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Abstract 

Automated Gleason grading is an important preliminary step for quantitative histopathological feature 

extraction. Different from the traditional task of classifying small pre-selected homogeneous regions, 

semantic segmentation provides pixel-wise Gleason predictions across an entire slide. Deep learning-based 

segmentation models can automatically learn visual semantics from data, which alleviates the need for 

feature engineering. However, performance of deep learning models is limited by the scarcity of large-scale 

fully annotated datasets, which can be both expensive and time-consuming to create. One way to address 

this problem is to leverage external weakly labeled datasets to augment models trained on the limited data.  

In this paper, we developed an expectation maximization-based approach constrained by an approximated 

prior distribution in order to extract useful representations from a large number of weakly labeled images 

generated from low-magnification annotations. This method was utilized to improve the performance of a 

model trained on a limited fully annotated dataset. Our semi-supervised approach trained with 135 fully 

annotated and 1,800 weakly annotated tiles achieved a mean Jaccard Index of 49.5% on an independent test 

set, which was 14% higher than the initial model trained only on the fully annotated dataset.  
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1. Introduction 

Prostate cancer (PCa) is the most common cancer and the second leading cause of cancer death in men in 

United States, accounting for about 21% of newly diagnosed cancer cases, and 8% of cancer deaths (Siegel 

et al., 2016). The Gleason grading system, which is based on visual interpretation of tumors’ microscopic 

characteristics by pathologists, consists of five different histologic patterns from Gleason 1 (G1) indicating 

tissue that closely resembles normal prostate glands to Gleason 5 (G5) indicating the most aggressive 

pattern. The final Gleason score (GS) is generated by summing the most (primary Gleason pattern) and 

second most (secondary Gleason pattern) prevalent patterns in the tissue section. Currently, Gleason grades 

serve as the best biomarker in prostate cancer staging and treatment planning (Kwak et al., 2016). Patients 

diagnosed with high-risk PCa (GS > 7) are often treated with radical prostatectomy, radiation or hormonal 

therapy, while those with low- to intermediate-risk PCa (GS ≤ 7) may undergo active surveillance. Yet, a 

recent clinical trial showed that there is no significant difference in 10-year mortality between patients in 

active surveillance and treatment groups, which emphasizes the need of developing more effective 

biomarkers for staging and risk stratification (Hamdy et al., 2016). Moreover, manual assignment of 

Gleason grade is time-consuming and prone to inter- and intra- observer variability (Huang et al., 2014; 

Humphrey, 2004; Lavery et al., 2012).  



A semantic segmentation model would provide Gleason grading for each pixel, which can be used as a 

preliminary step to extract quantitative pathological image features that are representative of underlying 

characteristics of tumor. However, training such a model may require a large-scale dataset to be annotated 

at gland-level, which would be expensive and time-consuming to produce. Conversely, image-level 

annotations extracted from low magnification annotations (LMAs) can be generated easily. Fig. 1 shows 

the difference between gland-level annotations and LMAs. The goal of this paper is to utilize these image-

level annotations to adjust a classifier initially trained on a limited dataset, reducing the reliance on 

expensive pixel-wise annotations. 

The main contributions of this paper are:1) to the best of our knowledge, this is the first work that leverages 

an expectation maximization (EM)-based semi-supervised approach to improve pixel-wise Gleason grading 

on whole slide images with LMAs; 2) we incorporate prior knowledge about epithelium-stroma distribution 

as bias into EM training to improve semi-supervised learning; and 3) we evaluate our EM-based algorithm 

on a dataset obtained from a different patient cohort, and show that it further improves the performance of 

the multi-scale U-Net performing semantic image segmentation.  

2. Related work 

We first review some fully supervised models of histopathological images analysis in Section 2.1. In 

Section 2.2, we review related work on weakly supervised image segmentation. 

