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Abstract. Predicting infarct volume from magnetic resonance perfusion weighted imaging (PWI) could provide 

helpful information to clinicians in deciding how aggressively to treat acute stroke patients. Models have been 

developed to predict tissue fate, yet these models are mostly built using hand-crafted features (e.g., time-to-maximum) 

derived from perfusion images, which are sensitive to deconvolution methods.  In this work, we demonstrate the 

application of deep convolution neural networks (CNNs) on predicting final stroke infarct volume using only the 

source perfusion images. We propose a deep CNN architecture that improves feature learning and achieves an area 

under the curve (AUC) of 0.871± 0.024, outperforming existing tissue fate models. We further validate the proposed 

deep CNN with existing 2D and 3D deep CNNs for images/video classification, showing the importance of the 

proposed architecture. This work leverages deep learning techniques in stroke tissue outcome prediction, advancing 

MRI perfusion analysis one step closer to an operational decision support tool for stroke treatment guidance.  
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1 Introduction 

Stroke is the primary cause of long-term disability [1] and the fifth leading cause of death in the 

United States, with approximately 795,000 Americans experiencing a new or recurrent stroke each 

year [2]; only ¼ of surviving adults recover to normal health status [3]. Imaging is an integral part 
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of the work-up of acute stroke patients. Magnetic resonance (MR) images are often obtained, 

including diffusion-weighted images (DWIs), apparent diffusion coefficient (ADC) maps, 

perfusion-weighted images (PWIs), and gradient recalled echo (GRE) images. Typical features to 

examine from pre-treatment MR imaging studies are volume of DWI positive ischemic tissue, 

volume of PWI positive perfusion defect, volume of the salvageable tissue (penumbra) [4], 

presence/absence of hemorrhage [5], and location of vessel occlusion. Another potential feature is 

the final infarct volume, which researchers have attempted to predict using machine learning 

techniques [6]–[18]. 

While these techniques have proven to be useful, most of them rely on estimated model-based 

perfusion parameters (e.g., cerebral blood flow (CBF)) to predict tissue infarction. Recently, 

concerns have been raised about the use of these parameters [19], [20], due to drawbacks (e.g., 

parameter inconsistency) that have been discussed in several studies [21]–[24]. One such drawback 

is the sensitivity of PWI to vascular delays and dispersion effects caused by physiologic changes 

such as heart rate and cardiac output that can substantially change the perfusion image parameters 

[21]. Another drawback is the fact that choosing the appropriate arterial input function (AIF), 

which describes the contrast input to the vasculature over time, from PWIs is a challenging and 

generally subjective task due to the need to account for the partial volume effect. This can lead to 

variability in blood flow measurements caused by varying delays and/or dispersion based on 

different AIF choices [22]. Although deconvolution by singular value decomposition (SVD) can 

address this problem, studies have found that the deconvolution process can introduce distortions 

that influence the measurement of perfusion parameters [23] and the decoupling of delay may 

negatively impact infarct prediction [24]. All of these factors have contributed to the imperfect 

prediction of tissue outcome by current methods.  
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Recent work has shown that deep learning techniques [25] outperform many state-of-the-art 

algorithms in classification tasks. One example is the ImageNet competition [26], in which 

participating teams are ranked based on the performance of their classifiers on classifying 1,000 

different image categories. The applications of deep learning techniques are not limited to static 

images, but also include video classification [27]–[30]. Spatio-temporal filters are learned during 

the training of deep learning algorithms, which are used to extract meaningful patterns from input 

videos for classification.  

Medical image researchers have recognized the tremendous ability of deep learning techniques 

and have begun to apply these techniques in medical image challenges. In segmentation tasks, 

Davy et al. [31] developed a multi-scale CNN approach in a cascade architecture that exploits both 

local features as well as more global contextual features to perform brain tumor segmentation. 

Ronneberger et al. [32] alternatively proposed a new CNN architecture, U-Net, that favors precise 

localization using symmetric expanding paths to improve cell segmentation. This architecture has 

been adapted in many applications, including high-resolution histological segmentation [33]. 

Recently, Li et al. [34] developed a region-based convolution neural network that utilizes an R-

CNN [35] to achieve an epithelial cell segmentation with an accuracy of 99.1%. In medical 

prediction and classification tasks, Shin et al. [36] tested the application of unsupervised deep 

autoencoders on organ (e.g., liver, kidney, spleen) identification on MR images. Roth et al. [37] 

proposed a classification method that exploits random aggregation of deep CNN outputs from 

rotated image patches to predict bone lesions. Ertosun et al. [38] trained a deep CNN for automated 

classification of gliomas grading using digital pathology images. All of these proposed deep 

learning models have shown superior performance over existing methods.  
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In this work, we investigated the use of the source 4-dimensional (x × y × z × t) pre-treatment 

PWIs (pre-PWIs) to predict final infarct volume, instead of the derived model-based perfusion 

parameters (e.g. CBF). We have developed an approach to use deep CNNs to predict voxel-wise 

tissue death (infarct vs non-infarct). The results show that the proposed deep CNN can generate 

new features that significantly improve the prediction of tissue death as compared to standard deep 

CNNs for image/video classification. We compared our approach to the published tissue fate 

models and the results show that the proposed model achieved better performance.  

In summary, the main contributions of this work are:  

1. We propose to train the deep CNN with information from the source perfusion images (the 

patches of interest and their contralateral patches) to improve tissue outcome prediction. 

2. We design a deep CNN architecture to learn pairs of unit voxel-wise temporal filters that 

favor the learning of features from the modified training data. 

3. We compare our proposed deep CNN with previous models and show that it outperforms 

the existing tissue fate models.  

