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Abstract 

Gleason grading of histological images is important in risk assessment and treatment planning for prostate cancer 

patients. Much research has been done in classifying small homogeneous cancer regions within histological images. 

However, semi-supervised methods published to date depended on pre-selected regions and cannot be easily extended 

to an image of heterogeneous tissue composition. In this paper, we propose a multi-scale U-Net model to classify 

images at the pixel-level using 224 histological image tiles from radical prostatectomies of 20 patients. Our model 

was evaluated by a patient-based 10-fold cross validation, and achieved a mean Jaccard index of 65.8% across 4 

classes (stroma, Gleason 3, Gleason 4 and benign glands), and 75.5% for 3 classes (stroma, benign glands, prostate 

cancer), outperforming other methods. 

Introduction 

Prostate cancer is the most common and second most deadly cancer in men in the United States [1]. A key component 

of prostate cancer staging and treatment selection is the Gleason grading system, in which histopathological slides of 

prostate tissue are assigned grades that represent the aggressiveness of the cancer. The Gleason scale ranges from 

Gleason 1(G1) - Gleason 5 (G5), with a score of G1 indicating cancer that closely resembles normal prostate glands 

and a score of G5 indicating the most abnormal histopathology, which is associated with the highest mortality risk. 

Final Gleason scores are generated by summing the first- and second-most prevalent patterns in the tissue sections. 

Currently, Gleason score is the best biomarker in predicting long term outcome of prostate cancer [2–4]. Yet, a recent 

clinical trial found no significant difference in mortality at 10 years between patients on active surveillance and 

immediate surgery [5], underscoring the need for more effective risk stratification tools to improve the outcomes of 

treatment deferral. Studies have also demonstrated the prognostic value of quantitative pathology features, such as the 

percent of Gleason 4, for diagnosis and treatment planning [3,6,7].  In addition, Gleason scores are assigned manually 

through pathologist review, a process that has been shown to have low inter-observer agreement across pathologists, 

especially when differentiating Gleason 3 (G3) vs Gleason 4 (G4), a distinction that may have substantial impact on 

further care [8–10]. 

A computer aided diagnosis (CAD) tool for performing Gleason scoring would provide a repeatable method for 

grading cancers and may be used as a pre-step for quantitative pathology features extraction, thus providing a more 

precise assessment of cancer stage and treatment planning. In this paper, we propose a multi-scale U-Net CNN model 

for pixel-wise Gleason score prediction. We also compare performances of several machine learning approaches to 

Gleason score assignment, including a pixel-wise deep convolutional neural network (CNN), a standard U-Net, the 

proposed multi-scale U-Net, and the previous work by Gertych, et.al.[11] on 224 histological image tiles from radical 

prostatectomies of 20 patients.  

Previous Work 

Work has been done in developing an automatic Gleason grading system to help improve diagnosis accuracy and 

achieve quantitative histological image analysis. A commonly used approach is to extract tissue features and apply 

classifiers on pre-selected small image tiles, each of which only contains one tissue class. Farjam, et.al. [12] developed 

a method to segment prostate glands with texture-based features, and then used the size and shape features of glands 

to classify image tiles into benign or malignant glands. Nguyen, et.al. [13] used structural features of prostate glands 



  

to classify pre-extracted regions of interest (ROIs) into benign, G3 and G4, achieving an overall accuracy of 85.6%. 

In the work by Gorelick, et.al. [14], a two stage Adaboost model was applied to classify around 991 sub-images 

extracted from 50 whole-mount sections of 15 patients. They achieved 85% accuracy for distinguishing high-grade 

(G4) cancer from low-grade cancer (G3).  

However, the above algorithms require a set of pre-extracted image tiles with homogeneous tissue content, which may 

not be generalizable to larger and more heterogeneous images. Moreover, accurate localization of such small image 

tiles is a non-trivial problem [15]. Rather than attempting to classify the entire image tile, some efforts focus on 

segmenting and classifying glands with glandular features such as lumen shape and nuclei density [16,17], but these 

efforts require well-defined gland boundaries, and may not be applicable for high-grade prostate cancer with few 

recognizable glands.  

Instead of using features from segmented glands, Gertych, et.al. [11] used intensity and texture features from joint 

histograms of local binary patterns and local variance to segment stroma (ST), prostate cancer (PCa), and benign 

glands (BN). In their two-stage classifier, a support vector machine (SVM) was trained with local intensity histogram 

to separate ST and epithelium (EP) areas, and then a random forest (RF) classifier was trained to segment BN and 

PCa. They obtained an average Jaccard index (J) of 59.5% for segmenting ST and EP areas. For separating BN and 

PCa, they achieved a JBN of 35.2% and a JPCa of 49.5% ± 18.5 in the test set. Although their model was able to do 

pixel-wise classification on heterogeneous image tiles, they did not address the problem of differentiating high-grade 

(G4) versus low-grade cancer (G3).   

