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Abstract— Perfusion magnetic resonance (MR) images are often 

used in the assessment of acute ischemic stroke to distinguish 

between salvageable tissue and infarcted core. Deconvolution 

methods such as singular value decomposition have been used to 

approximate model-based perfusion parameters from these 

images. However, studies have shown that these existing 

deconvolution algorithms can introduce distortions that may 

negatively influence the utility of these parameter maps. There is 

limited previous work on utilizing machine learning algorithms to 

estimate perfusion parameters. In this work, we present a novel bi-

input convolutional neural network (bi-CNN) to approximate four 

perfusion parameters without using an explicit deconvolution 

method. These bi-CNNs produced good approximations for all 

four parameters, with relative average root-mean-square errors 

(ARMSEs) ≤ 5% of the maximum values. We further demonstrate 

the utility of the estimated perfusion maps for quantifying the 

salvageable tissue volume in stroke, with more than 80% 

agreement with the ground truth. These results show that deep 

learning techniques are a promising tool for perfusion parameter 

estimation without requiring a standard deconvolution process. 

I. INTRODUCTION  

Stroke is the second most common cause of death 
worldwide and remains a leading cause of long-term disability. 
Recanalization of the occluded vessel is the objective of current 
therapies and can lead to recovery if it is achieved early enough. 
However, recanalization is also associated with higher risks of 
hemorrhagic transformation especially in the context of poor 
collateral flow and longer time to treatment. While safety time 
windows have been established based on population studies, a 
given individual patient may be unnecessarily excluded from a 
high-impact treatment opportunity. Therefore, there is a need to 
better utilize available imaging data to evaluate the risks and 
benefits of an intervention toward a more individualized 
treatment recommendation. 

Magnetic resonance (MR) and computed tomography (CT) 
perfusion imaging are widely used for quantification of cerebral 
perfusion in the clinical diagnosis of acute stroke. The benefit of 
a potential endovascular intervention can be assessed using an 
estimation of the hypoperfused tissue volume [1] that could be 
salvaged by a successful recanalization and the resulting 
reperfusion. Model-based perfusion parameters such as cerebral 
blood volume (CBV), cerebral blood flow (CBF), time-to-
maximum (Tmax), and mean transit time (MTT) can be derived 
from MR and CT perfusion and used to estimate the volume of 

salvageable brain tissue. To be able to compute these 
physiological parameters (CBF, CBV, Tmax, and MTT) from 
perfusion imaging, the concentration time curve (CTC(t)) 
observed at any voxel in the collected raw data must be 
processed. Because the injected contrast bolus is not a perfect 
impulse and varies across acquisitions, it is generally assumed 
that it follows the Indicator-Dilution Theory [2], i.e., the 
observed CTC of a voxel is the convolution of the arterial input 
function, AIF(t), with a residue function, R(t), scaled by CBF: 

 𝐶𝑇𝐶(𝑡) = CBF ∙  (𝐴𝐼𝐹(𝑡) ∗ 𝑅(𝑡)), 

where R(t) represents the fraction of observed contrast 
remaining in the vasculature (within a voxel) at a certain time t, 
and AIF(t) describes the contrast input to the vasculature 
(within a voxel) at a certain time t. The perfusion parameters 
(CBF, CBV, Tmax, MTT) are defined from R(t) (Fig. 1), and 
cannot be directly observed from the imaging data.  

The most straightforward techniques to obtain R(t) are 
based on deconvolution of the CTC with the AIF using singular 
value decomposition (SVD). Because the acquired 
concentration curves are generally very noisy, this 
deconvolution may produce residue functions that are not 
physiologically plausible and subject to distortions that can 
underestimate the perfusion parameters. Recognizing this 
limitation, several groups have developed alternative 
techniques that provide more robust estimates of perfusion 
parameters. Gaussian Process deconvolution [3] uses Gaussian 
priors for individual time points of the residue function. This 
produces a smoother estimate of the residue function. A smooth 
estimate of the residue function can also be obtained using 

