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Abstract 

Models have been developed to predict stroke outcomes (e.g., mortality) in attempt to provide better guidance for 

stroke treatment. However, there is little work in developing classification models for the problem of unknown time-

since-stroke (TSS), which determines a patient’s treatment eligibility based on a clinical defined cutoff time point (i.e., 

<4.5hrs). In this paper, we construct and compare state-of-the-art machine learning methods to classify TSS<4.5hrs 

using magnetic resonance (MR) imaging features. We also propose a deep learning model to extract hidden repre-

sentations from the MR perfusion-weighted images and demonstrate the improvement of the classification by incor-

porating these additional imaging features. Finally, we discuss a strategy to visualize the learned features from the 

proposed deep learning model. The cross-validation results show that the classifiers perform the best with the com-

bined baseline and deep learning derived imaging features. Our classifier achieved an area under the curve of 0.68, 

which improves significantly over current clinical methods (0.58), demonstrating the potential benefit of using ad-

vanced machine learning methods in TSS classification.  

1 Introduction 

Stroke is the primary cause of long-term disability and the fifth leading cause of death in the United States, with 

approximately 795,000 Americans experiencing a new or recurrent stroke each year [1]. Several treatments exist for 

stroke, including intravenous and intra-arterial tissue plasminogen activator (IV/IA tPA), and mechanical throm-

bectomy (clot retrieval). Guidelines support selecting tPA treatment administration only within a maximum of 4.5 

hours from stroke symptom onset due to the increased risk of hemorrhage for longer times since stroke (TSS). How-

ever, about 30% of the population have unknown time since stroke (TSS), making these patients ineligible for treat-

ment with tPA despite the fact that their strokes may have actually occurred within the treatment window [2]. 

Predictive models have been made in attempt to predict stroke patient outcomes (e.g., mortality) using clinical varia-

bles (e.g., age) and imaging features (e.g., lesion volume) [3–5]. Additional algorithms are under development that 

attempt to predict patient response to a specific treatment [6,7]. While much work has been done in predicting stroke 

patient outcome and treatment response, there is limited work in determining TSS. Studies are underway to investigate 

the use of a simple imaging feature, a mismatch pattern between magnetic resonance (MR) diffusion weighted imaging 

(DWI), on which stroke pathophysiology is immediately visible, and fluid attenuated inversion recovery (FLAIR) 

imaging, on which strokes are not visible for 3-4 hours [8–12], to estimate TSS. The mismatch pattern is known as 

“DWI-FLAIR mismatch.” While this method is the current state-of-the-art for determining eligibility for thrombolytic 

therapy in cases of unknown TSS, computing mismatch is a difficult task that requires extensive training and for which 

clinician agreement has been found to be only moderate, leading to less accurate performance [13–15]. Separately, 

limited work has been done in utilizing MR perfusion-weighted image (PWIs) for TSS classification, yet it may con-

tain information that encodes TSS [16].  

Machine learning models have been applied widely and can achieve good classification performance for problems in 

the healthcare domain because of their ability to learn and utilize patterns from data to make prediction [17]. Recent 

developments in deep learning [18] have drawn significant research interest because of the technique’s ability to au-

tomatically learn feature detectors specific to the data for classification and prediction tasks, achieving state-of-the-

art performance in challenging problems (e.g., ImageNet [19], video classification [20], etc.). In this work, we hy-

pothesize that machine learning models can be used to better classify TSS by learning latent representative features 

from MR images. We developed a deep learning algorithm based on an autoencoder architecture [21] to extract im-

aging features (i.e., deep features) from PWIs and evaluate the effectiveness of four machine learning classifiers with 

and without the deep features to classify TSS. We performed retrospective testing on images from stroke patients by 

censoring the known TSS and comparing performance to published results using DWI-FLAIR mismatch.  