2.1. Histopathological image analysis for prostate cancer 

The development of high-resolution digital whole slide scanners has enabled new research opportunities in 

the quantitative image analysis of histology slides. A common approach for analyzing histology images is 

to build classifiers with hand-crafted features on manually extracted small regions of interest (ROIs) 

(Farjam et al., 2007; Gorelick et al., 2013; Nguyen et al., 2012a). However, these methods require a set of 

 

Fig. 1. Differences between LMAs and gland-level annotations. (A) A whole slide image with LMAs 

visualized at 0.4x. Many weakly labeled tiles can be extracted from these LMAs. (B) A 1200 × 1200 

tile sampled from one of the G3+G3 LMAs on A. It only has an image-level label of G3 inherited from 

the LMA. (C) A tile with gland-level annotations. The low-grade cancer (G3) and stromal areas are 

indicated by pink and blue colors respectively. (Figures are best viewed in color.) 



small pre-selected ROIs with relatively homogeneous tissue content, which might not generalize well for 

segmentation of large and heterogeneous slides (Doyle et al., 2012). Instead of classifying ROIs, approaches 

have been proposed to address the challenge of pixel-wise prediction, also referred to as semantic 

segmentation of histology slides (Gertych et al., 2015; Nguyen et al., 2012b; Peng et al., 2011). Gertych et 

al. (2015) applied a two-stage model to perform segmentation with intensity and texture features from joint 

histograms of local binary patterns and local variance. A support vector machine (SVM) was trained to 

segment stroma (ST) and epithelium (EP) areas. The output of the SVM was used to further segment 

epithelium into benign or cancerous areas. They achieved an average Jaccard Index (J) of 47.4%.  

However, the aforementioned approaches rely on hand-crafted features to capture large variances presented 

in whole slide images. Fig. 2 shows visual variances of glands both within the same grade and between 

grades (Li et al., 2017). Instead of using human-engineered representations, convolutional neural networks 

(CNN) can learn features directly from images, and have achieved state-of-the-art results of classification 

on many natural image datasets (He et al., 2016; LeCun et al., 2015, 1998; Sermanet et al., 2013; Simonyan 

and Zisserman, 2015). To adapt CNN models for efficient dense prediction tasks, Long et al. (2015) 

proposed a fully convolutional network (FCN) that achieved promising performance on semantic 

segmentation of natural images. Different from deep CNNs, FCNs replace fully connected layers with 1 ×
1 convolutional layers and up-sampling operations that are used to recover the feature map size. This 

architecture enables dense pixel-wise predictions to be generated in a single pass. FCNs have also been 

applied in semantic segmentation of histological slides (Chen et al., 2016; Ing et al., 2018; Li et al., 2017; 

Wang et al., 2016). To address the challenge of cancer grading, we previously proposed a multi-scale U-

Net to explicitly combine contextual representations from different scales for pixel-wise Gleason prediction  

(Li et al., 2017). In a recent work by (Ing et al., 2018), different FCN approaches were compared to the 

multi-scale U-Net on semantic segmentation of histological images from prostatectomies, and the multi-

scale U-Net model achieved comparable performance with fewer network parameters.  

 

Fig. 2. Visual variations in gland size and grade. A) shows a tile containing glands of different Gleason 

grades (low-grade, high-grade and benign glands). The gland-level annotation is shown as overlay in B. 

Heterogeneity of glands can exist both between grades (e.g. gland A and gland C) and within the same 

grade (e.g. glands A and gland B). The high-grade cancer (G4 or G5), low-grade cancer (G3), benign 

glands and stromal areas are indicated by red, pink, green, and blue colors respectively. (Figures are 

best viewed in color.) 

 



2.2. Weakly supervised image segmentation 

Previous methods have achieved significant performance on semantic segmentation. However, a large-scale 

dataset with expert annotations at gland-level is both time-consuming and expensive to obtain. It is much 

easier to create a large-scale dataset with weak annotations such as whole slide image-level labels or LMAs. 

Several existing approaches have been developed to address the challenge of leveraging information 

embedded in data with weak annotations such as image tags, and bounding boxes (Durand et al., 2016; 

Kraus et al., 2016; Pinheiro and Collobert, 2015; Wu et al., 2015; Xu et al., 2014, 2012a, 2012b). Learning 

with weak labels is often formulated in the multiple instance learning (MIL) framework (Andrews et al., 

2003; Dietterich et al., 1997; Jia et al., 2017; Maron and Lozano-Pérez, 1998) where training data consists 

of labeled bags with multiple unlabeled instances, with the goal to predict labels of unseen bags or instances.  