 
Fig. 1. An illustration of the tissue concentration time curve (CTC), arterial 

input function (AIF), and residue function (R) corresponding to a voxel. The 

CTC and AIF are observable from the raw perfusion images, whereas R is 
obtained via deconvolution of CTC and AIF. The perfusion parameters (CBV, 

CBF, Tmax, MTT) are normally defined in the R(t).  
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Tikhonov regularization where an oscillation penalty is applied 
in a least squares solution [4] or using Gamma-variate 
functions. Bayesian estimation of perfusion parameters [5] has 
also received substantial attention and has been shown to 
successfully handle higher levels of noise at the cost of  longer 
computation time. 

In this work, we present a novel alternative solution to 
estimate perfusion parameters based on recognizing patterns 
from data. The proposed model is a bi-input convolutional 
neural network (bi-CNN) that takes in the signal of interest (i.e., 
CTC) and the AIF to produce estimated perfusion parameter 
values. Here, we apply the bi-CNN to estimate four perfusion 
parameters: CBV, CBF, Tmax, and MTT.  Our results show that 
the bi-CNN estimations are comparable to the existing 
techniques, demonstrating that CNNs are capable of learning 
rich temporal feature filters that can extract important patterns 
from the data to make accurate parameter estimations. To the 
best of our knowledge, our work is the first to leverage deep 
learning techniques in the area of perfusion parameter 
estimation. This work introduces an alternative method that has 
the potential to improve the current quantitative analysis of 
perfusion images (e.g., increased robustness to noise), which 
may ultimately impact the stroke medical decision process and 
improve patient outcomes. 

II. RELATED WORK 

A. Deconvolution Methods 

Several methods have been developed to estimate perfusion 
parameters using deconvolution. The standard technique is the 
singular value decomposition (SVD), which is a deconvolution 
technique to solve (1) in order to obtain R(t) from which the 
perfusion parameters are defined. Several variations of SVD 
have been proposed. Delayed-corrected SVD (dSVD) [6] was 
developed to perform deconvolution while doing delay 
correction for contrast delay. Another common delay-insensitive 
method is the block-circulant SVD (bSVD) [7], which employs 
a block-circulant decomposition matrix to remove the causality 
assumption built into standard SVD. Additionally, an oscillation 
index (OI) can be used as a threshold in an iterative process of 
repeating bSVD deconvolution to identify the best residue 
function; this approach is known as oscillation-index SVD 
(oSVD) [7]. Other less common techniques include Gaussian 
process deconvolution [3], Tikhonov regularization [4], and 
Bayesian approximation [5]. Although a number of techniques 
have been developed to approximate perfusion parameters, none 
have taken a machine learning approach. Our method departs 
from prior work in that the estimation relies purely on 
identifying patterns (features) from the inputs, with feature 
filters that are learned automatically from the input perfusion 
data. Our approach is inspired by the many recent successes in 
deep learning algorithms. 

B. Feature Learning in Convolutional Neural Networks 

Many state-of-the-art classification records have been 
achieved by deep convolutional neural networks (CNNs) [8]. 
The success of these systems is heavily based on the powerful 
capability of CNNs to learn feature filters from pixels in 
different settings, such as images [9], [10], and videos [11], 
[12]. These data-driven features are learned by hierarchical 

convolutional feature filters, which have been shown to be 
effective in detecting local characteristics that improve 
classification [13]. This inspires us to adopt CNNs for perfusion 
parameter estimation. By generating a large amount of training 
data from the brain (a brain perfusion image typically contains 
more than ten thousand voxels), it is possible to train a well-
tuned deep CNN for parameter estimations. To the best of our 
knowledge, this is the first time stroke MR perfusion 
parameters are estimated by deep neural networks.  

III. PROBLEM FORMULATION 

In this section, we will briefly describe the biological 
derivation and definition of the four perfusion parameters of 
interest (CBV, CBF, MTT, Tmax), and their applications in 
stroke. We will illustrate the use of standard singular value 
decomposition (SVD) to obtain the residue function for the 
perfusion parameters. We will define the estimation task and 
discuss the proposed approach in the next section.  