One significant contribution of this work is the application of the proposed CNN architecture 

in automatic feature learning that are more predictive than hand-crafted features (e.g., CBF) for 

tissue outcome prediction using only the source perfusion images. The results show that the 

proposed deep CNNs are a robust tool for tissue outcome prediction when confounding patient 

imaging variables present (e.g., different AIFs), requiring neither AIF identification nor 

deconvolutions. This work represents a step towards an operational decision support tool for 

guiding stroke treatment. 
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2 Related Work  

2.1 Tissue Outcome Prediction 

Models have been developed to predict tissue outcome, and estimate the growth of infarcts in order 

to provide more information for clinicians to make treatment decisions [6], [7], [11]–[14]. One of 

the earliest models is the MR tissue signature model developed by Welch et al. [15] which utilized 

the ADC and T2 images to identify reversible and irreversible volumes in the ischemic brain 

regions. Another early model is the generalized linear model (GLM) developed by Wu et al. [6]. 

This model used patients’ DWIs and estimated perfusion parameters (e.g., CBF) to predict voxel 

outcome; the result showed that using both PWIs and DWIs provided better performance in 

prediction compared to using DWIs alone. Later, Wu et al. [7] applied this model to animal data 

to investigate the effectiveness of tissue plasminogen activator (tPA). Nguyen et al. [11] further 

improved the basic GLM by introducing a correlation term that integrated spatial correlation 

information of voxels. 

In addition to linear classifiers, non-linear classifiers have been explored. Bagher-Ebadian et 

al. [12] developed a four-layer artificial neural network (ANN) to predict the final extent of the 

three month post-stroke T2-lesion in stroke patients using T1-weighted, T2-weighted, diffusion-

weighted, and proton density-weighted images. Huang et al. [13] attempted to use an ANN to 

predict tissue outcome of rats with induced stroke by incorporating more information into the 

model. A spatial infarction incidence map and nearest-neighborhood information (eight 

neighboring voxels for a 2D patch; 26 neighboring voxels for a 3D patch) were used in the model. 

Scalzo et al. [14] exploited spectral regression kernel discriminant analysis (SR-KDA) [39] to 

predict voxel infarction using individual voxel time-to-maximum (Tmax) and ADC value. SR-KDA 

is an effective algorithm to project high-dimensional non-linear distributed data into a low-
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dimensional space, enabling efficient non-linear dimension reduction. The result showed that 

learning non-linear functions of the neighboring relationships of a patch is important for 

classification.   

2.2 Deep Learning on Classification 

Deep Learning techniques have been widely adopted on 2D classification tasks, such as multi-

category image classification [26], [40], [41], pedestrian detection [42], and human pose 

identification [43]. Variations of these techniques have been proposed to deal with higher 

dimensional data (e.g. video).  Le et al. [27] proposed an unsupervised deep learning algorithm, 

called independent subspace analysis (ISA), to learn spatio-temporal features from unlabeled video 

data. Simonyan et al. [30] implemented a two-stream CNN that performs separate convolution and 

pooling on the target video patch and the corresponding multi-frame dense optical flow patch 

(temporal data), and then learns the joined features at the fully-connected layers. Their results 

showed that this model can achieve very good performance with limited training data. Karpathy 

et al. [29] took a different deep learning approach to video data analysis. Instead of using all of the 

frames given in the input, the authors created a fusion model that slowly fuses a subset of frames 

throughout the network such that higher layers get access to progressively more global 

information. This model displayed significant improvement over feature-based baseline models.  

Shelhamer et al. [28] implemented a CNN to learn feature filters for 3D convolution on video.  

The proposed network generated generic features for video object recognition, scene classification, 

and action similarity.  

In this work, we propose a deep CNN to predict tissue outcome from perfusion data. We 

compare the proposed deep CNN model with several baseline models, including GLM, SR-KDA, 

support vector machine (SVM), and two baseline deep CNNs [27]–[30]. The implementation 
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details of the baseline deep CNNs are described in the Method section. 

3 Materials and Image Processing 

3.1 Patient Cohort and Imaging Data  

Under institutional review board (UCLA IRB#11-000728) approval, a total of 444 patient MR 

images were retrieved and examined from the University of California-Los Angeles picture 

archiving and communication system (PACS) between December 2005 and December 2015. The 

inclusion criteria were: 1) acute ischemic stroke due to middle cerebral artery (MCA) occlusion; 

2) MR imaging performed both before and after (3-7 days) treatment (e.g., clot retrieval, tPA); 3) 

absence of hemorrhage. A total of 48 patients satisfied these inclusion criteria and were used in 

this study. Final infarct volumes were semi-automatically determined and measured on the post-

treatment (post-FLAIR) images [44] by an expert neuroradiologist (Dr. S. El-Saden) using Medical 

Image Processing, Analysis, and Visualization (MIPAV) software [45]. Pre-treatment (pre-

FLAIR) images were used to identify pre-existent lesions that were not related to the current stroke, 

and these lesions were not labeled as part of the final infarct volumes. The patient characteristics 

are summarized in Table 1. 

All patients underwent MRI using a 1.5 or 3 Tesla echo planar MR imaging scanner (Siemens 

Medical Systems); scanning was performed with 12-channel head coils. The PWIs were acquired 

using a repetition time (TR) range of 1,490 to 2,890 ms and an echo time (TE) range of 23 to 50 

ms. The pixel dimension of the PWIs varied from 1.00 × 1.00 × 5.00 to 2.00 × 2.00 × 7.00 mm. 