Additional previous work has explored the use of neural network models to learn features directly, rather than using 

handcrafted features. Deep convolutional neural network (CNN) models have demonstrated high performance in a 

variety of natural image analysis tasks [18–21]. Litjens, et.al. [22] implemented a deep convolutional neural network 

(CNN) to detect cancerous areas on prostate biopsy slide images at 5x magnification. They achieved around 0.90 

AUC, but did not address the challenge of distinguish high-grade versus low-grade cancer. 

Pixel-wise deep convolutional networks are difficult to apply to pathology image analysis due to the high resolution 

of digital pathology slides [23,24], direct analysis of which would generally require more memory than is available 

on a graphics processing unit (GPU). Two approaches to handling this challenge are resolution downsampling and 

patch extraction. In down-sampling, high resolution images are scaled down to more manageable sizes, at the cost of 

the loss of potentially discriminative fine details. In patch extraction, images are divided into (possibly overlapping) 

sub-patches that are then treated as independent training samples. This approach allows for the analysis of full 

resolution data, but may lead to an intractable number of potential patches, requiring subsampling of the dataset. In 

both of these methods, an overall prediction is created for the image or the patch. 

Shelhamer and Long, et.al. [24,25] proposed a fully convolutional network (FCN) that can be trained from end to end 

to output pixel-wise predictions for an entire input image patch (rather than a single prediction for the patch). In order 

to get dense predictions for each pixel, they used up-sampling operations, and replaced the final fully connected layer 

with an Nx1x1 convolution layer, which output probabilities for N classes. Shallow layer features were fused with 

deep layer features to mitigate the challenge that intensive up-sampling can lead to coarse segmentation results. The 

model obtained a mean J of 67.5% and showed 30% improvement on PASCAL VOC 2011 test datasets.  

The U-Net architecture proposed by Ronneberger, et.al.[26] extended the FCN by adding a relative symmetric up-

sampling path to down-sampling path, creating a U-shaped network architecture. Another important modification of 

U-Net was the use of an overlap-tile strategy for large image segmentation, in which a slightly larger tile is used as 

input and predictions are produced for the centered small tile. This method achieved an average J of 77% on a cell 

segmentation task [26].  

While much work has been done in histological image analysis of prostate cancer, few addressed the problem of 

differentiating high-grade versus low-grade cancer. In this paper, we developed a multi-scale U-Net to predict four 

tissue classes at once (ST, BN, G3, and G4). We compared the proposed method with a pixel-wise CNN, a standard 

U-Net and a previous work by Gertych et.al.[11] using a combined SVM and RF classifier. The multi-scale U-Net 

outperformed all other models and achieved the highest mean J of 65.8% across four classes. 

Methods 

Dataset 

Radical prostatectomy specimens from 20 patients with a diagnosis of G3 or G4 prostate cancer according to the 

contemporary grading criteria [27,28] were retrieved from archives in the Pathology Department at Cedars-Sinai 



  

Medical Center (IRB approval no. Pro00029960). The specimens were previously stained with hematoxylin and eosin 

(H&E) for histological evaluation of the tumor. Slides were digitized by a high resolution whole slide scanner 

SCN400F (Leica Biosystems, Buffalo Grove, IL). The scanning objective was set to x20. The output was a color RGB 

image with the pixel size of 0.5μm x 0.5μm and 8 bit intensity depth for each color channel. Areas with tumor 

previously identified by the pathologist were extracted from whole slide images (WSIs) and then saved as 1200 x 

1200 pixel image tiles for analysis. 224 tiles were selected by three collaborating pathologists [11] who identified 

stroma (ST), benign glands (BN), G3 cancer, and G4 cancer containing cribriform and non-cribriform growth patterns. 

Individual glands and stroma in each tile were annotated manually using a custom graphical user interface [11]. All 

annotated image tiles were cross-evaluated by the pathologists, and corrections made if there was no consensus. This 

collection contains: BN (n=32), G3 (n=24), G4 (n=22), G3 and BN (n=29), G4 and BN (n=6), G3 and G4 (n=80), and 

G3 and G4 and BN (n=31) image tiles. All tiles were normalized to account for stain variability [29]. 