A. Indicator-Dilution Theory in Tissue Perfusion 

In MR perfusion imaging, a bolus of contrast dye is injected 
intravenously into a patient during continuous imaging, 
allowing for the concentration of contrast to be measured for 
each voxel over time as the bolus is disseminated throughout 
the body. In order to reason with this temporal data, model-
based perfusion parameters have been defined and are 
calculated to create parameter maps of the brain. These 
parameters are useful for identifying potentially salvageable 
tissue that can be saved by treatment [1]. Typically, tissue 
perfusion is modeled by the Indicator-Dilution theory [2], 
where the measured tissue concentration time curve (CTC) of a 
voxel is directly proportional to the convolution of the arterial 
input function (AIF) and the residue function (R), as scaled by 
CBF in (1). This model follows the principle of the conservation 
of mass, meaning that the amount of contrast entering the voxel 
is equal to the sum of the contrast leaving the voxel and the 
contrast within the voxel. To obtain the perfusion parameters, 
we need to first derive the residue function (R) using SVD.  

B. Singluar Value Decomposition (SVD) 

Equation (1) can be expressed in integral form [7] as: 

 𝐶𝑇𝐶(𝑡) = CBF ∫ 𝐴𝐼𝐹(𝑡)𝑅(𝑡 − 𝜏)𝑑𝜏
𝑡

0
, 

In perfusion images, CTC(t) and AIF(t) can be observed 
from the raw signals. To obtain R(t) by SVD, (2) is first 
discretized to: 

 𝑐𝑡𝑐(𝑡𝑗) =  ∆𝑡 ∙ CBF ∙ ∑ 𝐴𝐼𝐹(𝑡𝑖) ∙ 𝑅(𝑡𝑗 − 𝑡𝑖)
𝑗
𝑖=0 , 

where ∆𝑡 is the sampling frequency. Equation (3) may then be 
formulated as an inverse matrix problem: 

 [

𝑐𝑡𝑐(𝑡0)

𝑐𝑡𝑐(𝑡1)
⋮

𝑐𝑡𝑐(𝑡𝑁−1)

] = ∆𝑡 [

𝐴𝐼𝐹(𝑡0)

𝐴𝐼𝐹(𝑡1)
⋮

𝐴𝐼𝐹(𝑡𝑁−1)

0
𝐴𝐼𝐹(𝑡0)

⋮
𝐴𝐼𝐹(𝑡𝑁−2)

⋯
⋯
⋱
⋯

0
0
⋮

𝐴𝐼𝐹(𝑡0)

] ×

                                     [

𝑅(𝑡0)

𝑅(𝑡1)
⋮

𝑅(𝑡𝑁−1)

] ∙ CBF, 
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 𝒄 = 𝑨 ∙ 𝒃, 

where c represents the CTC(t), A represents the AIF(t), and b 
represents the R(t) (constants are not shown for simplification). 
Using SVD, we can decompose A:  

 𝑨 = 𝑼 ∙ 𝑺 ∙ 𝑽𝑻, 

 𝑨−𝟏 =  𝑽 ∙ 𝑾 ∙ 𝑼𝑻, 

where U and V are orthogonal matrices and S is a non-negative 
square diagonal matrix, W=1/S along the diagonals and zero 
elsewhere. Then, b (R(t)) can be obtained as following: 

 𝒃 =  𝑽 ∙ 𝑾 ∙ 𝑼𝑻 ∙ 𝒄 . 

C. Perfusion Parameter Definition 

Four parameters (CBV, CBF, MTT, Tmax) can be defined 
from R(t). CBV describes the total volume of flowing blood in 
a given volume of a voxel. It is equal to the area under the curve 
of R(t). CBF describes the rate of blood delivery to the brain 
tissue within a volume of a voxel, and is the constant scaling 
factor of the ratio between the CTC and the convolution of the 
arterial input function (AIF) and the residue function in (1). It 
is equal to the maximum value of the residue function. By the 
Central Volume Theorem, CBV and CBF can be used to derive 
MTT, which represents the average time it takes the contrast to 
travel through the tissue volume of a voxel. Tmax is the time 
point where the R(t) reaches its maximum. It approximates the 
time needed for the bolus to arrive at the voxel. The 
mathematical expressions of these parameters are listed in the 
following: 

 CBV =  ∫ 𝑅(𝑡)𝑑𝑡 
∞

0
. 