The pre-FLAIR images were acquired using a TR range of 8,000 to 10,000 ms and a TE range of 

82 to 123 ms. The pixel dimension of the pre-FLAIR images varied from 0.45 × 0.45 × 3.00 to 

0.94 × 0.94 × 7.00 mm. The post-FLAIR images were acquired using a TR range of 8,000 to 



8 

10,000 ms and a TE range of 82 to 134 ms. The pixel dimension of the post-FLAIR images varied 

from 0.43 × 0.43 × 3.00 to 0.94 × 0.94 × 7.00 mm. The perfusion parameter maps of Tmax, CBF, 

time-to-peak (TTP), cerebral blood volume (CBV), and mean transit time (MTT) were calculated 

using block-circulant singular value decomposition (bSVD) as provided by the sparse perfusion 

deconvolution toolbox [46]. We note that in MR imaging, each brain voxel has three spatial 

dimensions for three axes (x-, y-, z-). We ignore the z-dimension in data generation (i.e., patch 

creation) due to slice thickness. Thus, our notation is simplified as we may denote the size of a 

“voxel” as 1 x 1 only. 

Table 1 Ischemic stroke patient cohort characteristics. 

 Patients (n = 48) 

Demographics  

Age 65.4 ± 17.3 

Gender 20 males 

Clinical Presentation  

Time since stroke 206 ± 122 mins 

NIHSS† 15.1 ± 7.7 

Atrial fibrillation 15 

Hypertension 32 

Treatments (received)*  

IV-tPA 24 

IA-tPA 6 

Clot-retrieval devices 

(e.g., SolitaireTM) 

29 

Treatment Evaluation  

TICI score¥ 0 (4), 1 (0), 2a (13), 2b (8), 3 (1), 

N/A (22) 

AOL scoreΩ 0 (3), 1(0), 2(4), 3(16), N/A (25) 

Outcome  

Discharge mRS‡ 3.44  1.47 

Discharge lesion size 65.9  81.7 cm3 
† NIHSS = NIH Stroke Scale International; scale: 0 (no stroke symptoms) - 42 (severe stroke) 

*A patient could receive more than one treatment in a visit. IV-tPA = Intravenous tissue plasminogen activator; 

IA-tPA = Intra-arterial tissue plasminogen activator 
¥ TICI = Thrombolysis in Cerebral Infarction; scale: 0 (no reperfusion), 1, 2a, 2b, 3 (full reperfusion), N/A 

(missing). Available only for patients with clot-retrieval devices. 
Ω AOL = Arterial Occlusive Lesion; scale: 0 (complete occlusion) – 3 (complete recanalization), N/A (missing). 

Available only for patients with clot-retrieval devices. 
‡ discharge mRS = discharge modified Rankin Scale; scale: 0 (no stroke symptoms) – 6 (dead) 
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3.2 Image Preprocessing 

First, intra-patient registration of axial pre-PWIs, pre-/post-FLAIR images, and post-FLAIR 

images were performed with a six-degree of freedom rigid transformation using FLIRT [47]. 

Through the registration, each voxel in pre-PWIs and post-FLAIR was made to correspond to the 

same anatomical location in pre-FLAIR. Then, all pre-PWIs were interpolated so that each had the 

same unit increment in the time dimension. The multi-atlas skull-stripping algorithm [48] was used 

to remove the skulls. Brain ventricle voxels were excluded in training. All brain images were 

aligned to their central lines in the axial plane using MATLAB image processing toolbox (version 

9.4.0 Mathworks, Inc., Natick, MA). Each source signal of pre-PWIs, S(t), was then converted to 

a tissue concentration time curve, CTC(t), based on the baseline signal S(0), TE, and β [49]: 

 𝐶𝑇𝐶(𝑡) =  −β log (
𝑆(𝑡)

𝑆(0)
) /TE, (1) 

where S(0) is the average of the first five values of the signal curve, and β is a scaling factor 

provided by Mouridsen et al. [49], with a value of 2000. All CTCs were standardized to zero-

mean and unit-variance globally on a voxel-by-voxel basis [50]. 

4 Methods 

This section is divided into three parts: 4.1 Patch Sampling and Ground Truth describes the 

prediction task and the training patch generation; 4.2 Deep CNN Architecture describes the 

existing deep CNN models and the proposed architecture; 4.3 Experimental Setup describes the 

configurations and implementation details of the deep CNNs, the baseline models, and the 

evaluation metrics.  
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4.1 Patch Sampling and Ground Truth 

The task is to predict the final outcome of every brain voxel (i.e., infarcted or non-infarcted) given 

its CTC. The ground truth binary mask is derived from the post-FLAIR images (acquired 3-7 days 

post treatment), where the positive class is infarcted and the negative class is non-infarcted. The 

deconvolution of a CTC with its AIF generates a residue curve, from which perfusion parameters 

are derived using a curve-fitting based approach [22].  While baseline tissue fate models [6], [7], 

[11]–[14] used these derived perfusion parameters (e.g., Tmax) to predict a voxel outcome, the deep 

CNNs learn features directly from the CTC to predict outcomes and therefore do not depend on 

the AIF.  

To generate training data from a perfusion signal associated with a given voxel, one 

straightforward approach is to only use each voxel’s time signal information (concentration change 

along time) (Fig. 1a). For example, a single training sample has a dimension of 1 x 1 x t, in which 

t is the total time length of the study (equivalent to the total number of brain volumes in the pre-

PWI). However, this approach is sensitive to noise (e.g., small motion artifacts can cause apparent 

concentration changes in a voxel) and it incorrectly assumes voxels are independent. Recent work 

(a) (b)
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Fig. 1 Training data generation. (a) A training voxel with a dimension of 1 x 1 x t, containing the concentration 

change along time t. (b) A training patch with a dimension of 25 x 25 x t, where t = 64. The center of the patch (red) 

is the voxel of interest. A patch is associated with the outcome value (0 or 1) of the voxel of interest. 



