA 3 (ECM)

. ardl eur us, bic ec

ARDL(4,0) regression

Sample: 424 - 614 Number of obs = 191
R-squared = 0.2943
Adj R-squared = 0.2753

Log likelihood = -75.256023 Root MSE = 0.3646

------------------------------------------------------------------------------
D.eur | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
ADJ |

eur |
L1. | -.0408945 .0103098 -3.97 0.000 -.0612345 -.0205546

-------------+----------------------------------------------------------------
LR |

us | 1.286711 .3021187 4.26 0.000 .6906697 1.882751
-------------+----------------------------------------------------------------
SR |

eur |
LD. | .0963718 .0681707 1.41 0.159 -.0381202 .2308637

L2D. | .1697405 .0678472 2.50 0.013 .0358869 .3035941
L3D. | .2835677 .0690439 4.11 0.000 .147353 .4197823

|
_cons | -.0077393 .0609519 -0.13 0.899 -.1279894 .1125109

------------------------------------------------------------------------------



ARDL in STATA 4: Interpretation of the Conditional EC Formulation

∆yt = α0 + α1t + α2(yt−1 − θxt) +
p−1∑
i=1

ψyi∆yt−i +
q−1∑
i=0

ψ′xi∆xt−i + ut

I α2 is the speed-of-adjustment parameter, measuring how fast the system returns
to equilibrium. It is denoted as a negative (“ADJ”).

I α2 = 1−
∑p

j=1 φj (from the level-ARDL regression).

I θ =

∑q
j=0

βj

α2
denotes the long run coefficients from the same first step. (“LR”)

I ψ just denote the short-run coefficients from the second, error-correcting step
(“SR”)



ARDL in STATA 5: Alternative Error Correction Representation

. ardl eur us, bic ec1

ARDL(4,0) regression

Sample: 424 - 614 Number of obs = 191
R-squared = 0.2943
Adj R-squared = 0.2753

Log likelihood = -75.256023 Root MSE = 0.3646

------------------------------------------------------------------------------
D.eur | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
ADJ |

eur |
L1. | -.0408945 .0103098 -3.97 0.000 -.0612345 -.0205546

-------------+----------------------------------------------------------------
LR |

us |
L1. | 1.286711 .3021187 4.26 0.000 .6906697 1.882751



ARDL in STATA 6: Alternative Error Correction Representation

-------------+----------------------------------------------------------------
SR |

eur |
LD. | .0963718 .0681707 1.41 0.159 -.0381202 .2308637

L2D. | .1697405 .0678472 2.50 0.013 .0358869 .3035941
L3D. | .2835677 .0690439 4.11 0.000 .147353 .4197823

|
us |

D1. | .0526194 .0142578 3.69 0.000 .0244906 .0807482
|

_cons | -.0077393 .0609519 -0.13 0.899 -.1279894 .1125109
------------------------------------------------------------------------------



ARDL in STATA 7: Alternative Error Correction Representation

∆yt = α0 + α1t + α2(yt−1 − θxt−1) +
p−1∑
i=1

ψyi∆yt−i + ω′∆xt−1 +
q−1∑
i=1

ψ′xi∆xt−i + ut

I ∆xt−1 is isolated with coefficient ω (“SR”: “D1”)
I Thus, the long-run dynamics only include lag levels (“LR”: “L1”).