 CBF = max(𝑅(𝑡)) . 

 MTT =
CBV

CBF
 . 

 Tmax = arg max𝑡  (𝑅(𝑡)) . 

These parameters are important to characterize the 
underlying tissue. A patient with arterial occlusion and 
ischemic stroke normally has a substantial drop in CBF and 
CBV, and a higher Tmax in the affected brain volume distal to 
the blood vessel blockage. At first, the affected brain volume 
maybe still be salvageable by treatment, but irreversible 
damage occurs over several hours due to insufficient blood 
supply. Thresholds have been established for these perfusion 
parameters that define the volume of dead tissue core and the 
under-perfused but potentially salvageable tissue [14], [15].  

D. The Estimation Task 

Our estimation task is to estimate the four perfusion 
parameters (CBV, CBF, MTT, Tmax) for a voxel, given its 
CTC and AIF. We propose a pattern recognition model for this 
task in the form of a novel bi-input convolutional neural 
network (bi-CNN), which takes the two inputs (CTC, AIF) and 
generates an estimated perfusion value for a voxel. Separate bi-
CNNs were trained to estimate each perfusion parameter. The 
overall estimation task is defined as: 

 𝑣 = 𝑓(𝐴𝐼𝐹, 𝐶𝑇𝐶), 

where v is the estimated value, and f(∙) is the bi-CNN with the 
trained weights. The bi-CNN is trained with thousands of 
training patches to learn important features from the input data 
to make an approximation. 

IV. APPROACH 

A. Training Data Definition 

Each training example (voxel patch) consists of a pair of the 
CTC and its AIF. A CTC or AIF is a one dimensional vector 
with a size of 1 x t, where t is the number of time point (in this 
work, t = 70). As previous work suggests [16], regional 
information corresponding to a voxel’s surroundings can 
improve prediction in MR images. Therefore, a small region is 
included in each training voxel, resulting in a size of 3 x 3 x t 
patch (width x height x time; the z-dimension is omitted), where 
the center of the patch is the voxel of interest for estimation.  

B. Bi-input Convolutional Neural Network (bi-CNN) 

The bi-CNN (Fig. 2) consists of three components: (1) 
convolution, (2) maps stacking, and (3) fully-connected. In the 
convolution, a CTC and its AIF are convolved independently 
via multiple convolutional layers (i.e., two convolution chains), 
where temporal filters are learned. Each convolution chain 
follows a denoising architecture [17] that attempts to remove 
artifacts (e.g., noise, distortion) that are often seen in the input 
perfusion signals, which is important to identify fine-grained 
features from CTC and AIF signals that help estimation. As 
suggested [17], a simple signal with artifacts model can be 
defined as: 

 𝑦 = 𝑥 ∗ 𝑘, 

where y is the observed 1D signal (instead of a 2D image), x is 
the original artifact-free signal,  and k is the convolution kernel 
that is caused by the artifacts. When we apply the Fourier 
transform operator, 𝐹(∙), with Tikhonov regularizer, x can be 
expressed as: 

 𝑥 = 𝐹−1 (
1

𝐹(𝑘)
{

|𝐹(𝑘)|2

|𝐹(𝑘)|2+
1

𝑆𝑁𝑅

}) ∗ 𝑦 = 𝑘∗ ∗ 𝑦, 

where SNR is the signal to noise ratio and k* is the pseudo 
inverse kernel. The new representation of x can be further 
expanded into a matrix representation by the kernel separability 
theorem, where k* is decomposed into 𝑘∗ = 𝑼 ∙ 𝑺 ∙ 𝑽𝑇 . This 
leads to a new representation of x: 