2 Background and Related Work 

“DWI-FLAIR mismatch” is defined as the presence of visible acute ischemic lesion on DWI with no traceable hyper-

intensity in the corresponding region on FLAIR imaging (Figure 1) [8]. The work of using DWI-FLAIR mismatch 

was first introduced by Thomalla et al. [13], in which they used the mismatch pattern to identify stroke patients with 

less than 3-hour stroke onset. The method achieved a high specificity of 0.93 and a high positive predictive value 

(PPV) of 0.94, with a low sensitivity of 0.48 and a low negative predictive value (NPV) of 0.43. Similar studies were 

carried out by Aoki et al. [22] and Petkova et al. [23], and both achieved a high sensitivity (0.83 and 0.90 respectively) 

and a high specificity (0.71 and 0.93 respectively), but Aoki et al. reported a moderate PPV of 0.64.  

Work has also been done in using DWI-FLAIR mismatch to classify TSS<4.5hrs, which is the current clinical cutoff 

time for IV tPA treatment. Ebinger et al. [24] developed a mismatch model and it achieved a specificity of 0.79 and a 

sensitivity of 0.46. Later, a large multicenter study was done by Thomalla et al. [25] to assess the ability of DWI-

FLAIR mismatch. The mismatch method achieved a specificity of 0.78 and a PPV of 0.83, with a sensitivity of 0.62 

and a NPV of 0.54. The study interobserver agreement of acute ischemic lesion visibility on FLAIR imaging was 

moderate (kappa = 0.569). Emeriau et al. [26] also investigated the use of mismatch pattern and the model achieved 

a PPV of 0.88, but a sensitivity of 0.55, a specificity of 0.60, and an  NPV of 0.19. The AUC of using mismatch 

patterns in the identification of TSS was 0.58. There are ongoing large multicenter clinical trials, such as the WAKE-

UP trial in the European Union [10] and the MR WITNESS trial in the United States [27], to further investigate the 

use of DWI-FLAIR mismatch in guiding treatment decisions for patients with unknown TSS. 

The above preliminary work using DWI-FLAIR mismatch demonstrates a potential opportunity for using image anal-

ysis to classify TSS. However, existing studies all suffer from the use of relatively simplistic features and models [13–

15]. Furthermore, it has been proposed that DWI-FLAIR mismatch may be too stringent, and therefore miss individ-

uals who could benefit from thrombolytic therapy [29]. In this work, we develop machine learning models to classify 

acute ischemic stroke patient TSS using MR imaging features. We proposed a deep learning model, which is based 

on an autoencoder architecture [21], to extract latent representative imaging features (deep features) from PWIs. We 

compared the performance of various models (stepwise multilinear regression, support vector machines, random forest, 

and gradient boosted regression tree) to classify TSS with and without the deep features, and determined the best 

model for classifying TSS. We also provided a visualization strategy to interpret the deep features, and correlate them 

to the input images. 

3 Methods 

3.1 Dataset 

In a study approved by the UCLA institutional review board (IRB), clinical stroke data was transferred from our 

institution’s data repository into a REDCap [30] database. The database holds 1,059 acute stroke patients from 1992 

to 2016 who have received at least one or more of the following revascularization treatments: IV tPA, IA tPA, or 

mechanical thrombectomy. The corresponding patient pre-treatment MR PWIs, apparent diffusion coefficient (ADC) 
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Figure 1. Example of DWI-FLAIR mismatch. LEFT: presence of DWI-FLAIR mismatch (TSS = 1 hr); 

RIGHT: absence of DWI-FLAIR mismatch (TSS = 5.25 hrs).  



images, DWIs and FLAIR images were obtained from the UCLA Medical Center picture archiving and communica-

tion system (PACS).   

For this study, we define the following inclusion criteria: 1) patients must experience acute ischemic stroke due to 

middle cerebral artery (MCA) occlusion; 2) patients must have a recorded time for which the stroke symptoms are 

first observed; 3) patients must have a recorded time for which the first imaging is obtained before treatment; and 4) 

patients must have a complete imaging set of PWIs, DWIs, FLAIRs, and ADCs. Patients’ TSS was calculated by 

subtracting the time at which the stroke symptoms were first observed from the time at which the first imaging was 

obtained. We followed the existing DWI-FLAIR TSS classification task [26] to binarize the TSS into two classes: 

positive (1; <=4.5hrs) and negative (0; >4.5hrs). After applying the inclusion criteria, 105 patients were obtained (83 

positive class; 22 negative class). The patient characteristics are summarized in Table 1. This cohort subset was used 

to build the models for TSS classification.  