Noisy-OR (Viola et al., 2005), Generalized Mean (GM) (Zhang et al., 2005), and log-sum-exponential 

(LSE) (Ramon and De Raedt, 2000) are some commonly utilized methods to aggregate pixel-level 

probabilities into image-level prediction. Jia et al. (2017) developed a constrained weakly supervised FCN 

model, which utilized the GM function to aggregate pixel-wise probabilities into image-level labels in order 

to segment cancerous areas on histopathology images of colon cancer. The model is a binary classifier and 

requires percent estimates of classes to train, information that is not available for all histology images.  An 

aggregation function can be easily incorporated into an FCN network, but training errors can propagate 

through pixels with large prediction confidence, which can be affected by few significant misclassified 

pixels (Hou et al., 2016).  

EM-based approaches can find the optimal solution by iteratively updating prediction masks and model 

parameters. Papandreou et al. (2015) trained an EM model and employed a bias on model output to 

encourage at least 𝑃 percentage of each image to be assigned to foreground. Those approaches require 

initialization with pre-trained models on the large ImageNet dataset, and tuned with a weakly labeled 

dataset for semantic segmentation. Different from their approaches, we start with an undertrained model, 

and leverage new information embedded in a weakly labeled dataset to improve the segmentation 

performance. The proposed EM-based approach was regularized by an estimated prior distribution, and 

improved the mean J compared with the initial fully supervised model. 

3. Method 

In Section 3.1, we first introduce the deep learning-based semantic segmentation models that are utilized 

to compute potential hidden labels in the EM framework. We then present details about how to improve 

segmentation with weakly annotated data using the EM framework in Section 3.2. 

3.1. Semantic image segmentation using FCN-based models 

3.1.1. The basic architecture of FCN models 

Similar to CNN-based segmentation models, visual patterns in FCN-based models are learned in a data-

driven way through multiple convolution and maximum pooling layers. Unlike CNN-based methods where 

each pixel in the image is considered independent and models are trained to classify the centered pixel of a 

patch using features within that patch, FCN models can generate predictions for every pixel in the image 

simultaneously, making them more suitable for large image segmentation. Up-sampling and 1 ×  1 

convolution are two types of operations that enable dense predictions to be produced in one pass.  

1) 1 × 1 convolution: The fully connected layer is replaced by a K × 1 × 1 convolutional layer to produce 

pixel-wise probability maps for K classes.  



2) Up-sampling: This operation reverses the process of convolution and recovers the spatial resolution of 

feature maps, which have been reduced by pooling and strided convolution operations designed to achieve 

relative spatial invariance. 

Many FCN models are built upon successful classification networks such as VGG (Szegedy et al., 2015), 

and ResNet (He et al., 2016), which are usually designed to have very deep architecture in order to enhance 

the expressive power of deep features. Extensive up-sampling operations are required to recover the spatial 

resolution of feature maps. Nevertheless, simple up-sampling of feature maps may not be able to recover 

the fine details of low-level features. There are many different approaches to address such challenges 

(Badrinarayanan et al., 2015; Chen et al., 2017a, 2017b; Long et al., 2015; Ronneberger et al., 2015). Skip 

connections, which combine high-level semantic features with low-level representations, are commonly 

used to refine spatial precision of feature maps and make local predictions with respect to global context 

(Long et al., 2015; Ronneberger et al., 2015). 

3.1.2. The multi-scale U-Net 

The U-Net (Ronneberger et al., 2015) is an encoder-decoder network based on the FCN architecture. 

Different from the original FCN architecture, the number of feature channels is also large along the up-

sampling path, which forms symmetric feature contracting and expanding paths (Szegedy et al., 2015). 

Though U-Net achieved state-of-the-art performances on an electron microscopic stacks dataset (Arganda-

Carreras et al., 2015), training semantic networks with very large images can be memory intensive and 

requires a large amount of fully annotated data.  