 𝑥 = 𝑘∗ ∗ 𝑦 = ∑ 𝑠𝑗 ∙ 𝑢𝑗𝑗 ∗ (𝑣𝑗
𝑇 ∗ 𝑦), 

where 𝑢𝑗 and 𝑣𝑗 are the jth columns of U and V respectively, and 

sj is the jth singular value. This new expression shows that the 
original artifact-free signal, x, can be obtained via the weighted 
sum of separable 1D filters [17]. This leads to the design of a 
convolution chain where two separated 1D convolutions are 
performed (L1 to L2, and L2 to L3), with filter size of 1 x 1 x 
36 and 1 x 1 x 35 respectively. We add a convolutional layer 
(L3 to L4) after the denoising architecture to learn filters for 
detecting the spatial contributions of neighboring voxels. The 
output feature maps of the convolution chains are then stacked 
together in the maps stacking layer (L5), resulting in a matrix 
with a size of 64 x 2 x 2 x 1. It is then connected to two fully-
connected layers where hierarchical features are learned to 
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correlate the AIF and CTC derived features. The output of the 
network (L8) is the estimated parameter value. The training 
optimization of the network is to obtain network weights, Θ, 
that minimize the mean squared loss between the true value, V, 

and the estimated value, 𝑉̂(Θ), across the samples with size n: 

 arg 𝑚𝑖𝑛Θ 𝑙𝑜𝑠𝑠 =
1

𝑛
∑ (𝑉𝑖 − 𝑉̂𝑖(Θ))2𝑛

𝑖=1 , 

C. Architecture for each Perfusion Parameter 

It is important to observe that the previously mentioned bi-
CNN does not contain any max-pooling layers. This 
architecture worked well for CBV, MTT, and Tmax estimation, 
but it did not perform well for CBF estimation, which is a 
physiological parameter representing the maximum cerebral 
blood flow. The biological nature of CBF inspires us to apply a 
max-pooling layer (with a max operator), which helps 
identifying maximum values. The max-pooling layer is inserted 
into L3 to replace the second convolutional layer in each 
convolutional chain for bi-CNNs of CBF. The size of the max-
pooling layer is set to 1 x 1 x 35 to maintain the size consistency 
across the rest of the network. This change significantly 
improves the CBF estimation. 

V. EXPERIMENTS 

A. Dataset 

MR perfusion data was collected retrospectively for a set of 
11 patients treated for acute ischemic stroke at UCLA. The 
ground truth perfusion maps (CBV, CBF, MTT, Tmax) and 
AIFs were generated using bSVD in the sparse perfusion 
deconvolution toolbox [18] and the ASIST-Japan perfusion 
mismatch analyzer [19] respectively. All the perfusion images 
were interpolated to have a consistent 70s time interval for bi-
CNNs. The ranges of CBV, CBF, MTT, and Tmax values are 
between 0-201 ml/100g, 0-1600 ml/100g/min, 0-25.0 s, and 0-
69 s (Tmax was clipped at 11s because there were too few 
examples beyond this value) respectively. During experiments, 
we observed that unequal sampling of the training data can lead 
to biased prediction [20]. This motivated us to group each 
perfusion parameter value into ten bins, and draw equal sized 
training samples from each bin. This resulted in four sets of 
training data (CBV, CBF, MTT, Tmax), with sizes of 91,950, 
97,110, 87,080, and 74,850 respectively. 