3.2 Image Preprocessing  

Intra-patient registration of pre-treatment PWI, DWI, ADC and FLAIR images was performed with a six degree of 

freedom rigid transformation using FMRIB’s Linear Image Registration Tool (FLIRT) [31]. Gaussian filters were 

applied to remove spatial noise and a multi-atlas skull-stripping algorithm [32] was used to remove skulls. Different 

tissue type masks (e.g., cerebrospinal fluid (CSF), gray/white matter) were identified using Statistical Parametric 

Mapping 12 (SPM12) [33] and CSF was excluded from this analysis. The sparse perfusion deconvolution toolbox 

(SPD) [34] and the ASIST-Japan Perfusion mismatch analyzer (PMA) were used to perform perfusion parameter map 

generation and arterial input function (AIF) identification (see Section 3.2.2).  

3.3 Feature Generation  

3.3.1 Baseline MR imaging feature  

PWIs are spatio-temporal imaging data (4D) that show the flow of a gadolinium-based contrast bolus into and out of 

the brain over time. They contain concentration time curves (CTCs) for each brain voxel that describe the flow of the 

contrast (i.e. signal intensity change) over time. Perfusion parameter maps [35] can be derived from PWIs that describe 

the tissue perfusion characteristics, including cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit 

time (MTT), time-to-peak (TTP), and time-to-maximum (Tmax). Briefly, CBV describes the total volume of flowing 

blood in a given volume of a voxel and CBF describes the rate of blood delivery to the brain tissue within a volume 

of a voxel. By the Central Volume Theorem, CBV and CBF can be used to derive MTT, which represents the average 

time it takes the contrast to travel through the tissue volume of a voxel. TTP is the time required for the CTC to reach 

its maximum, which approximates the time needed for the bolus to arrive at the voxel with delay caused by brain 

vessel structure. Tmax is the time point where the contrast residue function reaches its maximum, which approximates 

the true time needed for the bolus to arrive at the voxel. 

Intensity features (e.g., DWI voxel intensity, CBF voxel value) are often generated for voxel-wise stroke tissue out-

come prediction [36]. Yet, generating intensity features based on entire brain MR images may be less descriptive to 

the stroke pathophysiology and less predictive of TSS because often stroke occurs in only one cerebral hemisphere. 

Table 1. Acute Ischemic Stroke patient sub-cohort characteristics. 

  Patients (n = 105) 

Demographics 
Age 69.6±21.0 

Gender 43 males 

Clinical Presentation 

Time since stroke (continuous) 158±108 mins 

NIHSS† 12.9±8.08 

Atrial fibrillation 1 (28); 0 (77)  

Hypertension 1 (62); 0 (43) 

Prediction label Time since stroke (binary) <=4.5hrs (83); >4.5hrs (22) 

† NIHSS = NIH Stroke Scale International; scale: 0 (no stroke symptoms) - 42 (severe stroke) 

 

 

 



Therefore, we generated the imaging features only within regions that have Tmax>6s [37], which capture both the 

dead tissue core and the salvageable tissue that can possibly be saved by treatments. Feature generation involves  two 

steps: 1) perfusion parameter maps were calculated using the SPD toolbox [34], and the region of interest was defined 

by Tmax>6s; and 2) the average intensity value was calculated within the region of interest for each image (DWI, 

ADC, FLAIR, CBF, CBV, TTP, and MTT), resulting in a set of data with seven intensity features. All the features 

were then standardized independently to zero mean with a standard deviation of 1. These baseline imaging features 

were used in building the classifiers for TSS classification. 

3.3.2 Deep feature Generation 

3.3.2.1 Deep Autoencoder (AE) 

We hypothesized that a deep learning approach can automatically learn feature detectors to extract latent features from 

PWIs that can improve TSS classification. We therefore implemented a deep autoencoder (deep AE) that is based on 

a stacked autoencoder [21] to learn the hidden features from PWIs (Figure 2). Each PWI voxel CTC, with a size of 1 

x t (t = time for perfusion imaging), is transformed by the deep AE into k new feature representations that can represent 

complex voxel perfusion characteristics. The learning of these features is automatic and it is achieved by the hierar-

chical feature detectors, which are sets of weights that are learned in training via backpropagation. The deep AE 

consists of an encoder and a decoder. The encoder consists of two components: 1) an input layer; and 2) fully-con-

nected layers, in which input neurons are fully-connected to each previous layer’s output neuron. The encoder is 

connected to the decoder, which follows reversely the same layer patterns of the encoder. The encoder output (i.e., the 

middle layer output of the deep AE) is the k new feature representations that can be used for TSS classification (in 

this work, 𝑘 = 4).  