11 

[14] revealed that incorporating neighboring voxel information improved classification 

performance. Therefore, training data was sampled as a 3D “patch” sequence instead of a single 

sequence; each training example had a size of d x d x t, where d is the width/height of the patch 

and the center of the patch is the voxel of interest (Fig. 1b). Deep CNNs then learn filters to extract 

spatio-temporal features from the patch to predict the outcome of the central voxel. We 

experimented with different values of d in the 2D CNN architecture and determined the optimal 

training patch size is 25 x 25 x 64 (d = 25, t = 64) in the ten-fold cross-validation. We used this 

patch size for all the deep CNN model training and testing.  

4.2 Deep CNN Architecture 

4.2.1 Baseline deep CNN framework 

Typical deep CNNs consist of multiple convolutional, pooling, non-linear, fully-connected layers, 

and a softmax classifier. The convolutional layers produce feature maps (usually > 10) from the 

input through automatically learned feature filters (weight matrices). These feature filters detect 

local characteristics of regions given the input; each of these local regions is connected to a location 

of the output (feature map). The pooling layers employ max-operators that pool values in a local 

region together (i.e., given a small region, only the maximum value is returned), which makes the 

network more translation invariant. The non-linear layers contain rectified linear units [51] (ReLU) 

that introduce non-linearity, enabling the network to learn non-linear features. After multiple 

stacking of convolutional-ReLU-pooling layers, fully-connected layers (inputs are fully connected 

to each previous layer’s output) are added to generate summarized features, which are the inputs 

to the softmax classifier for classification. Given a deep CNN with L layers and N data samples 
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(X, y), the parameters (𝜽) of a softmax classifier in binary form (i.e., logistic classifier) are obtained 

by minimizing the cost function: 

 
J(𝜽) =  −

1

𝑁
∑ 𝑦𝑛 log ℎ𝜽(𝑿𝑛

𝐿 ) + (1 − 𝑦𝑛) log(1 − ℎ𝜽(𝑿𝑛
𝐿 ))𝑁

𝑛=1 +

 𝛾𝑓(𝜽), 
(2) 

 

 ℎ𝜽(𝑿𝑛
𝐿 ) =

1

1+exp(−𝜽𝑿𝑛
𝐿 )

, (3) 

 

where 𝛾 is a parameter for controlling the 𝐿2 weight decay term (𝑓(𝜽)), ℎ𝜽(𝑿𝑛
𝐿 ) is the sigmoid 

function, and 𝑿𝑛
𝐿  is the output of the fully-connected layer before the softmax classifier. The 

weights in a deep CNN layer (𝑾(𝑙)) are updated via gradient descent, namely: 

 𝑾(𝑙) =  𝑾(𝑙) −  𝛼
𝜕𝐽(𝜽)

𝜕𝑾(𝑙) , 
(4) 

 

where 𝛼 is the learning rate. The gradient 
𝜕𝐽(𝜽)

𝜕𝑾(𝑙) is obtained through backpropagating the loss from 

the softmax classifier and chain rule. There are two basic approaches to train deep CNNs with the 

3D training data. In the first approach, we treat the time channel of the training data as if it were a 

color channel; this allows us to use standard 2D deep CNN architectures that are typically applied 

to images [52]. The filter learning of a convolutional layer in a 2D deep CNN is two dimensional. 

In the second approach, we can employ a 3D deep CNN architecture [28], which is composed of 

3D filters in convolutional layers. Complex spatio-temporal features are learned progressively 

along the network and they are more descriptive for small changes in both the spatial and temporal 

dimensions. 

4.2.2 Baseline CNN limitations and the proposed architecture 

The motivation for using deep CNNs is their strong ability to learn data-driven filters to obtain 

complex features that are predictive of infarction. With the baseline 2D or 3D deep CNN 
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architecture, spatio-temporal filters can be learned to extract features from input patches that 

predict tissue fate. However, when we trained these architectures using the perfusion image 

training patches, we implicitly assumed that every training patch was sampled from a distribution 

generated by the same global AIF (as obtained from the MCA), an assumption which does not 

hold across patients due to a variety of factors, such as a patient’s unique cerebrovascular 

architecture.  (Note: We can also define a lot of local AIFs [22], in which each is based on the 

closest artery to the voxel of interest. This approach is difficult to use with low-resolution PWIs 

due to the challenge of finding suitable arterial voxels throughout the brain. In the context of this 

paper, we refer to the global AIF obtained from MCA as the “AIF”.) 

Figure 2 illustrates an example of the tissue concentration time curves (CTCs) of a non-

infarcted voxel and infarcted voxel in two different patients with different AIFs. Within the curves 

of a particular patient, the non-infarcted voxel has a CTC with an earlier and higher peak (solid 

line) relative to the CTC of the infarcted voxel (dotted line). However, when we compare curves 

across patients, the CTC of the non-infarcted voxel of patient #2 is delayed and lower than the 

CTC of the non-infarcted voxel of patient #1. These differences are due to their unique AIFs (Fig. 

2), which describe the unique pattern of flow of the contrast agent traveling within the 

Patient #1 Patient #2 AIFs  

Fig. 2 Illustration of tissue concentration time curves (CTCs) of a non-infarcted voxel and infarcted voxel in two 

different patients, and the patient arterial input functions (AIFs).  
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cerebrovasculature, and which also reflects the effects of both of the administration method as well 

as the cardiac function and vasculature between the intravenous administration site and the brain 

[22]. This information is not incorporated into the training of the baseline 2D or 3D deep CNN 

architecture, and this makes the learning of representative features difficult. The learned feature 

filters from these 2D and 3D deep CNN architectures are limited to only detect features within a 

patch signal (e.g., peak maximum value) and do not account for the difference in patient AIFs.  

