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Abstract

In this work, we investigate semi-supervised learning (SSL) for image classification using adversarial training. Previous
results have illustrated that generative adversarial networks (GANs) can be used for multiple purposes in SSL . Triple-GAN,
which aims to jointly optimize model components by incorporating three players, generates suitable image-label pairs to
compensate for the lack of labeled data in SSL with improved benchmark performance. Conversely, Bad (or complementary)
GAN optimizes generation to produce complementary data-label pairs and force a classifier’s decision boundary to lie between
data manifolds. Although it generally outperforms Triple-GAN, Bad GAN is highly sensitive to the amount of labeled data used
for training. Unifying these two approaches, we present unified-GAN (UGAN), a novel framework that enables a classifier
to simultaneously learn from both good and bad samples through adversarial training. We perform extensive experiments on
various datasets and demonstrate that UGAN: (1) achieves competitive performance among other GAN-based models, and

(2) is robust to variations in the amount of labeled data used for training.
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1 Introduction

With recent progress in deep learning, large labeled training
datasets are becoming increasingly important [1,5,13,22].
However, labeling such datasets is expensive and time-
consuming. Semi-supervised learning (SSL) aims to leverage
large amounts of unlabeled data to boost model performance.
Various SSL methods have been proposed using deep learn-
ing and proven to be successful. Weston et al. [37] employed
a manifold embedding technique using a pre-constructed
graph of unlabeled data; Rasmus et al. [32] used a specially
designed auto-encoder to extract essential features for clas-
sification; Kingma and Welling [12] developed a variational
autoencoder by maximizing the variational lower bound of
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both labeled and unlabeled data; Miyato et al. [26] proposed
virtual adversarial training (VAT), which helped find a deep
classifier that had a good prediction accuracy and was less
sensitive to data perturbation toward the adversarial direc-
tion.

Recently, generative adversarial networks (GANs) [9]
have demonstrated their capability in SSL frameworks [4,
7,15,17,19,20,34]. GANSs are a powerful class of deep gener-
ative models that can represent data distributions over natural
images [24,31]. Specifically, a GAN is formulated as a two-
player game, where the generator G takes a random vector
z as input and produces a sample G(z) in the data space,
while the discriminator D identifies whether a certain sample
comes from the true data distribution p(x) or the generator.
The training procedure of GAN is to solve a minimax prob-
lem:

min max U(D, G) = Ex~p(x)[log(D(x))]+
= Er~p.(»llog(l — D(G(2)))]

where p,(z) is a simple distribution (e.g., uniform or gaus-
sian) and U denotes the utility function.

As an extension, Salimans et al. [34] first proposed feature-
matching GANs (FM-GANSs) to solve an SSL problem.
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Suppose we have a classification problem that requires classi-
fying a data point x into one of K possible classes. A standard
classifier takes x as input and outputs a K -dimensional vector
of logits {/1, ..., Ix}. Salimans et al. extended the standard
classifier by simply adding samples from a GAN’s G to the
dataset, labeling them as a new “generated” class y = K +1,
and correspondingly increasing the classifier’s output dimen-
sion from K to K + 1. They also found that using feature
matching loss in G improved classification performance. The
(K +1)-class discrimination objective with feature matching
loss in G led to strong empirical results.

Empirically, FM-GANs demonstrate good performance
on SSL classification tasks; however, the generated images
from the generator are low-quality, i.e., the generator may
create visually unrealistic images. Li et al. [19] realized that
the generator and the discriminator in FM-GANs may not be
optimal at the same time. Intuitively, assuming the generator
can create good samples, the discriminator should identify
these samples as fake samples as well as predict the cor-
rect class for them. To address this problem, they proposed
a three-player game, Triple-GAN, to simultaneously achieve
superior classification results and obtain a good image gener-
ator. Triple-GAN consisted of a generator G, a discriminator
D, and a separate classifier C. C and G were two conditional
networks that generated pseudo labels given real data, and
pseudo data given real labels. To jointly evaluate the qual-
ity of the samples from the two conditional networks, D was
used to distinguish whether a data-label pair was from the real
labeled dataset or not. The improvements achieved by Triple-
GAN were more significant as the number of labeled data
decreased, suggesting that the generated data-label pairs can
be used effectively to train the classifier. Meanwhile, Dai et al.
[4] realized the same problem of the generator, but instead
gave theoretical justifications of why using “bad” samples
from the generator could boost SSL performance. Loosely
speaking, they defined samples that form a complement set
of the true data distribution in feature space as “bad” samples.
By carefully defining the generator loss, the generator could
create “bad” samples that forced C’s decision boundary to
lie between the data manifolds of different classes, which in
turn improved generalization of C. Their model was called
Bad GAN, which achieved better performance on multiple
benchmark datasets compared to Triple-GAN.