Semantic Image Segmentation with a Deep Convolutional Neural Network 

For baseline comparison, a deep CNN model was trained to produce pixel-wise class predictions. The tile dataset was 

split into a training set containing 187 tiles and a testing set containing 37 tiles. In order to avoid correlations between 

data in the training and tests sets, tiles belonging to the same patient were restricted to either the training set or the 

testing set, yielding 17 unique patients in the training set, and 3 unique patients in the testing set (cross-validation was 

not used due to the large time requirements for evaluating the model). 

The Inception V3 CNN model [30] was used with an input size of 299x299 pixels. Patches of size 299x299 were 

extracted from the pathology image tiles and then used for training and evaluation of the network. The label for any 

given patch was set to be the true label of the central pixel of the patch. Because there are a large number of possible 

299x299 patches (each tile has over 800,000 possible 299x299 patches), it is impractical to train a network on every 

patch that exists in the dataset. Instead, patches were sampled (with replacement) from the training set using balanced 

random sampling. In this approach, patches were sampled with equal probability for each class. Within a given class, 

every potential patch that would fall into the class had equal probability of being sampled. Because of the class 

imbalance of the dataset, in this methodology, individual potential patches from different classes would have unequal 

probability of being sampled. Training was performed using an RMSProp (LR = 0.001, 𝜌 = 0.9, 𝜖 = 10−8) [31] 

optimizer using Keras [32] with Tensorflow [33] on two NVIDIA Titan X GPUs with synchronous gradient updates 

and a batch size per GPU of 50 patches. In order to saturate the GPUs during training, patch sampling was run in 

threads with separate state; one sampler thread was used per GPU. Training was performed over 25 “epochs” of 

100,000 patches.  

For evaluation, every possible patch was extracted from tiles in the testing set, and any patches that would have 

extended outside of the bounds of the original tile were discarded. Class predictions were obtained for these patches 

from the network, and each pixel was assigned a class based on the maximum prediction probability for that pixel. 

 
 (a)          (b) 

Figure 1. Variations in gland size. (a) shows a tile with heterogeneous Gleason grades (G3, G4 and benign 

glands). (b) is shows a The high-grade cancer (G4) areas are shown in red, low-grade cancer (G3) areas are 

denoted as pink, benign glands are indicated by green, and stroma areas are represented by blue. Not only the 

size of glands with different grade can vary greatly (eg. Gland A and Gland C)., but also glands within the same 

grade can have very different sizes (eg. Gland A and Gland B). The variant in tissue structures makes it difficult 

to capture sufficient contextual information especially for large glands, like Glands B and C.  

Gland A 

Gland B 

Gland C 



  

Semantic Image Segmentation with U-Nets 

Convnets produce dense predictions by extracting patches around every pixel, which can be inefficient even for images 

with moderate size. The FCN proposed by Shelhamer and Long, et.al. [24,25] uses up-sampling and fully 

convolutional layers to generate pixel-wise predictions efficiently in a single pass. The pooling operation makes CNNs 

relatively invariant to spatial transformations and also reduces spatial resolution of feature maps. To  enable making  

local predictions with global context, the U-Net [26] extends an FCN with a U-shape architecture, which allows 

features from shallower layers to combine with those from deeper layers [24,26].   

One intuitive way of performing semantic segmentation with FCNs is to use the entire image as the input. However, 

the size of an input image is limited by the GPU memory. To solve such a problem, large images may be divided into 

several smaller patches, and the overlap-tile strategy is then used for seamless segmentation [26]. Such tiling seeks a 

tile size that includes sufficient contextual information for segmentation. In the context of prostate segmentation, the 

size of cellular structures, such as glands, in histological images of varies greatly, as shown in Figure 1. To better 

segment tissue structures with variable size, we propose a multi-scale U-Net architecture that incorporates patches 

(tiles) of three different sizes: 400x400, 200x200, and 100x100 to explicitly provide contextual information at multiple 

scales [34]. To handle border patches that cause one of these patch sizes to extend past the boundary of a given image 

tile, the tile is padded with reflection of the border [26]. A detailed overview of our multi-scale U-Net architecture is 

shown in Figure 2. Instead of taking the whole 1200 x1200 image tile as input, we divided images into 100x100 

subtiles and extracted the three patches of varying size around each of these image subtiles. Features from different 

sizes of patches were then concatenated together and used as inputs for the Multiscale U-Net model. The commonly 

used fully connected layer was replaced by a 4x1x1 convolutional layer that output pixel-wise probabilities for four 

classes (G3, G3, ST, and BN).   