B. CNN Configuration and Implementation 

The overview of the bi-CNN is shown in Fig. 2. A training 
example consists of a pair of inputs: CTC and its AIF, with a 
size of 3 x 3 x 70. Each convolution chain consists of three 
convolutional layers where 32 maps are learned (with zero-
padding and a stride of 1). A non-linear rectified linear unit 
(ReLU) layer is attached to every convolutional layer and fully-
connected layer (except for the max-pooling layer). We note 
that there are two changes that are important to optimize the 
performance of the model, which are different from standard 
CNN configurations [21]. First, dropout was not included in the 
fully-connected layers because we observed that it decreased 
performance during validation. We suspect that this may be due 
to the nature of the problem of parameter estimation (i.e., 
estimating a continuous value versus predicting a categorical 
label), where every output unit may contribute (to some degree) 
to the estimated value. Second, the initial learning rates are 
different for different parameter estimations. We observed that 
the training losses can easily explode when the learning rate is 
too high, especially for perfusion parameters with high 
maximum values (e.g., max(CBF) = 1600). Therefore, the 
initial learning rates for CBV, CBF, MTT, and Tmax were 
0.0005, 0.00005, 0.005, 0.005 respectively, with a learning rate 
decay of 1e-8, 1e-9, 1e-7, 1e-7 respectively.  

The bi-CNN was trained with batch gradient descent (batch 
size: 50; epochs: 10) and backpropagation. A momentum of 0.9 
were used. A heuristic was applied to improve the learning of 
deep CNN weights [21], where the learning rate was divided by 
10 when the validation error rate stopped improving with the 
current learning rate. This heuristic was repeated three times. 
The deep CNN was implemented in Torch7, and the training 
was done on a NVIDIA Tesla K40 GPU.  

C. Evaluation 

The performance of the bi-CNN estimators was evaluated 
by leave-one-patient-out cross-validation (i.e., training was 
performed excluding data from one patient and then evaluating 
the results on that held-out patient). The average root-mean-
square error (ARMSE) of validations was calculated using 
following definition: 

 𝐴𝑅𝑀𝑆𝐸 =
1

𝑛𝑇
∑ √

1

𝑠𝑗
∑ (𝑉𝑖,𝑗 − 𝑉̂𝑖,𝑗)2

𝑠𝑗

𝑖=1

𝑛𝑇
𝑗=1  ,  

70s 3 x 3 x 70

32 maps
3 x 3 x 35

32 maps
3 x 3 x 1

3 x 3 x 70

CTC

AIF

32 maps
2 x 2 x 1

128x1 128x1
1x1

L1

Convolution Maps 

Stacking
Fully-connected

L2 L3 L4

L5
L6 L7

L8

Parameter
Estimation

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70

AIF
CTC

 
Fig. 2. The proposed bi-CNN. It consists of three components: (1) convolution, (2) maps stacking, and (3) fully-connected. Feature maps are first learned separately 
for a CTC and its AIF in the convolution chains which follow the denoising architecture [17].  The feature maps are then stacked together in the maps stacking 
component, followed by two fully-connected layers to learn a combined feature representation for parameter estimation. The size of the outputs from each layer 
operation (e.g., convolution) and partial connections between layers are shown.  
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where 𝑛𝑇 is the total number of patients, V is the ground truth 

value, 𝑉̂ is the estimated value, and sj is the number of samples. 
We also demonstrated the utility of the bi-CNN by comparing 
the salvageable tissue binary masks generated from the bi-CNN 
and the ground truth perfusion maps. Published CBF and Tmax 
thresholds [14], [15] were used to define the salvageable tissue 
binary masks. The similarity between these masks (the ground 
truth mask, A, and the estimated mask, B) was calculated using 
the Dice coefficient [22]: 

 Dice(𝐴, 𝐵) = 2
|𝐴∩𝐵|

|𝐴|+|𝐵|
 .  

A value of 0 indicates no overlap, and a value of 1 indicates 
perfect similarity (i.e., B=A). A good overlap between masks is 
generally considered to have occurred when the Dice 
coefficient is larger than 0.7. 

D. Results and Discussion 

Fig. 3 shows some examples of learned convolutional filters 
from the first layer of the CTC convolution chain. Each row 

represents a 1 x 1 x 36 temporal filter and each column is a unit 
filter at a time point. As can be seen, these filters capture high 
signals (white) and low signals (black) at different time points, 
which helps the fine-grained temporal feature detections from 
the source signals. This is important to identify features for 
accurate parameter estimation. Using these learned temporal 
filters, the bi-CNNs achieved an ARMSE of 4.80 ml/100g, 27.4 
ml/100g/min, 1.18 s, 1.33 s for CBV, CBF, MTT, and Tmax 
respectively, which are equivalent to 2.39%, 1.71%, 4.72%, and 
1.19% of the individual perfusion parameter’s maximum value. 
The small ARMSE results show that the bi-CNNs are capable 
of learning feature filters to approximate perfusion parameters 
from CTCs and AIFs without using standard deconvolution.  