Most recently, Li et al. [21] performed a comprehensive
comparison between Triple-GAN and Bad GAN. They illus-
trated the distinct characteristics of the images the models
generated, as well as each model’s sensitivity to various
amount of labeled data used for training. Furthermore, they
showed that in the case of low amounts of labeled data, Bad
GAN’s performance decreased faster than Triple-GAN, and
both models’ performance was contingent on the selection of
labeled samples; in other words, selecting non-representative
samples would deteriorate the classification performance.
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Fig. 1 Network architecture of UGAN. UGAN consists of four com-
ponents: (1) a bad generator, bG, generates “bad” samples; (2) two
conditional networks, g¢G and C, that generate pseudo labels given real
data, and pseudo data given real labels; and (3) a separate discriminator,
D, that distinguishes the generated data-label pair from the real data-
label pair. “CE” denotes the cross entropy loss for supervised learning,
while “BCE” denotes the binary cross-entropy loss that distinguish the
real data and fake data generated by bG

In this paper, we present unified-GAN (UGAN), a semi-
supervised learning framework that unifies both good and
bad generated samples and takes advantage of them through
adversarial training. Inspired by Triple-GAN and Bad GAN,
we find that good and bad synthetic samples can be used
for complementary purposes. Generated good image-label
pairs can be used to train the classifier, while the bad sam-
ples can force the decision boundary to be between the
data manifold of different classes. Hence, we leverage both
good and bad generated samples in the proposed UGAN and
achieve further performance improvement in SSL. Overall,
our main contributions of this paper are: (1) we propose a
novel SSL framework, UGAN, which simultaneously trains
a good and a bad generator through adversarial training and
takes advantage of both generated samples to boost SSL per-
formance; (2) we analyze our proposed UGAN, theoretically
prove its global optimum, and additionally put UGAN in the
Expectation-Maximization (EM) framework and validate its
non-increasing divergence property; and (3) we do extensive
experiments to show that UGAN can improve upon Triple-
GAN and Bad GAN classification results in SSL and show the
effectiveness of the model with different amounts of labeled
data.

2 Related work

Besides the aforementioned FM-GAN [34], Triple-GAN
[19], and Bad GAN [4], several previous studies have also
incorporated the idea of adversarial training in SSL. CatGAN
[35] substituted the binary discriminator in standard GAN
with a multi-class classifier and trained both the generator
and discriminator using information theoretical criteria on
unlabeled data. Virtual adversarial training (VAT) [26] effec-
tively smoothed the classifier output distribution by seeking
virtual adversarial samples. In adversarial learned inference
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[6], the inference network approximated the posterior of
latent variables given true data in an unsupervised manner.
Another line of work has focused on manifold regulariza-
tion [2]. Kumar et al. [15] estimated the manifold gradients
at input data points and added an additional regularization
term to a GAN, which promoted invariance of the discrim-
inator to all directions in the data space. Lecouat et al. [17]
achieved competitive results by performing manifold regu-
larization using approximate Laplacian norm that was easily
computed within a GAN.