To overcome this limitation, the network must be capable of learning features that are 

independent of confounding patient-specific variables, such as AIFs, and that are predictive of 

tissue outcome. Thus, we propose a deep CNN model (Fig. 3) to improve feature learning, 

including a new form of input patches (patches of interest paired with contralateral patches), a new 

architecture for the convolutional layer, and explicit learning of unit temporal filters, i.e. a set of 

filters that have size of 1 x 1 x t, where t is the time dimension. The use of a contralateral patch as 
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a matched control (reference) has also been used in the simple thresholding approach for lesion 

delineation [53]. 

4.2.2.1 Matched controls for input patches 

The features learned on an input patch of interest are implicitly affected by the AIF. In contrast, 

features that are derived from the comparisons between the input patch of interest and a matched 

control might be independent of the confounding variables. We exploited the natural symmetry of 

the brain to create a matched control for each patch, which is the patch contralateral to the patch 

of interest (we refer to it as the “contralateral patch”). Each original training patch is paired with 

its contralateral patch, and it is then used to train the CNN. To improve the feature learning with 

the new form of training data, we proposed a new architecture which involves paired convolutions 

in the standard convolutional layer. 

32 maps

22x22

11x11
64 maps

8x8

4x4 128 128

2

Unit CNN-contralateral

L2

L3
L4 L5 L6 L7

L8

25 x 25 x 64
16 maps

25x25

L1

L1.5

Softmax

64s

64s

 

Fig. 3 The proposed eight-layer deep CNN (Unit CNN-contralateral) with the new architecture of the convolutional 

layer and unit temporal filter learning (orange) for tissue outcome prediction (only the interconnections within first 

layer are shown). An input consists of a pair of 25 x 25 voxel patches (the patch of interest, red, and its contralateral 

patch, blue). Pairs of unit temporal filters (L1) are learned simultaneously, which feed into the first convolutional 

layer (L1.5); 2D operations (convolution, L2 and L4, and pooling, L3 and L5) are then performed to generate 

features for the fully connected layers (L6 and L7) and softmax classifier (L8). See Appendix A.1 Fig. 6 for a more 

detailed configuration of this proposed deep CNN for tissue outcome prediction.  
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4.2.2.2 A proposed architecture for learning paired unit temporal filters 

To learn feature filters that extract relationships between a pair of input patches (i.e., the patch of 

interest and its contralateral patch), we proposed a new architecture for the convolutional layer 

where pairs of 3D convolutional filters are learned simultaneously. Each “filter” in the new 

convolutional layer consists of two 3D filters (𝒘1, 𝒘2), each of which has a size of  𝑥 × 𝑦 × 𝑡 for 

the x-dimension, y-dimension, and time dimension. Each “filter” convolves local regions on the 

patch of interest and the contralateral patch respectively. An output location (𝑂𝑖,𝑗) on a feature map 

produced from the new convolution layer is defined to be the sum of the convolved values of the 

same local regions on the patch of interest (𝒊𝟏) and the contralateral patch (𝒊𝟐):  

 𝑂𝑖,𝑗 =  𝒊𝟏 ⊗ 𝒘1 + 𝒊𝟐 ⊗  𝒘2, (5) 

 

The advantage of this formulation is that all pairs of filters (𝒘1, 𝒘2) are learned simultaneously, 

without modification to our loss backpropagation and weight updating methodology. Since the 

resolution of perfusion images is low, the spatial filters may not be easily learned to capture fine-

grained features to distinguish between positive and negative labels. Therefore, we hypothesize 

that the CNN architecture should be designed to favor the learning of temporal features between 

patches. To optimize learning filters that detect these temporal features, we first made the network 

explicitly learn n paired unit voxel-wise temporal filters in the new convolutional layer. More 

specifically, each filter in a pair had a size of 1 × 1 × 𝑡 for the x-dimension, y-dimension, and time 

dimension; these filters capture the local voxel-wise temporal characteristics. We then performed 

normal 2D convolution and pooling (similar to a 2D deep CNN) to derive the final compressed 

features in the fully-connected layer, which was then fed into a softmax classifier to predict tissue 

outcome. The new feature map formulation and the explicit learning of temporal filters lead to the 

proposed eight-layer deep CNN (Fig. 3). It is incorporated with the new convolutional layer and 
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unit temporal filter learning (L1.5) for tissue outcome prediction. We denote the new proposed 

deep CNN as “Unit CNN-contralateral”. 

4.3 Experimental Setup 

4.3.1 CNN configurations and implementations details 

To compare to the Unit CNN-contralateral, we trained two baseline deep CNNs based on the 2D 

and 3D approach. The architecture details of all three deep CNNs are shown in Appendix A.1 Fig. 

6. In summary, each of these two baseline deep CNNs consists of two sequences of convolutional 

(conv)-nonlinear (ReLU)-pooling (max-pool) layers, followed by two fully-connected layers. The 

two fully-connected layers are incorporated with dropout [54] and batch normalization [41] to 

reduce overfitting of the data and address the issue of internal covariate shift. With this multi-layer 

deep CNN architecture, 128 features are generated in the last fully-connected layer, which are the 

inputs to a softmax classifier for voxel outcome prediction. The Unit CNN-contralateral has an 

additional first layer (the new convolutional layer) which learns paired unit temporal filters. This 

layer (orange boxes) is inserted into the 2D deep CNN architecture; 128 features were generated 

for tissue outcome prediction. For these deep CNNs, the number of filter maps, and the parameters 

(e.g., stride) of the filters and the use of max-pooling layers are based on published architectures 

[28], [52]. Briefly, a small filter size (i.e., 4 × 4) was used and the number of filter maps was a 

factor or a multiple of 2 (i.e., 16, 32, 64, or 128). 