The proposed network is trained via an unsupervised learning procedure in which the decoder output is the recon-

struction of the encoder input. The network is optimized to obtain weights, Θ, that minimize the binary cross entropy 

loss between the input, I, and the reconstructed output, 𝐼(Θ), across the samples with size n [38]: 

 
𝑎𝑟𝑔𝑚𝑖𝑛𝛩 𝑙𝑜𝑠𝑠 =

1

𝑛
∑[(𝐼𝑖 ∗ log(𝐼(Θ)) + (1 − 𝐼𝑖) ∗ 𝑙𝑜𝑔(1 − 𝐼(Θ))]

𝑛

𝑖=1

 (Eq. 1) 

3.3.2.2 Training data generation 

As previous work suggests [39], regional information corresponding to a voxel’s surroundings can improve classifi-

cation in MR images. Therefore, a small region was included in each training voxel, leading to a size of 3 x 3 x t patch 

(width x height x time; the z-dimension is omitted; t = 64 in our dataset), where the center of the patch is the voxel of 

interest for the deep AE feature learning. Each training patch was also coupled with its corresponding arterial input 

 

 

Figure 2. Deep AE feature generation. Training patches (with a size of 3 x 3 x 64) were randomly generated from 

PWIs. Each patch was coupled with its AIF (obtained from PMA toolbox) and the combined matrix was unrolled 

into a 1D vector that would be fed into the deep network. The proposed deep AE consisted of an encoder and de-

coder, in which the encoder output would be the new compact representation for the input. The encoder outputs of 

all PWI voxels were aggregated into the final four AE feature activation maps. A region of interest mask 

(Tmax>6s) was then applied to the new feature maps to generate the mean intensity values (i.e., deep features).  

 



function patch [40], which describes the contrast agent input to the tissue in a single voxel, to improve the learning of 

hidden features. Each training patch was unrolled into a 1D vector, leading to a size of  1152 × 1. The 1D data were 

used to train the deep AE. In total, 105,000 training data were generated by sampling randomly and equally from all 

the patient PWIs. 

3.3.2.3 Deep AE Configuration and Implementation 

We observed that standard batch gradient descent did not lead to a good convergence of the deep AE during training. 

We suspect that this may be due to an inappropriate learning rate (default: 0.01), which typically requires careful 

tuning. Therefore, we optimized the deep AE using Adam, which computes adaptive learning rates during training 

and has demonstrated superior performance over other methods [41]. An early-stopping strategy was applied to im-

prove the learning of deep AE weights and prevent overfitting, where the training would be terminated if the perfor-

mance did not improve over five consecutive epochs (max number of training epochs: 50). The deep AE was imple-

mented in Torch7 [38], and the training was done on an NIVIDIA Tesla K40 GPU. We explored different architectures 

of the deep AE, including different numbers of encoder hidden layers (from 1-3) and different numbers of hidden 

units (factor of 2, 4, and 6). Ten-fold patient-based cross-validation was performed to determine the optimal architec-

ture for the deep AE (with an input size of 1152 × 1 and 𝑘 = 4 new feature representations). Once the deep AE was 

trained, we used it to learn four new AE feature maps from each patients’ PWIs by aggregating the deep AE encoder 

output of all voxels. Then, average intensity values from AE feature maps (denoted as deep features) were generated 

in the regions of interest following the same procedure as described in Section 3.2.1.  