Apart from adversarial training, there have been other
efforts in SSL recently. One class of the most successful algo-
rithms in SSL is based on pseudo labels [10,16,30,32,36].
Pseudo labels are artificial labels generated by the model,
which play the same role as labels of manually annotated
data. I model [32] evaluated unlabelled data with and with-
out noise, and applied a consistency cost between the two
predictions. It assumed a dual role as a teacher and a stu-
dent. The teacher generated targets of unlabeled data, which
were then used to train a student. Since the model itself gen-
erated the targets, they could be incorrect. To alleviate the
problem, IT model [16] added noise at the inference time,
and consequently a noisy teacher could yield more accurate
targets. I[1 model was further improved by Temporal Ensem-
bling [16], which maintained an exponential moving average
(EMA) prediction for each of the training examples. Conse-
quently, the EMA prediction of each example was formed by
an ensemble of the model’s current version and those earlier
versions that evaluated the same example. This ensembling
improved the quality of the predictions, and using the predic-
tions as teacher signals improved results. Mean Teacher [36]
averaged model weights to form a target-generating teacher
model. Unlike Temporal Ensembling, Mean Teacher worked
with large datasets and on-line learning, which was able to
improve the speed of learning and classification accuracy
simultaneously.

Our proposed UGAN is mainly inspired by Triple-GAN
and Bad GAN, these models can be used for complementary
purposes. We restrict our discussion to GAN-based model in
most part of this paper. Nevertheless, it has a connection with
those “teacher” models, as will be seen in Sect. 3, our model
provides a smart way to generate input-label pairs and use
them as teaching signals to improve the SSL results.

3 Method

To outline our approach, we consider the following SSL prob-
lem. Given a relatively small labeled set (x;, y;) ~ pi(x, y),
where y € {1,2, ..., K} is the label space for classification,
and a large unlabeled set x, ~ p,(x), the goal is to utilize
the large amount of unlabeled data to predict the labels y
of the unseen samples. Suppose the true data distribution is

denoted as p(x,y), we aim to obtain a classifier that can
approximate the conditional distribution pc(y|x) & p(y|x).
To achieve this, we will use an adversarial training process
that enables the classifier to learn from both good and bad
samples. Specifically, a good generator is able to generate
good image-label pairs to train the classifier, while a bad gen-
erator generates samples that force the classifier’s decision
boundary between the data manifolds of different classes. As
will be shown, our model takes advantage of both good and
bad synthetic samples and improves the SSL results in a wide
range of labeled training data.

3.1 Adversarial training process with four players

Our model consists of four parts: (1) a good generator, gG,
that characterizes the conditional distribution peg(x|y) ~
p(x]y); (2) a bad generator, bG, that takes in a latent vector
z and outputs “bad” samples [4]; (3) a classifier, C, that char-
acterizes the conditional distribution p.(y|x) & p(y|x); and
(4) a discriminator, D, that distinguishes whether a pair of
data (x, y) comes from the true distribution p(x, y) or not.
All the components are parameterized as neural networks, as
shown in Fig. 1a.

We assume that the samples from both real data p(x) and
real label p(y) can be easily obtained.! In our model, gG
produces a pseudo input-label pair by first drawing y ~ p(y)
and latent vector z ~ p(z) (we use auniform distribution for z
in our experiments), and then generating x, ~ pgc (x1y, 2).
bG generates bad samples by transforming the latent vector
z ~ p(z) as in a traditional GAN to obtain xpG ~ ppg (x|2).
C takes in four different types of samples (i.e., labeled data,
unlabeled data, samples from g G, and samples from bG) and
produces pseudo labels y for them following the conditional
distribution pc(y|x). For the labeled data x;, and the gG
generated samples x,;, we expect C to put them into the
right class (i.e., either the class y; of the labeled data x;, or
the conditional labels y based on which x,¢ are generated).
For the generated samples from bG xpc ~ ppc(x|z), and
unlabeled data x,, ~ p,(x), we expect C to put them into the
(K +1)thclass (i.e., the “fake” class) and one of the K classes
of real data, respectively. Due to the fact that the softmax layer
is over-parameterized, we can still model C with K neurons at
the output layer by modifying the loss function (see details in
Supplementary Appendix A). D accepts the input-label pairs
generated by both C (xc, yc) ~ p(xy)pc(y|xy), and gG
(XgG» YgG) ~ P(¥)pgc (x]y), and the pairs from the labeled
data distribution (x;, y;) ~ p;(x, y) for judgement. D treats
the labeled data pairs as positive samples, while the pairs
from both gG and C as negative. We refer the loss function