The deep CNNs were trained with batch gradient descent (batch size: 50) and backpropagation. 

A momentum of 0.9 and a learning rate of 0.05 were used. A heuristic was applied to improve the 

learning of weights [52], where the learning rate was divided by 10 when the validation error rate 

stopped improving with the current learning rate. This heuristic was repeated three times. An early-
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stopping strategy was applied to improve the learning of deep CNNs weights and prevent 

overfitting. In this strategy, the training was terminated if the performance failed to improve in 

five consecutive epochs (maximum number of training epochs: 40). The CNNs were implemented 

in Torch7 [55], and the training was done on two NVIDIA Titan X GPUs and an NVIDIA Tesla 

K40 GPU.  

4.3.2 Baseline model comparison 

In addition to the baseline 2D and 3D deep CNN models, we compared the proposed deep CNN 

with published tissue fate models (GLM [6], SR-KDA [14]) and a SVM designed for large-scale 

classification [56] using the same perfusion parameters as the GLM. The details of the baseline 

model training are described in the Appendix A.2. To investigate the importance of using 

contralateral patches, we compared the performance of the deep CNNs (with the new 

convolutional layer) trained with contralateral patches (Unit CNN-contralateral), random patches 

(Unit CNN-random), and duplicate patches (Unit CNN-duplicate). All the comparisons were 

performed using ten-fold patient-based cross-validation, with a nested validation in each cross-

validation fold for performance evaluation, i.e., identifying the optimal cutoff point that optimizes 

the Youden Index [57] for receiver operating characteristic (ROC) curve. For each of the 48 

patients in the dataset, 1,000 patches were randomly selected without replacement from the set of 

infarcted voxels, and the set of non-infarcted voxels respectively, generating a randomized, 

stratified, and balanced training dataset with a total of 96,000 patches to avoid biased training [58]. 

4.3.3 Evaluation metrics 

We computed the area under the ROC curve (AUC), which is a classifier’s probability of predicting 

an outcome better than chance. The accuracy and overlap coefficient were also calculated [59]. 
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Accuracy measured the percentage of voxels that were given the correct label. Overlap coefficient 

measured the similarity between the prediction and ground truth masks; it is defined as the size of 

the intersection divided by the smaller of the size of the two sets. A value of 0 indicates no overlap, 

a value of 1 indicates perfect similarity. All the evaluation metrics were computed for the whole 

brain data set to which the held-out validation set belonged in the ten-fold cross-validation.  

To determine if the performance of the models significantly differed, we used Hanley and 

McNeil significant test [60] to compare the model AUCs, and used two-tailed Wilcoxon signed-

rank test  [61] to compare the overlap coefficient and the accuracy of the models.  

5 Results 

5.1 Baseline vs. Unit CNN-contralateral 

Figure 4 shows the ROC curves of the deep CNNs and the baseline tissue outcome models (GLM, 

SR-KDA, standard SVM) on predicting tissue outcome, and Table 2 shows the average accuracy, 

overlap coefficient, and AUC of each classifier calculated from the ten-fold cross-validation. The 

precision and recall of each classifier calculated from the ten-fold cross-validation are shown in 

Appendix A.3 Table 3. In each step of the ten-fold patient-based cross-validation, we applied the 

trained model to the held-out whole brain dataset (including all voxels in the brains) to calculate 

the evaluation metrics. The total training time for the CNNs was 124.5 hours (about 5 days).  

Among all the baseline tissue outcome models, SR-KDA achieved the best AUC, and overlap 

coefficient. We speculate this could be due to SR-KDA’s patch-based approach, which predicts 

voxel outcomes using neighboring voxels’ features, whereas SVM/GLM only used the features of 

the voxel of interest. Compared to the best baseline results (SR-KDA), deep CNNs achieve better 

performance. The 3D deep CNN is slightly better than 2D deep CNN, likely due to the greater 
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learning capability as a result of the higher number of model parameters. However, these two deep 

CNNs did not offer significant performance improvement of AUC compared to SR-KDA. Among 

all deep CNNs, the proposed deep CNN trained with contralateral patches (Unit CNN-

contralateral) achieved the best performance in all evaluation metrics. It achieved the highest AUC 

and overlap coefficient of 0.871 and 0.811 respectively. The significance test results show that the 

proposed deep CNN achieved significantly better AUC than all other deep CNN classifiers. 

Overall, the AUC and overlap coefficient indicates that the proposed deep CNN performed 

significantly better than SR-KDA, 0.871 vs 0.788 (p-value = 0.003) and 0.811 vs 0.679 (p-value 

= 0.0001). These results indicate that the proposed deep CNN is the best model for predicting 

tissue outcome. 

 
Fig. 4 Ten-fold cross-validation ROC curves for Unit CNN-contralateral, Unit CNN-random, Unit CNN-duplicate, 

and baseline models. 
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5.2 Unit CNN with Different Types of Patches 

To investigate the significance of using the contralateral patch as part of the input, we performed 

additional experiments to verify whether using the contralateral patch in our proposed network 

provides better results than using other potential patch selections. We used the same proposed deep 

CNN architectures to build models with two types of training data: 1) the patch of interest with a 

patch randomly selected from the brain, and 2) the patch of interest with a copy of itself. The 

results are shown in Table 2 and Fig. 4. The performance of the deep CNNs significantly dropped 

when trained with random or duplicate paired patches instead of contralateral patches. The Unit 

CNN trained with duplicate patches performed worse than other deep CNNs. The Unit CNN 

trained with random patches achieved only slightly higher performance than a 3D deep CNN, but 

fall short of the performance of the deep CNN trained with contralateral patches, indicating the 

value of having the contralateral patch as part of the input. This suggests that using the contralateral 

patch provides additional information that allows the deep CNN to learn useful comparison filters 

rather than merely signal filters to extract features for tissue outcome prediction. One interesting 

observation is that the deep CNN trained with random patches has higher AUC (p-value=0.019) 

Table 2 Average performance on held-out whole brain data in ten-fold cross-validation. 