Down-sampling is an intuitive approach to enable segmentation on high resolution images, but fine features, 

such as nuclei, can be lost. To alleviate the high computational cost and perform data augmentation, large 

images can be divided into multiple smaller patches, and an overlap-tile strategy can be utilized for seamless 

segmentation (Li et al., 2017; Ronneberger et al., 2015). However, this process requires the size of patches 

to be carefully chosen such that tissue structures with variable sizes can be segmented with sufficient 

contextual information. In addition, both high-resolution nuclear features and low-resolution morphological 

representations from glands are important in cancer grading. For example, the prominence of nucleoli is an 

important feature in prostate cancer grading, but it should only be considered in the context of glandular 

structures to avoid over-diagnosis or under-diagnosis (Kaisary et al., 1999; Nguyen et al., 2011). Building 

upon the U-Net architecture, the multi-scale U-Net (Li et al., 2017) presented in our previous work models 

features from different scales with a set of increasingly larger patches. Specifically, k patches of different 

scales (400×400, 200×200, and 100×100) are extracted around each centered 100×100 patch. Smaller 

patches are designed to capture high-resolution nuclear features at the center, and larger patches are utilized 

to extract low-resolution shape features from glands. Deep visual representations from multiple scales are 

concatenated to generate a semantic segmentation output for the center patch. Fig. 3 shows the architecture 

of our multi-scale U-Net.  



 

3.2. Semi-supervised learning with an EM-based framework 

To improve segmentation performance, we employ two different types of EM-based models: EM with fixed 

bias (EM-fixed) and EM with adaptive bias (EM-adaptive). In weakly supervised segmentation, only 

image-level labels are available, while pixel-wise annotations are unknown. We denote the label for tile k 

as 𝑦𝑘 ∈ 𝑌, 𝑘 = 1,2, … , 𝑀, and the pixel value at location (𝑖, 𝑗) as 𝑥𝑖,𝑗 ∈ 𝑋 . The label for each pixel is 

considered as hidden variable 𝑧𝑖,𝑗 ∈ 𝑍. The complete data is {X, Z}. To maximize the marginal likelihood 

of observed data as defined in (1), the EM algorithm iteratively alternates between making guesses about 

the hidden pixel labels 𝑧𝑖,𝑗  in the E-step and finding the optimal model parameters 𝜃  that maximize 

𝑝(𝑍|𝑋, 𝜃) in the M-step (Bishop, 2006; Gupta and Chen, 2010; Papandreou et al., 2015). Here, we can 

adopt an FCN-based model (multi-scale U-Net) to produce pixel-wise probability maps 𝑝(𝑍|𝑋, 𝜃). 

𝑃(𝑋|𝜃) = ∑ 𝑃(𝑋, 𝑍|𝜃)

𝑍

                                                                               (1) 

However, this approach may fail because of the singularities of the log-likelihood function (Gupta and 

Chen, 2010). For example, the model could converge to a point that predicts most pixels to be stroma. To 

prevent such degeneracy, we constrain the model output based on the image-level labels. One simple 

method to incorporate image-level labels is to apply a fixed bias on the output probability maps. 

Specifically, the probability of any class except the labeled class and stroma is set to 0, and the fixed bias 

𝛽 will be applied to incorporate our belief that the pixel has 𝛽 probability to be classified as the labeled 

class. Assuming that the model will output a probability 𝑃(𝑦𝑖
𝑗
) for class j of pixel 𝑖 in a tile labeled as 𝐾, 

and the stromal class is represented as 𝑆, the updated probability 𝑃′(𝑦𝑖
𝑗
) can be calculated by (2). 

 

Fig. 3. The patch-based multi-scale U-Net. To explicitly provide contextual information, deep 

representations from a 100×100 patch, a 200×200 patch, and a 400×400 are combined to segment the 

centered 100×100 patch. (Figures are best viewed in color.) 

 



𝑃′(𝑦𝑖
𝑗
) =

1

𝑇
{

 0, 𝑗 ≠ 𝐾 𝑜𝑟 𝑆

    𝛽 𝑃(𝑦𝑖
𝑗
), 𝑗 = 𝐾          , 𝑤ℎ𝑒𝑟𝑒 𝑇 =  𝛽 𝑃(𝑦𝑖

𝑗=𝐾
) + (1 −  𝛽)𝑃(𝑦𝑖

𝑗=𝑆
)       

(1 −  𝛽)𝑃(𝑦𝑖
𝑗
), 𝑗 = 𝑆

(2) 

The method encourages pixels to be classified as the tile-labeled class or stroma. Yet, 𝛽 has to be carefully 

selected to improve performance. We propose an adaptive bias to match the distribution of latent pixel-wise 

labels to the prior distribution 𝑄(𝑍), based on the assumption that the distribution of epithelial areas versus 

stroma is similar for tiles within the same grade, but different between grades (e.g. in high-grade tiles, 

cancerous cells infiltrate into surrounding tissues, which results in reducing of stromal areas). In practice, 

at each E-step we adaptively select the bias 𝛽 for each class to be applied on the output probability map 

𝑃(𝑍|𝑋, 𝜃) by minimizing the Kullback-Leibler (KL) divergence between the prior distribution and the 

average distribution derived from model outputs given current parameter 𝜃, and bias 𝛽 settings. 