! In semi-supervised learning, p(x) is the empirical distribution of
inputs and p(y) is assumed same to the distribution of labels on labeled
data, which is uniform in our experiments.
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Fig. 2 a Left: randomly selected data from datasets; mid: G gener-
ated images; right: gG generated images sampled by varying the class
label y in the horizontal axis and the latent vectors z in the vertical axis.

of gG as?

LgG = IE)c,prg(;(x,y)[log(l — pp(x, y)] (2)

The loss function of bG is

Lyc = —H(ppc (x))

[ B ) = B FD) |2 3)

where —H(ppc(x)) measures the negative entropy of bG
generated samples. —H (pp (x)) is used to avoid collapsing
while increasing the coverage of bG. The second term is
feature matching loss, where f(x) denotes a feature map of

2 Tn practice, weuse Ly = _]Ex,y~pgc(x,y) [log(pp(x, y)] to ease the
training process [9].

@ Springer

b Class-conditional latent space interpolation. The vertical axis is the
direction for latent vector interpolation, while the horizontal axis for
varying the class labels

an intermediate layer of C. D’s loss function becomes

Lp=— Ex,prl(x,y)[log(pD(xs »l

1
SEx y~pec e.pllog(l = pp(x, y)] %)

2
1
ZEX y~pexy=<k)llog(l — pp(x, y)]

where D treats the labeled data as positive samples, and the
pseudo input-label pairs from both gG and C as negative
samples. Finally, the loss function of C consists of four com-
ponents,

Lc, = —Ey y~px,pylog(pc(y]x, y < K)]
Lcy = =Ex y~poxyplloglpe(ylx, y < K)]
Loy = —Eynp,yllog(l = pc(y = K + 1|x)]
—Ex~ppeyllog(pe(y = K + 11x)]
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and the total loss for C is
Lc=Lc, + Lc, +MLcy; + AL, (6)

where L¢, and L, denote the cross-entropy loss for labeled
and gG generated samples, L ¢, forces C to put the unlabeled
dataintoreal classes, while L ¢, forces C to put the bG gener-
ated samples into the “fake” class. A¢ 1,2 is a hyperparameter
used to balance each loss component.

The model defined by (2)—(6) achieves its equilibrium if
and only if p(x, y) = pgG(x,y) = pc(x,y < K). In other
words, incorporating the bad samples does not change the
equilibrium point of Triple-GAN (see Sect. 3.2.1). Our model
consists of three adversarial parts: (1) gG tries to fool D by
generating realistic images conditioned on label y; (2) C tries
to fool D by generating good labels for unlabeled images;
and (3) bG tries to fool C by generating images that are close
to the data manifold. At convergence, D cannot distinguish
both p,c(x, y) and pc(x, y) from the true data distribution
p(x, y), which indicates that we have obtained both a good
gG and a good C. Bad samples from bG accelerate this
process and improve the generalization of C.

One key problem of SSL is the limited amount of labeled
data. A powerful D may memorize the empirical distribution
of the labeled data and reject other types of samples from
the true data distribution. Limited labeled data also restrict
gG to explore a larger space of the true data distribution.
To address this problem, we adopt the practical techniques
in Li et al. [19]. We generate pseudo labels through C for
some unlabeled data and use these pairs as positive samples
of D. This introduces some bias to the target distribution
of D, but using the EM framework to analyze the training
procedure (see Sect. 3.2.2), we are able to prove the rational-
ity of this choice. Moreover, since C converges quickly, this
operation provides a way to enable gG to explore a much
larger data manifold that includes both the labeled and unla-
beled data information. As illustrated in Fig. 1b, C is able to
provide pseudo labels for the unlabeled data, while D will
judge if the pseudo labels are reliable or not. This in return
will affect the evolution of gG that will take advantage of
the unlabeled data to generate good images. Generated good
image-label pairs that implicitly contain unlabeled data infor-
mation will eventually benefit C. This works extremely well
for relatively simple datasets like MNIST, and under the cir-
cumstance where only an extremely low amount of labeled
data is available.