We trained two FCN models in our experiments. The first mosdel was the baseline U-Net that followed existing work 

[26]. The other model is our proposed multi-scale U-Net. Both models were trained with batch gradient descent (batch 

size: 25) and backpropagation. A momentum of 0.9 and a learning rate of 0.05 were used. A heuristic was followed 

to improve the learning of deep neural network model [19], where the learning rate was decreased by 10x when 

validation errors stopped decreasing. Models were implemented in Torch7 [35], and the training was done on two 

NVIDIA Titan X GPUs. The dataset of 20 patients was divided into 10 folds resulting in two patients in each fold. 

This patient-based cross validation ensured independence of training and testing data.  

Evaluation Metrics 

 

 
Figure 2. Architecture of the multi-scale patch-based U-Net. The whole image was divided into multiple non-

overlapping 100×100 patches. To capture contextual information, a 200×200 patch (framed in yellow) and a 

400×400 patch (framed in black) were extracted around each centered 100×100 patch (framed in red). Features of 

different sizes were either down-sampled or up-sampled to 200x200, and concatenated into 64×200×200 feature 

maps that were input to a U-Net model. The final layer output a 4×100×100 probability map, each channel of which 

corresponded to a probability map of one class.  
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Overall pixel accuracy, mean accuracy for each class, and Jaccard index are three commonly used evaluation metrics 

for multi-class semantic image segmentation. Overall pixel accuracy measures the proportion of correctly classified 

pixels, however, it can be biased by imbalanced datasets. Mean single-class accuracy calculates the average proportion 

of correctly classified pixels in each class, which can also be biased by imbalanced datasets and overestimates the true 

accuracy due to combining multiple negative classes into one inference class [36–38]. Jaccard index, also known as 

intersection-over-union, overcomes the limitations of overall pixel accuracy and mean accuracy since it considers both 

false positives and negatives.  

Here, we report Jaccard index for our four models, which can be obtained from a pixel-wise confusion matrix 𝑪.  𝐶𝑖𝑗 

is the number of pixels labeled as i and predicted as j. The total number of pixels with label i is denoted as 𝑇𝑖 =
∑ 𝐶𝑖,𝑗

𝑁
𝑗=1 , where N is the number of classes. The number of pixels predicted as j is represented as 𝑃𝑗 = ∑ 𝐶𝑖,𝑗𝑖  [36]. 

The Jaccard index for class i is then defined as follows: 

𝐽𝑖 =
 𝐶𝑖,𝑖

𝑇𝑖 + 𝑃𝑖 − 𝐶𝑖,𝑖

                                                                                               (1)  

 

Results and Discussion 

Model Comparison 

For the pixel-wise deep CNN model, class predictions were produced for a testing set comprising 30,170,133 pixels 

in 37 tiles across 3 patients. For the standard and multi-scale U-Net models, pixel-wise confusion matrices were 

summed across all 10 folds. In the first evaluation, true positive, true negative, false positive, and false negative rates 

for each class were calculated for all pixels in the dataset. Gleason 3 and Gleason 4 predictions were summed into a 

single inference class (PCa) for evaluation. For comparison, results from a baseline SVM + RF model by Gertych 

et.al. [11] are also included. The Jaccard index of each model is reported in (Table 1). 

 

The analysis was also performed without combining Gleason 3 and Gleason 4 into a single class, with performance 

shown in (Table 2). In both cases, the same network (trained on separate classes) was used for prediction. The multi-

scale U-Net architecture achieved the highest Jaccard index in both segmentation tasks: mean J = 75.5% for 3 class 

segmentation and mean J = 72.6% for 4 class segmentation. Both the U-Net and multi-scale U-Net models 

outperformed the pixel-wise CNN and the SVM-RF model by Gertych et.al. [11]. 

Table 2. Model performances on segmenting Gleason 4 (G4), Gleason 3 (G3) benign glands (BN) and stroma (ST).  

 
JG3 JG4 JBN JST Mean J 

U-Net 45.8% 60.9% 70.6% 80.1% 64.4% 

Multi-scale U-Net 49.8% 61.5% 72.6% 79.3% 65.8% 

Pixel-wise CNN 23.0% 25.0% 59.0% 71.0% 45.0% 

Gertych, et.al. [11]a n/a n/a 35.2% 59.5% 47.4% 

 
a The previous model (SVM+RF) by Gertych, et.al. only addressed three class segmentation by combining G3 and G4 to PCa. 

 

Table 1. Model performances on segmenting prostate cancer (PCa), benign glands (BN) and stroma (ST).  