The following is an overview of our EM-based approach with adaptive bias: 

Initialization: Parameters obtained from the multi-scale U-Net model trained on a small dataset (135 tiles) 

with gland-level annotations are used as the initial point 𝜃0. 

E-step: Calculate 𝑃(𝑍𝑡|𝑋, 𝜃𝑡 ) based on current parameters 𝜃𝑡 at EM iteration 𝑡. Generate the average 

distribution of Gleason grade predictions 𝐻(𝑍𝑡) from probability maps 𝑃(𝑍𝑡|𝑋, 𝜃𝑡 ).  A class-specific 

adaptive 𝛽 is applied on probability maps in order to minimize the KL divergence between 𝐻(𝑍) and the 

prior distribution, 𝑄(𝑍). Updated probability maps are calculated by (1) with 𝛽 = 𝛽∗ 

                𝛽∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽 ∑ 𝐾𝐿(

𝑖∈𝐺

𝐻(𝑍𝑖
𝑡), 𝑄(𝑍𝑖)), 𝐺 = {𝐸𝑝𝑖𝑡ℎ𝑒𝑙𝑖𝑢𝑚, 𝑆𝑡𝑟𝑜𝑚𝑎}                            (3) 

M-step: Update the model parameters. The multi-scale U-Net is trained based on the pixel-wise label 

produced in the E-step.  

 

𝜃𝑡+1 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃𝑄(𝜃, 𝜃𝑡), 𝑤ℎ𝑒𝑟𝑒                                                                       

𝑄(𝜃, 𝜃𝑡) = ∑ log 𝑃(𝑍𝑡|𝑋, 𝜃)                                                                                   (4) 

Iterate E-step and M-step until convergence.  

To further improve the performance of this EM-based algorithm, we add a small portion of patches from 

the initial fully annotated dataset in each batch during SGD training. Fig. 4 shows an overview of our semi-

supervised segmentation approach.  



4. Experiment 

Here, we introduce the dataset utilized to develop and evaluate EM algorithms in Section 4.1. Then we 

show implementation and training details about the multi-scale U-Net model and EM methods in Section 

4.2. 

4.1. Dataset and image preprocessing 

Our EM-based semi-supervised models were evaluated using a dataset obtained from the Department of 

Pathology at Cedars-Sinai Medical Center (IRB approval numbers: Pro00029960 and Pro00048462) that 

consists of data from three different cohorts (Gertych et al., 2015; Ing et al., 2018; Li et al., 2017):  

(A) 224 tiles with a size of 1200 × 1200, which contain stroma (ST), benign glands (BN), low-grade (G3) 

and high-grade areas (G4 with cribriform and non-cribriform glands) extracted from slides of prostatectomy 

specimens of 20 patients. These tiles were annotated at pixel-wise level by consensus of three 

uropathologists.  

 

 

Fig. 4. Overview of EM-based semi-supervised semantic segmentation. LMAs are generated by 

pathologists so that enclosed regions only contain tissues of the designated label (e.g. A ‘G3+3’ contour 

should contain purely G3 glands and stroma, devoid of benign glands or glands of other grades). EM-

based algorithms are initialized with a multi-scale U-Net (as shown in B) trained on small amount of 

tiles with gland-level annotations, and trained on tiles with only image-level labels (as shown in A) 

extracted from LMAs on histopathological slides. In the E-step, the current model is applied to generate 

pixel-wise probability maps (as shown in C). To prevent the model from degeneracy, these probability 

maps are updated by a bias that has been adaptively selected by minimizing the KL divergence between 

the prior stroma versus epithelium distribution and the average model output distribution. Prediction 

masks (as shown in D) generated from the E-step are utilized to optimize model parameters in the M-

step. To improve training, a small portion of patches with gland-level annotations are combined with 

patches with image-level labels in each batch. The EM-based method will iteratively update 

segmentation masks and model parameters until convergence. (Figures are best viewed in color.) 