3.2 Theoretical analysis

We now give theoretical justification for our four-player game
based on the loss functions as mentioned above. We mainly
focus on two important properties of our model: (1) the global
optimum of the game is the true distribution, which satisfies

p(x,y) = pec(x,y) = pc(x,yly < K); and (2) the KL
divergence between the conditional density of C and the true
density, KL(p(y|x)||pc(y|x,y < K)), is non-increasing
after each iteration when we assume the maximum likeli-
hood estimate (MLE) of C is obtained. A detailed proof of
these properties is provided in Supplementary Appendix C.

3.2.1 Global optimum

We first show that the optimal D balances between the true
data distribution and the mixture distribution defined by C
and gG, as summarized in Lemma 1.

Lemma 1 Forany fixed C and g G, the optimal D of the game
defined by loss functions (2)—(5) is

pi(x,y)
pi(x,y) +p%(x,y)’

(N

Déygc,bc(x» y) =

where p1(x,y) = 3 pga(x. y) + 3pc . yly < K).

Given D¢ ¢G.bG» We can plug the optimal D* into (4) and
get a value function V(C, gG, bG).

VC,gG,bG(x» y) =— Ex,)wpl(x,y)[l()g(pD* (x, Y)]
1

- EEx,y~ng(x,y) [IOg(l — pp*(x, y)]

1
— 5Ex y~pery<kyllog(l — pp+(x, y)]

2
= - Ex,y~p1(x,y)[10g(m+p—;l/2)]
P12
D1+ pi1y2)
P1/2
pi+ pi12)
(3

1
- EEx,yNch(xyy) [log(
1
~ FExy~petry=k)llogl

Now the left problem is to maximize the V(C, gG, bG),
so that gG and C confuse D most. For that, we have the
following theorem:

Theorem 1 The global maximumof V (C, gG, bG) is achieved
only when pi(x,y) = pgc(x,y) = pc(x, yly = K).

From (8), it is easy to see the global maximum is achieved if
and only if p;(x, y) = p1/2(x, y). By introducing the cross-
entropy loss in (5) Ly, we enforce pc(x, yly < K) =
pi(x, y). Therefore, the global optimality will achieve if and
onlyif p;(x,y) = pec(x,y) = pc(x, y|ly < K). (See more
details in Supplementary Appendix C)

We now consider the case for pc(y = K + 1]x) with the
following Corollary 1.

@ Springer
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Corollary 1 The optimal classifier C will have pc(y = K +
lx ~ pu(x)) = 0and pc(y = K + 1|x ~ ppg(x)) = 1.

Corollary 1 indicates that optimal C will put bG gener-
ated images into K + 1 class (i.e., “fake” class), while put
unlabeled data into real classes.

3.2.2 Non-increasing divergence property

Our goal is to estimate the conditional distribution p(y|x)
with a parameterized C modeled as py(y|x,y < K). The
objective function can be written as minimizing KL(p(y|x)||
po(y|x,y < K)). In the SSL setting, we only have part of
the labels y, so we can thus rewrite the problem as mini-
mizing KL(p(y|x)||pe(yi]x, y < K)). One natural way to
facilitate the model performance is using the EM algorithm
to first infer the label of x,, and then update based on the com-
plete data [28]. In our four-player game, in addition to the
predicted label y, from unlabelled data x,,, we further intro-
duce (xg¢G, Ye) pairs from gG as latent variables, denoted
as Z = {x4G, Y¢G, Yu}. We then interpret our mechanism
from a variational view of the EM algorithm to illustrate the
non-increasing property of the KL divergence.