3.4 Machine Learning models for TSS classification 

We constructed and compared the performance of four machine learning methods for TSS classification: stepwise 

multilinear regression (SMR), support vector machine (SVM), random forest (RF), and gradient boosted regression 

tree (GBRT). Briefly, SMR is a stepwise method for adding and removing features from a multilinear model based on 

their statistical significance (e.g., F-statistics) to improve model performance [42]. SVM is a supervised learning clas-

sification algorithm that constructs a hyperplane (or set of hyperplanes) in a higher dimensional space for classification 

[43]. RF is an ensemble learning method in which a multitude of decision trees are randomly constructed and the 

classification is based on the mode of the classes output by individual trees [44]. GBRT is an ensemble learning 

method similar to RF, in which a multitude of decision trees are randomly generated, yet these trees are added to the 

model in a stage-wise fashion based on their contribution to the objective function optimization [45].  
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Figure 3. An overview of steps to predict TSS (<4.5 hrs). The SPD toolbox was used to generate perfusion pa-

rameter maps (e.g., Tmax) from the PWIs. A region of interest mask was defined on Tmax>6s region. Then, the 

mask was applied to the perfusion maps and MR images (DWI, ADC, and FLAIR) to generate average intensity 

values. A total of seven baseline average intensity features were used to train the classifiers to predict 

TSS<4.5hrs. Classifier performances (with and without the addition of deep features) were compared.  

 



Different machine learning methods may not perform equally on the same feature set. Also, different model hyperpa-

rameter (e.g., a SVM’s hyperparameter, C) contribute differently to the classification. Evaluating model performance 

without hyperparameter tuning may lead to decreased predictive power due to over-fitting, especially on small and 

imbalanced datasets. Therefore, we performed leave-one-patient-out validation for evaluation, with a nested cross-

validation for tuning model hyperparameters, following the proposed method [46]. A feature selection method, stabil-

ity selection [47], was also applied to select the optimal feature subset before cross-validation to determine the best 

features for modeling (except for SMR because it has built-in feature selection method). This feature selection method 

produces a more fair feature comparison by aggregating different feature selection results from random subsampling 

of data and feature subsets. An overview of steps is shown in Figure 3. The SVM and RF were developed using the 

Python Scikit-learn library [48]. The SMR and GBRT were developed using  MATLAB and the XGBoost library [49] 

respectively. 

4 Results and Discussion  

4.1 Deep AE training 

The optimal model architecture for the proposed deep AE is 1152-192-4-4-192-1152, with an average mean square 

error (MSE) of 0.675 ± 0.246 (average deep AEs MSE is 1.29 ± 0.755). The small MSE indicates the reconstruction 

of input signal is efficient with the encoder-decoder structure, and the encoder output is a compact representation for 

the input. Figure 4 shows the MSE along epoch of each fold for the optimal deep AE. All the models across folds 

converged within first ~10 epochs, with minimal weight adjustments in the following epochs as indicated by small 

changes in the MSE. Most of the models were stopped within 25 epochs (except the model in fold 9). The early 

convergence and small MSE changes indicate less variability across folds and the deep AEs perform consistently.   

4.2 TSS classification 

Leave-one-patient-out validation (see Section 3.3) was performed to evaluate each classifier. The model performance 

was measured via AUC and model bias via F1-score (Table 2). Youden’s index [50] was used to determine optimal 

ROC cutoff points, which were used to calculate the F1-score, sensitivity, specificity, true predictive value (TPV), 

and negative predictive value (NPV) (Table 3).  

 

Figure 4. MSE vs. epoch for each fold of the validation for the optimal deep AE (in logarithmic scale for better 

visualization). All the models across folds converged within ~10 epochs, with minimal adjustments in the follow-

ing epochs as indicated by small MSE change.  
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With the additional deep features, three out of four classifiers (SMR, RF, and GBRT) showed improvement in AUC. 

The increase (~10%) of AUC after adding the deep features demonstrated the usefulness of these deep features and 

their association with the TSS. Considering the F1-score and the sensitivity, SMR and SVM showed improvement 

with the additional deep features. This observation could be explained by the increase of specificity and TPV of the 

models, which had decrement in the F1-score and sensitivity. That is, the models trained with the deep features were 

less biased to classify as positive (i.e., TSS<4.5hrs), resulting in the increase of specificity and TPV. Although this 

led to decrease in sensitivity, the models could then maintain the balance between keeping both the sensitivity and 

specificity high, which is important to acute stroke patients. When the stroke onset time is greater than 4.5hrs, a patient 

will have a higher chance of complications (e.g., hemorrhage), making the risk greater than the benefit of receiving 

IV tPA treatment. If a TSS classification model is biased towards the positive class (i.e., higher sensitivity), many 

high-risk patients that are ineligible for treatments would theoretically receive IV tPA. Overall, the models trained 

with the baseline imaging features and deep features demonstrated a higher AUC. 