 Accuracy Overlap AUC 

2D CNN 0.746 0.728* 0.783±0.030* 

3D CNN 0.790 0.717* 0.799±0.029* 

Unit CNN-random 0.780 0.753* 0.805±0.029* 

Unit CNN-duplicate 0.770 0.698* 0.757±0.035* 

Unit CNN-contralateral 0.818 0.811 0.871±0.024 

GLM 0.751* 0.628* 0.746±0.022* 

SVM 0.724* 0.633* 0.691±0.033* 

SR-KDA 0.784 0.679* 0.788±0.031* 

*indicated statistically significant results (p-value<0.05) against the unit cnn-contralateral model 
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than the deep CNN trained with duplicate patches. This illustrates that additional random 

information can boost model performance. However, this boosting is not as good as using 

contralateral patches. The visualization of the CNN first-layer filters trained with different types 

of patches is shown in the Appendix A.4 Fig. 7.  

5.3 Examples of prediction 

Figure 5 shows the tissue outcome predictions of the Unit CNN-contralateral, SR-KDA, and 3D 

deep CNN models. For large infarcts (patient #1), Unit CNN-contralateral and SR-KDA predicted 

well on visual inspection, whereas 3D deep CNN predicted high probability (red color) only in 

certain parts of the final infarct regions. For patient #2, all models predicted the correct locations 

of the final infarct regions. Unit CNN-contralateral and the 3D deep CNN both predicted larger 

final infarct volumes with high probabilities than SR-KDA. The volume of prediction with the 

 
Fig. 5 Tissue outcome prediction of Unit CNN-contralateral, SR-KDA, and 3D deep CNN. 
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highest probability (>0.90) of Unit CNN-contralateral matches well with the ground truth. For 

patient #3, SR-KDA and Unit CNN-contralateral predicted larger final infarct volume with high 

probabilities whereas 3D deep CNN predicted only partial volume. For patient #4, the region of 

high probability of Unit CNN-contralateral matched well with the ground truth. However, the 

regions with high probability of SR-KDA and 3D deep CNN were larger and smaller respectively. 

6 Discussion 

Predicting ischemic tissue outcome is a challenging and important task for better stroke evaluation 

and treatment planning. Knowing the potential tissue outcome before the use of an intervention 

has the potential to provide important information to clinicians about the relative value of 

interventions. For example, if the volume of predicted infarct tissue despite treatment is large, a 

clinician may reconsider the utility of a treatment such as thrombolysis or clot retrieval, either of 

which can increase the chance of hemorrhage and potentially worsen the clinical outcome. In 

addition, predicting stroke tissue outcome helps generate new knowledge that may be useful in 

patient selection for clinical trials [62]. In this work, we demonstrated the use of deep CNNs in 

ischemic tissue outcome prediction (infarcted vs non-infarcted) and proposed a deep CNN that 

outperformed the existing models.  

There are two major advantages of using deep learning in predicting tissue outcome. First, the 

proposed algorithm can automatically learn hierarchical imaging features from only source pre-

treatment perfusion images. It eliminates the use of deconvolution and still achieves better 

performance than the baseline models that utilize perfusion parameters. The superior performance 

of the deep learning algorithm reinforces the findings of Christensen et al. [24] and Willats et al. 

[63] that summary parameters calculated without an AIF from source perfusion images contain 

enough information to determine tissue outcome. The feature generation of the proposed deep 
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CNN is fully data-driven and automatic. The learned features represent more complicated 

characteristics than just the summary perfusion parameters (e.g., time-to-peak), and are shown to 

be more predictive of tissue outcome. Second, the deep learning algorithm can better capture non-

linear relationships than other models. Such non-linear relationships cannot be captured by linear 

models, such as GLMs, and have been shown to be important for tissue outcome prediction [14]. 

Compared to models such as SR-KDA and SVM, deep CNNs automatically learn spatio-temporal 

features from the source perfusion images that are more complex and predictive than perfusion 

parameters (e.g., Tmax). Such non-linear feature learning is made possible by the stacked layer 

architecture, which is a distinctive feature of deep learning algorithms. The greater learning 

capability of the deep CNNs was validated by the improved performance of the 2D deep CNN and 

3D deep CNN compared to other baseline models.  

In this work, we proposed a new architecture for the convolutional layer, which learned pairs 

of unit temporal filters simultaneously from the patch of interest and its contralateral patch. This 

new layer was inserted as the first layer to the standard 2D deep CNN and allowed the deep CNN 

to derive paired filters to obtain useful correlations between inputs in the first layers such that the 

learned filters in the subsequent convolutional layers no longer detected the spatio-temporal 

features of a single input. Instead, these filters were learned to detect spatial features of the 

differences between two input patches (i.e., the patch of interest and its contralateral patch). 