(B) 289 tiles with a size of 1200 × 1200, which contain ST, BN, low-grade, and high-grade (G4 and G5) 

areas obtained from slides of 20 patients other than in set (A). These tiles were annotated in a similar manner 

as set (A) by or under direct supervision of an expert research pathologist. 

(C) A research pathologist provided LMAs on 30 whole slide images from prostatectomies of 30 patients 

by circling and grading the major foci of tumor as either low-grade (LG), high-grade (HG) or BN areas 

using the Aperio ScanScope software. Tiles extracted from the LMA were annotated with the same tile-

level label as the contour. 

The scanning objective for all slides was set to 20x (0.5 𝜇𝑚 per pixel). Tiles were normalized using color 

transfer algorithm  (Reinhard et al., 2001) to account for stain variability. 60% of the tiles from set (A) were 

used to train a multi-scale U-Net model and the remaining 40% were used to validate model 

hyperparameters. EM-based approaches initialized by that supervised model were trained to further 

improve semantic segmentation performance on around 1,800 weakly labeled tiles extracted from LMAs 

in set (C). Hyper-parameters were tuned on 89 left-out tiles from set (A) and model performances were 

evaluated on set (B) such that tiles from the same patient were not included in both training and testing.  

4.2. Evaluation metric 

Two commonly used metrics for semantic segmentation were employed for model evaluation:  overall pixel 

accuracy (OP) and J.  OP computes the proportion of correctly pixels, which can be easily biased by 

imbalanced datasets. J, also referred to as the intersection-over-union (IoU), can overcome the class 

imbalanced problem since it considers both false positives and negatives (Csurka et al., 2004; Everingham 

et al., 2015, 2010). 

Both J and OP can be obtained from a pixel-wise confusion matrix 𝑪.  𝐶𝑖𝑗 is the number of pixels labeled 

as i and predicted as j. The total number of pixels with label i is denoted as 𝑇𝑖 = ∑ 𝐶𝑖,𝑗
𝑁
𝑗=1 , where N is the 

number of classes. The number of pixels predicted as j is represented as 𝑃𝑗 = ∑ 𝐶𝑖,𝑗𝑖  (Csurka et al., 2004). 

The J for class i is then defined as follows (Li et al., 2017): 

𝐽𝑖 =
 𝐶𝑖,𝑖

𝑇𝑖 + 𝑃𝑖 − 𝐶𝑖,𝑖
                                                                           (5) 

4.3. Details on model implementation and training 

Given the large number of model parameters, we adopted two typically used regularization strategies: batch 

normalization (BN) and dropouts. The BN layer was applied after each convolutional layer except the final 

fully convolutional layer (Ioffe and Szegedy, 2015). Dropout layers with 0.5 probability were added in the 

deepest stage of the multi-scale U-Net (Ronneberger et al., 2015; Srivastava et al., 2014). The initial fully 

supervised multi-scale U-Net was trained on 135 tiles with batch stochastic gradient descent (batch size: 

25). EM-based models were initialized with the multi-scale U-Net, and trained with stochastic gradient 

descent (batch size: 25) in M-steps. Hyper-parameters (e.g. learning rate, number of epochs, weight decay, 

etc.) were tuned on the validation set. The best result was obtained by using a momentum of 0.9, 0.0005 

weight decay and a learning rate which was initialized as 0.005, reduced to and fixed at 0.001 after 5 epochs. 

For EM-fixed models, we used a 𝛽 value of 0.6 according to the average stroma-epithelium distribution 

across all classes. In EM-adaptive training, the optimal 𝛽 for each epithelial class was determined based on 

the prior distribution. For comparison, we implemented the adaptive method in (Papandreou et al., 2015).  

Models were implemented in Torch 7 (Collobert et al., 2011) with two NVIDIA Titan X GPUs. Multiple 

separate data loading threads were used to accelerate training and testing. The average time required to 

generate a prediction mask for one 1,200 × 1,200 tile was around 9 seconds. 