Figure 5 shows the receiver operating characteristic curves (ROCs) of the classifiers trained with the baseline features 

and the deep features, with a reference ROC based on the DWI-FLAIR mismatch method is shown for comparison 

[26]. Among all the classifiers, the SMR trained with baseline imaging features and the deep features performed the 

best, with an AUC of 0.683. All the classifiers generally performed better with the addition of the deep features. These 

classifiers performed better than AUC=0.60 (as compared to reference AUC of 0.58), demonstrating the ability of 

using imaging features with machine learning models to classify TSS. Comparing to the reference mismatch method, 

SMR achieved higher sensitivity (0.69 vs 0.55) and NPV (0.33 vs 0.19) while maintaining similar specificity (0.59 vs 

0.60) and TPV (0.864 vs 0.88). Also, SMR had the best performance among all the classifiers. 

The models trained with only the baseline imaging features had low performance. The best model was the SMR with 

an AUC of 0.570, and other models had lower AUCs (<0.55). This may due to the insufficient baseline features for 

classifier construction (i.e., only mean intensity features across MR images and perfusion maps were used). In future 

work, feature generation techniques, such as descriptive statistics, will be investigated to generate more features for 

TSS classification. Although these models were less predictive, models trained with additional deep features showed 

significant improvement in TSS classification. Additionally, several earlier animal studies have shown that the brain 

perfusion status (e.g., CBV) may change along the stroke onset time [51,52]. This evidence supports our hypothesis 

that PWIs contain information encoding TSS, and that the proposed deep AE extracted hidden features in PWIs are 

predictive of TSS. 

Table 2. The AUC and F1-score of different classifiers on predicting TSS with baseline imaging features and 

with/without deep features. B (baseline features), B+AE (baseline and deep features). 

 AUC F1-score 

Models B B+AE B B+AE 

(1) SMR 0.570 0.683 0.608 0.765 

(2) SVM 0.470 0.640 0.632 0.859 

(3) RF 0.529 0.651 0.847 0.818 

(4) GBRT 0.526 0.623 0.862 0.681 

 
Table 3. The sensitivity, specificity, TPV, and NPV of different classifiers on predicting TSS with baseline imag-

ing features and with/without deep features. B (baseline features), B+AE (baseline and deep features). 

 sensitivity specificity TPV NPV 

Models B B+AE B B+AE B B+AE B B+AE 

(1) SMR 0.458 0.687 0.818 0.591 0.905 0.864 0.286 0.333 

(2) SVM 0.506 0.880 0.636 0.364 0.840 0.839 0.255 0.444 

(3) RF 0.857 0.750 0.333 0.667 0.837 0.900 0.368 0.400 

(4) GBRT 0.893 0.560 0.286 0.667 0.833 0.870 0.400 0.275 

 



 

4.3 Deep Feature Visualization  

To understand what the deep AE learned to extract in the encoder output layer, we applied the visualization technique, 

activation maximization [53], on the encoder output layer and correlated the results to the four deep AE activation 

maps (denoted as ae1, ae2, ae3, and ae4). Briefly, every input CTC will cause a hidden neuron unit to output a value 

(i.e., activation). Some input CTCs will give a higher activation while other inputs will give a lower activation. High 

activation values indicate the presence of relevant features in the input (e.g., wide and high peak) that can “excite” the 

hidden units [53]. For each hidden unit of the optimal deep AE encode layer, we performed activation maximization 

to obtain the top m signals (𝒙∗) from the training data that cause the most activations: 