Examples of estimated perfusion maps are shown in Fig. 4. 
All of the estimated perfusion maps (CBV, CBF, MTT, and 
Tmax) showed good alignment with the ground truth and 
hypoperfusion (i.e. less blood flow or delayed Tmax) could be 
observed visually from some of the estimated maps (red boxes). 
The differences between the estimated maps and the ground 
truth were minimal. To further verify the usability of the 
estimated perfusion maps, a CBF cutoff of 50.2 ml/100g/min 
[14] and a Tmax cutoff of 4s [15] were used to generate the 
salvageable tissue masks from the ground truth and the 
estimated perfusion maps (Fig. 5). The average Dice 
coefficients for the CBF and Tmax masks were 0.830±0.109 
and 0.811±0.071 respectively, showing good overlap between 
the ground truth masks and the estimated masks. This result 
shows that the bi-CNN can generate useful masks for 
salvageable tissue approximation.  

0 36
Time

1

2

3

4

5  

Fig. 3. Examples of learned temporal filters (1 x 1 x 36) in the first layer of the 
CTC convolution chain. Each row represents a temporal filter; each column 
represents a unit filter at a time point. These filters capture signal changes 
along the time dimension for parameter estimation. 

 

 
Fig. 4. Examples of estimated perfusion maps (CBV, CBF, MTT, Tmax) generated by the bi-CNNs. Top row: bi-CNN maps; middle row: ground truth; bottom row: 
the difference between the bi-CNN maps and the ground truth. The estimated perfusion maps show good alignment with the ground truth. Perfusion abnormalities 
(i.e., hypoperfusion) can be visually detected in some estimated perfusion maps (red boxes).  
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E. Limitations 

There are a few limitations in our work. First, the 
performance of the bi-CNNs, which is a machine learning 
approach different from standard deconvolution, is limited by 
the amount of available training data. With more cases, we can 
train larger networks with more epochs to learn the variability 
embodied by additional patients, which could potentially 
improve the performance. Second, we did not evaluate the bi-
CNNs using digital phantoms [19], which is a more accurate 
source of ground truth. We plan to perform this evaluation with 
comparison to standard deconvolution techniques and other 
pattern recognition algorithms in future work. Third, we did not 
investigate the optimal patch size for the parameter estimation. 
More spatial context information may boost the performance of 
the voxel-wise estimation. Finally, using the current 
implementation of bi-CNNs to generate an estimated perfusion 
map requires more computational time than standard 
deconvolution (~5x slower). Batch and multi-GPU processing 
will be implemented to shorten the map generation time so that 
it is practical to apply the models clinically. 

VI. CONCLUSIONS 

In this work, we propose a novel approach for perfusion 
parameter estimation using a bi-input convolutional neural 
network. Our results show that the patch-based bi-CNN model 
is capable of estimating four perfusion parameters in stroke 
patients without using a standard deconvolution method (e.g., 
SVD). The estimated perfusion maps can be used to generate 
binary masks that are representative of the salvageable tissue. 
This model can potentially be extended to other disease 
domains in which perfusion imaging is used, such as cancer. 
Future work includes experimenting on a larger dataset and 
comparing bi-CNNs with other parameter estimation methods. 
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Fig. 5. Salvageable tissue masks (red) defined on the CBF and Tmax maps 
from the bi-CNNs and the ground truths. The bi-CNN generated masks have 
good alignments with the ground truth masks, showing their usability to detect 
the salvageable tissue. Note that the difference in contrast grayscale scale is 
caused by different range of perfusion parameter values.   
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