 
JPCa JBN JST Mean J 

U-Net 74.3% 70.6% 80.1% 75.0% 

Multi-scale U-Net 74.7% 72.6% 79.3% 75.5% 

Pixel-wise CNN 66.0% 59.0% 71.0% 65.0% 

Gertych, et.al. [11] 49.5% 35.2% 59.5% 48.1% 

 
  



  

Segmentation results generated by U-Net and multi-scale U-Net for two representative image tiles were shown in 

(Figure 2). Our models performed well in segmenting different tissue types on image tiles with heterogeneous content, 

but both models struggled with some border areas due to a lack of contextual information. The small high-grade gland 

pointed by a white row at the second row in (Figure 2), for example, was segmented as low-grade gland by both 

models. 

In cases in which global information may be more important for class prediction, the multi-scale U-Net showed 

superior performance. As shown in (Figure 3), the single input U-Net misclassified areas with dense nuclei on a large 

benign gland. However, the multi-scale U-Net was able to segment this area correctly.  

Though both models could segment large irregular high-grade glands very well (Figure 2), they had limited power in 

segmenting poorly-formed high-grade areas, as shown in the first row of (Figure 4). Models could detect the 

approximate location of high-grade cancer, but failed to segment the exact areas.  

Segmentation performance of both models decreased on tiles with a mixture of small high-grade glands and small 

low-grade glands. The highest Jaccard indices for G3 and G4 achieved by the multi-scale U-Net were 49.8% and 

61.5%, respectively. This reflects the reality that differentiating G3 and G4 is a challenging task, even for pathologists. 

The inter-observer agreement of clinical pathologists for distinguishing G3 from G4 is between 25% to 47% [11,39]. 

A large dataset that represents more of the natural variance of these cancer grades could allow for improving the 

models’ ability to discriminate between these classes. 

 

 

 
       

 
Figure 3. Segmentation masks generated by the U-Net and the multi-scale U-Net. Both ground truth masks and 

predictions are overlaid on original image tiles for easy interpretation. The high-grade cancer (G4) areas are marked 

as red, low-grade cancer (G3) areas are denoted as pink, benign glands are indicated by green, and stroma areas are 

represented by blue. The first row shows segmentation results for an image tile with three tissue types (benign, 

stroma, and G3 cancer). The second row shows a representative image tile with two tissue types (G3 and G4 cancer). 

White arrows point to border areas that both models struggle with.  



  

Conclusion 

In this paper, we addressed the challenge of segmenting different tissue types on heterogeneous histological image 

tiles by using deep learning techniques. The performance of three different deep learning models (pixel-wise CNN, 

U-Net, multi-scale U-Net) were evaluated and compared using the Jaccard index. All three models outperformed a 

reference algorithm on three-class (ST, BN, PCa) segmentation. Both the U-Net and multi-scale U-Net models 

achieved a higher Jaccard index than the pixel-wise model. The multi-scale model with three types of inputs (400x400, 

200x200, 100x100) showed superior performance as compared with the original U-Net, likely due to its ability to 

explicitly make use of more global information without overly increasing memory requirements during model training. 

There are some limitations in our work. Models were only trained on image tiles, rather than whole histological 

images. Though our method can be extended to whole image segmentation by splitting these images into non-

overlapping tiles, the prediction accuracy for boundary patches could be influenced by lack of contextual information 

and changes in class balance. Also, our model did not perform as well in segmenting G4 cancer with less differentiated 

glands. Exploring other approaches, such as the use of two separated models with two scales of inputs [40], could 

 
Figure 4. Segmentation results comparison for the multi-scale U-Net and the U-Net. Again, high-grade cancer (G4) 

areas are marked as red, low-grade cancer (G3) areas are denoted as pink, benign glands are indicated by green, and 

stroma areas are represented by blue. The multi-scale U-Net successfully segmented the large irregular benign gland, 

while the U-Net with single scale input did not.  

 

 
 

 
Figure 5. Segmentation results for some challenging tiles. Colors follow the same schema illustrated in Figure 2. 

The first row shows an image tile containing G4 cancer with poorly-formed glands. Glands were less differentiated 

on that tile, likely increasing segmentation difficulty. The second row presents a tile with a mixture of small high-

grade glands and small low-grade glands.  

 

 



  

improve performance in the future. We also plan to investigate the influence of global versus local features on 

predicting dense labels, and will perform further evaluations of our models with whole histological images and extend 

our algorithm to a computerized tool which can be used to extract reliable and reproducible quantitative features from 

histological images. 
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