5. Results 

Table 1 shows J and OP for models: EM adaptive model w/o fully annotated samples proposed in  

(Papandreou et al., 2015), EM-fixed w/o fully annotated samples (EM-fixed w/o), EM-fixed with 10% fully 

annotated samples (EM-fixed w 10%), etc. The initial multi-scale U-Net trained with 135 fully annotated 

tiles achieved a mean 𝐽 = 35.90% on an independent test set. EM-fixed and EM-adaptive models improved 

segmentation performance by incorporating information embedded in weakly labeled tiles extracted from 

LMAs of prostatectomy slides. Using an adaptive threshold resulted in significant improvements in J for 

low grade glands, high grade glands, and stroma (p<10-5
, p<10-25, and p<10-18, respectively), and a non-

significant decrease in J for benign glands (p=0.18). The average J and OP both significantly improved 

when using an adaptive threshold (p<10-18 and p<10-19, respectively). The baseline EM model w/o fully 

annotated samples (Papandreou et al., 2015) achieved mean 𝐽 = 42.32% and 𝑂𝑃 = 71.84%, which was 

significantly lower than the EM-adaptive w/o (p < 10-14 and p < 10-16, respectively).  

To analyze the contribution of fully annotated samples, different percentages (10%, 30%, 60%, and 90%) 

of fully annotated patches were mixed with weakly labeled samples in each mini-batch during training. The 

performance of both EM-fixed and EM-adaptive models improved by adding a small portion of fully 

annotated samples. For example, the EM-adaptive model with 10% fully annotated samples achieved 

𝐽𝑚𝑒𝑎𝑛 = 47.78% , which was about 3% higher compared to the EM-adaptive model without fully annotated 

Table 1. Model performances on segmenting stroma, high-grade (HG), low-grade (LG), and benign 

(BN) glands.  

 JLG (%) JHG (%) JBN (%) JST (%) Jmean (%) OP (%) 

Multi-scale U-

Net 
25.80 27.73 24.24 65.83 35.90 64.72 

Papandreou et 

al. (2015) 
30.80 50.13* 19.66 68.60 42.32 71.84 

EM-fixed w/o  33.29 44.89* 23.11 67.26 42.14* 71.11* 

EM-fixed w 

10% 
46.84 30.62 35.93 62.04 43.86* 67.28* 

EM-fixed w 

30% 
43.59 28.17 35.11 61.76 42.16 66.62* 

EM-fixed w 

60% 
41.82 26.43 30.59 61.23 40.02 65.27 

EM-fixed w 

90% 
39.30 25.61 30.17 60.77 38.96 64.58 

EM-adaptive 

w/o 
33.20 52.01* 23.15 70.27* 44.66* 73.87* 

EM-adaptive w 

10% 
49.67 42.08* 33.45 65.90* 47.78* 71.92* 

EM-adaptive w 

30% 
48.25 49.58* 31.20 68.85* 49.47* 74.79* 

EM-adaptive w 

60% 
46.36 42.17* 29.65 66.23* 46.10* 71.61* 

EM-adaptive w 

90% 
40.07 35.62* 31.36 64.10 42.79* 68.65* 

* Denotes significant improvement over multi-scale U-Net using Wilcoxon signed-rank tests and 

Bonferroni correction for multiple comparisons. 

 



samples. In addition, the EM-adaptive models consistently performed better than the EM-fixed models. The 

overall highest 𝐽𝑚𝑒𝑎𝑛  was obtained at 49.47% by the EM-adaptive model with 30% fully annotated 

samples. In Fig. 5, we show visual comparisons for semantic segmentation on some representative tiles 

from the test set.  

6. Discussion 

In this study, we demonstrated that EM-based algorithms can learn visual representations from 

histopathological slides with LMAs. A small portion of fully annotated samples increased J on low grade 

 

Fig. 5. Segmentation masks for tiles in the test set. The high-grade cancer (G4 or G5), low-grade cancer 

(G3), benign glands and stromal areas are indicated by red, pink, green, and blue colors respectively. 

The first column shows that the initial model delivers inferior performance in segmenting epithelial 

areas, likely due to the small amount of available supervised training data. Both EM-based models 

(shown in the second and third columns) are able to improve segmentation performance using weakly 

labeled tiles as they prevent the overestimation of stroma due to the optimization of beta. The best 

performance is achieved by combining 30% fully annotated tiles during EM training. (Figures are best 

viewed in color.) 



and benign epithelium, but reduced J on high grade and stroma areas, possibly because the limited fully 

annotated dataset did not contain all types of high grade tissues (G4 and G5). Moreover, adaptive biases 

based on prior knowledge of stroma-epithelium distribution lead to better EM training. We note that, 

realistically, our model’s performance remains insufficient for clinical deployment. Nonetheless, our novel 

methodology for incorporating weak supervision improves on the state of the art. 