 𝒙∗ = {𝑥}, 𝑗 ∈ 𝑓𝑖𝑟𝑠𝑡𝑚𝑜𝑓𝑆𝑜𝑟𝑡(ℎ𝑖(𝜃, 𝑥)),  (Eq. 2) 

where Sort(∙) is an ascending operation, and ℎ𝑖(𝜃, 𝑥) is the activation of the ith hidden unit. Figure 5 shows the four 

deep AE activation maps and their corresponding average curves of the top-50 (i.e., m=50) input CTCs. Our results 

show that different hidden units appear to capture different type of input signals. For example, the ae1 map shows 

higher activations (brighter) in the acute stroke region (left brain; high Tmax), and the corresponding average top-50 

  

Figure 5. The ROCs of different classifiers trained with both the baseline imaging features and the deep features for 

TSS prediction. A reference ROC [26] based on the DWI-FLAIR mismatch method is included for comparison. All 

classifiers (except SVM) demonstrate higher AUC as compared to the reference. The SMR model performed the best 

with an AUC of 0.68). This result suggests that machine learning models trained with imaging features can be used 

to better predict TSS. Note that the calculation of the AUC in the reference is slightly different to the standard method; 

the authors stated that the AUC was still calculated to evaluate the DWI-FLAIR mismatch on the prediction of TSS. 

We followed the authors proposed way and verified our models still performed better (not shown here). In here, we 

reported the standard AUC. 

 



CTC (blue curve) has delayed and low concentration, which matches the visualization, i.e., the hidden unit detects the 

stroke-affected CTCs. In contrast, the ae3 map shows low activations (darker) in the acute stroke region and the 

corresponding average top-50 CTC (red curve) has early sharp and high peak. We also calculated the Pearson corre-

lation coefficient between the deep features generated from these activation maps and TSS. The ae3 deep feature 

showed statistically significant correlation with TSS (p-value<0.05). These visualization and correlation results 

demonstrated that the learned features from the optimal deep AE contained information that was predictive of TSS.  

Understanding deep learning representations is challenging because it requires making sense of non-linear computa-

tions performed over many network weights [54]. Our visualization result is the first step to attempt to understand 

what the deep AE is learning. This is important for using deep learning model in medical image analysis because deep 

learning is often a “black-box” approach that yields superior, but hard-to-interpret results. However, the visualization 

result in this work is not conclusive. Further research is required to understand what the deep network is learning. One 

next step we plan to pursue is to apply different visualization techniques (e.g., deconvolution [55]) on the learned 

networks and perform statistical tests to draw correlations between them to an observation (e.g., small TSS). 

5 Conclusion and Future work 

In this paper, we showed that SMR, SVM, RF, and GBRT models were able to classify TSS, with SMR achieving the 

highest AUC. We proposed a deep AE architecture to extract representative features from PWIs and showed that 

adding deep features boosted the classifiers’ performance, showing the potential application of deep learning feature 

extraction techniques in TSS classification. In addition, we utilized a visualization method to interpret the features 

learned in the deep AE and discussed the possible research opportunity in understanding deep learning models for 

medical images.  

We now discuss a few limitations and areas of future work. First, there are roughly 1,100 patients available in our 

dataset, but the majority of them were missing one or more MR images and were therefore not included in this analysis. 

Our next step will be looking into multimodal and denoising deep learning frameworks that are capable of handling 

missing data. Second, we will explore different feature generation techniques (e.g., descriptive and histogram statistics) 

to enlarge the feature set for training the classifiers. Third, we plan to explore several visualization techniques, such 

as deconvolution [55] and gated backpropagation [56] in order to understand the deep AE’s features and to draw both 

visual and statistical correlations to TSS classification. Finally, TSS<4.5hrs is the current clinical cutoff time for IV 

tPA treatment, yet this may not be an absolute time point in which a stroke patient can benefit from treatment because 

of changing brain pathophysiology [57]. We therefore plan to investigate and extend our models to more classes (e.g., 

a ±0.5hr boundary), rather than just TSS<4.5hrs/TSS≥4.5hrs.  

 

Figure 5. Visualization of the four deep AE activation feature maps (from the encoder output layer) and the 

corresponding average curve of the top-50 input CTCs. Based on visual interpretation, different hidden unit cap-

tured different type of input CTCs. For example, hidden unit 1 (for ae1) captured CTCs with delayed and low 

concentration (red curves) as indicated by higher activations (brighter) in the acute stroke region (high Tmax). 
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