Such differences were further expanded and stacked through multiple layers in the deep CNN 

and finally became the 128 features that were used to train a softmax classifier. The incorporation 

of the new convolutional layer changed the nature of the learned features of the deep CNN, which 

ultimately led to features that achieved the best performance among all the models.  
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Our study has several limitations. First, we did not consider treatment information in our 

predictions, which has a direct impact on outcome. Also, changes in MR image acquisition 

parameters (e.g., field strength) or clinical variables (e.g., age) may impact the classifier 

performance [64]. We did not perform subgroup analysis based on image acquisition parameters 

or clinical variables because of a relatively small dataset (n=48). Future studies will include larger 

patient cohorts with imaging and pre-/post-treatment information, which will allow subgroup 

analysis to evaluate how well the proposed method would generalize across different imaging 

protocols and patient characteristics. Second, we note that the proposed deep CNN has high recall 

and low precision (Appendix A.3 Table 3), which is likely due to the imbalance of our classes 

[65]. Future work could explore different methodologies, including sampling strategies [66], to 

improve model precision while maintaining recall with our imbalanced dataset. Finally, our 

proposed model only used perfusion images to achieve better performance than baseline models 

which also used DWIs. We plan to further expand the deep CNNs in order to incorporate these 

images and generate better composite feature representations.   

7 Conclusion 

In this work, we proposed a deep CNN to learn pairs of unit temporal filters for outcome prediction 

in ischemic tissue using only the source perfusion images. We compared it with baseline models 

including two deep CNNs, SVM, GLM, and SR-KDA, and showed that it achieved the best 

performance. Our work demonstrates the potential use of deep learning techniques in stroke MR 

perfusion imaging analysis. This temporal feature learning approach may also benefit the weight 

initialization of the deep learning models via transfer learning [67] for body parts other than the 

brain when MR perfusion images are available. More improvements are possible, including the 

incorporation of clinical variables into the network and exploring the use of composite features 
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generated from different MR image types. The deep CNN model proposed here provides a 

foundation to utilize deep learning techniques in perfusion image analysis, which could ultimately 

provide useful information for clinicians when deciding upon a treatment intervention. 

Appendix A  

A.1 The Architecture Details of the Baseline 2D and 3D deep CNNs, and the Unit CNN-

contralateral 

A.2 Baseline Models (SR-KDA, GLM, and SVM) construction 

We implemented three baseline models for tissue outcome prediction following the corresponding 

paper implementations: SR-KDA [14], GLM [6],  SVM [56]. Briefly, SR-KDA is a patch-based 

model for which Tmax patches (with a size of 15 x 15 [14]) were generated for model training. 

GLM is a single-voxel-based model in which several image parameters (ADC, pre-flair, CBF, 

CBV, and MTT) are the inputs used by the model. SVMs were trained using the same features as 

the GLM. The optimal hyperparameters for SR-KDA (alpha) and SVM (C and epsilon) were 

determined using nested validation in the ten-fold cross-validation. The range of tested alpha value 
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Fig. 6 The deep CNNs for predicting voxel-wise tissue outcome. Top: 2D deep CNN. Middle: 3D deep CNN. 

Bottom: the proposed deep CNN (denoted as “Unit CNN-contralateral”); the first layer is the new convolutional 

layer that learns paired unit temporal filters for comparing the patch of interest and its contralateral patch, which is 

followed by a non-linear layer (ReLU) and then the standard 2D deep CNN. These deep CNNs learn feature filters 

to generate 128 complex hierarchical features in the last fully-connected layer, which are then used by the softmax 

classifier to predict outcome.  Abbreviations: conv (convolutional layer), max-pool (max-pooling layer), full (fully-

connected layer), softmax (softmax classifier), batch norm (batch normalization).  
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for SR-KDA was [0.001, 100]. The range of tested C and epsilon values for SVM were [0.00001, 

16] and [0.0001, 10] respectively.  

A.3 The precision and recall on held-out whole brain data in ten-fold cross-validation. 

A.4  The visualization of feature filters learned in the first layer of the proposed Unit CNNs 

trained with contralateral patches, random patches, and duplicate patches respectively 

Seven of the 16 learned pairing filters of the proposed deep CNNs (trained with contralateral 

patches, random patches, and duplicate patches respectively) are shown in Fig. 7. Each pair of 

filters consists of two 1 x 1 x t (t = 64) 3D filters. Instead of capturing spatial features (e.g., edges) 

as typical 2D filters do, these pairs of 3D filters capture the relationships between two input signals 

in the time dimension. When looking at the pairing filters of the deep CNN trained with duplicate 

patches, one may observe that filters are similar within a pairing filter. In contrast, the variability 

of the pairing filters of the deep CNN trained with contralateral patches is higher: some pairing 

filters appear to be the “opposite” of each other, while others appear to be similar. For example, in 

filter pair number 7, the first filter (top) can detect later signals (indicated as black first and then 

Table 3 Average precision and recall on held-out whole brain data in ten-fold cross-validation when specificity is 

set to a previously published value [6] (specificity=0.830). 

 Precision Recall F-1 

2D CNN 0.172 0.716 0.278 

3D CNN 0.170 0.718 0.275 

Unit CNN-random 0.174 0.745 0.282 

Unit CNN-duplicate 0.165 0.698 0.267 

Unit CNN-contralateral 0.188 0.819 0.306 

GLM 0.143 0.578 0.229 

SVM 0.168 0.540 0.256 

SR-KDA 0.163 0.657 0.261 
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white along time) whereas the second filter detects early signals (indicated as white first and then 

black along time). Compared to these pairing filters, those paired filters trained by the deep CNN 

with random patches were inconsistent and more random in appearance; those paired filters trained 

by the deep CNN with duplicate patches looked similar. This result shows that training with 

contralateral patches results in a distinct class of filters that are associated with better model 

performance.  
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Fig. 7 Seven of the sixteen pairs of 3D filters learned in the first layer of the proposed Unit CNNs trained with 

contralateral patches, random patches, and duplicate patches respectively. Each 3D filter is composed of 64 unit 

filters (along time) with a size of 1 x 1; therefore, each 3D filter has a size of 1 x 1 x t (t = 64). 
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