As shown in Table 1, the initial multi-scale U-Net model only achieved a mean J at 35.90%. The initial 

model failed to capture the HG glands and erroneously classified those areas into LG, or BN as shown in 

the first row of Fig. 5. Since we started with a training set with only 135 fully annotated tiles, the model 

may have been overfitted to this small dataset and did not generalize well to unseen samples. Furthermore, 

the HG class in our initial supervised training set only contained non-cribriform G4 and cribriform G4 

growth patterns, but not G5 areas with hardly distinguishable glands. We would argue that the multi-scale 

U-Net may not have sufficient knowledge about visual representations of G5 areas.  

Initialized with this undertrained model, our EM-based approaches were able to leverage rich information 

embedded in the large-scale weakly labeled dataset. Table 1 shows that all EM-based methods 

outperformed the initial model by a large margin. The mean J improved over 5% by most EM-based models, 

which demonstrates the ability of our semi-supervised algorithms in extracting useful signals from weakly 

labeled data. Both fixed and adaptive biases were imposed on pixel-wise probability maps to encourage 

pixels to be classified as the labeled class or stroma. This significantly reduced the possibility of 

misclassification of epithelium, such as predicting pixels in an LG tile as HG. As shown in the first and 

third rows of Fig. 5, the initial model predicted many HG areas as LG, BN or ST. However, the EM-adaptive 

model with 30% fully annotated samples correctly identified the approximate location of HG tissues, 

although it might be challenging to get perfect segmentation for HG areas, which have less recognizable 

glandular boundaries and may infiltrate into surrounding tissues. This kind of imprecise segmentation may 

be acceptable clinically, since localization of HG areas is considered to be more critical than accurate 

segmentation.  

The baseline EM model (Papandreou et al., 2015) adaptively selected bias to constrain for each tile: at least 

𝜌 percentage of the tile to be predicted as foreground (epithelium). However, this method didn’t take 

account of differences of stroma-epithelium among individual classes (e.g., High-grade areas tend to have 

more epithelium). As shown in Table 1, the baseline EM model achieved a similar performance as the EM-

fixed model.  

Different from the baseline EM model, the proposed bias was adaptively selected by minimizing the KL 

divergence between the model output distribution and the prior stroma-epithelium distribution. These 

models selected the optimal bias at the cost of longer training time since prediction maps had to be updated 

whenever a new bias was applied. We found that adding a small percent of strongly labeled data from the 

initial training set significantly improved model performance. However, adding too much strongly labeled 

data might prevent the model from learning new information from the large-scale weakly annotated dataset 

and lead to suboptimal performance. As seen in Table 1, the EM-adaptive model with 30% fully annotated 

samples achieved the highest mean J = 49.47% and OP = 74.79%.  

There are several limitations in our work. First, we assume that each LMA contour contains one type of 

epithelium (BN, HG or LG), and tiles within the contour inherit its annotation as image-level labels. 

However, there still may be a very small portion of areas with different Gleason grades. In future work, we 

plan to extend our current EM-based approach to a multi-class weakly supervised model. Second, we only 

use a multi-scale U-Net proposed in our previous work as the backbone to generate segmentation masks. 

In future work, different state-of-the-art multi-scale architectures will also be explored and plugged into 

our semi-supervised training pipeline. In addition, cross-applicability is important for models that can be 

extended to computer aided diagnosis tools. We also plan to evaluate our approaches on whole slide images 

from different institutions, which may have distinct staining or scanning protocols.  



7. Conclusion 

In this paper, we proposed an EM-based semi-supervised model to leverage useful representations 

embedded in large-scale weakly annotated datasets. Adaptive biases incorporated prior knowledge on 

stroma versus epithelium distributions and were employed to prevent the model from predicting everything 

as stroma. The learning of the EM-based models was further improved by combining some fully annotated 

samples in each mini-batch during training. Our best semi-supervised EM-based approach achieved an 

average J of 49.47% on an independent test set, which was 14% higher than the supervised model. The 

result demonstrated that our semi-supervised model could improve semantic segmentation performance 

without requiring a very large dataset with time-consuming and costly pixel-wise annotations from 

pathologists. 
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