Property 1. Chain rule of KL divergence:

KL(P (X, 2)|| Py (X, Z)) = KL(P(X)|| Ps (X))

©)
+ Ex~ px) [KL(P(Z]x)|| P (Z]x))].
By Property I, we can rewrite our objective function as:
min KL(p(y1[x)[|pe (yilx, y < K))
’ (10)

=min min KL(p(y1, Z|x)||pe(y1, ZIx,y < K)),
0 p(Zlx)

which is an iterative minimization procedure. Following the
EM algorithm, we have an E-step and an M-step in UGAN.
More specifically, for the E-step at the sth iteration, given
parameters 6; of C, we have:

pP(Z|x) = po,(Z|x)
= ng(ng, YgG|xuv XI5 Yus yl)pGx ulxw),

(11)

which indicates the procedure that C first predicts labels for
unlabelled data and then sends them to D and gG to gener-
ate good pseudo pairs (xgG, ygG). After gathering the latent
variables, the M-step is:

Os+1 = argmingKL(p(y1, Z|x)||po(yi, Z1x,y < K)) (12)
= argmaxyE(y, zx)~ rllog pe(yi, Z|x, y < K)],

where f = pg, (Z]x,) pi(yi|x;). This will result in 651 being
the MLE based on the data at current iteration s. By apply-
ing the EM mechanism, we can inherit its non-increasing
property which is stated in the following Corollary 2.

@ Springer

Corollary 2 If applying the iterative procedure described in
(11) and (12), and the exact maximization can be obtained
at (12) for each iteration, then

KL(p(yil) pe, Qilx, y < K))

(13)
< KL(p(yi1X)|po; (ilx, y < K))

The non-increasing property guarantees that our classifier
will be improved after each iteration under the ideal situation.
Though we make some approximations during training pro-
cess in practice, it still provides us a high-level justification
on why the algorithm should work.

4 Experiments and discussion

We now present UGAN’s performance on MNIST [18],
SVHN [27], and CIFAR10 [14] datasets (see details of
datasets in Supplementary Appendix D). We implement our
model based on Tensorflow 1.10 [8] and optimize it on
NVIDIA Titan X GPUs. The detailed architecture can be
found in Supplementary Appendix E. The gG generated
images are not applied until the number of epochs reaches
a threshold such that gG can generate reliable image-label
pairs. For MNIST and SVHN, we choose 200, while for
CIFAR10 we choose 400. Batch size is an important parame-
ter that affects model performance [21]. In our experiments,
we use 50 for bG on MNIST and SVHN, 25 for bG on
CIFARI10. For gG, we fix batch size as 100. All of the other
hyperparameters including relative weights and parameters
in Adam [11] are fixed according to [4,19,34] across all of
the experiments.

4.1 Classification

We report our classification accuracy, along with other GAN-
based SSL methods, on benchmark datasets in Table 1. Our
results show that UGAN consistently improves performance,
and achieves the best results on all of the datasets without the
use of data augmentation, such as rotation, flip, etc.

To understand our model’s behavior over different num-
bers of labeled data, we re-implemented Triple-GAN and
Bad GAN, and performed an extensive investigation by vary-
ing the amount of labeled data. Following common practice,
this was done by omitting different amounts of the under-
lying labeled dataset [29,33,34,36]. The labeled data used
for training were randomly selected stratified samples unless
otherwise specified. For fair comparison, we used the same
network architecture for each component in all models (see
Supplementary Appendix E). Table 2 shows the results of
the experiments on MNIST. The similarity of our results
to those reported in the original papers suggests that our
reproduced models are accurate instantiations of Triple-GAN
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and Bad GAN. We observe that with a medium amount of
labeled data (e.g., MNIST » = 100), Bad GAN performs
better than Triple-GAN. However, with smaller amounts of
labeled data, Triple-GAN performs better, which demon-
strates that it is less sensitive to the amount of labeled data
than Bad GAN. UGAN inherits the good properties from
both of them, resulting in a constant improvement across all
cases (see results on SVHN and CIFARI10 in Supplemen-
tary Appendix F). Another interesting observation is that the
selection of labeled data plays a crucial role in the low-labeled
dataregime, that is, selecting representative labeled data with
which to train is the key to achieving good performance. This
issue is further discussed in Supplementary Appendix H.

To further validate that our model significantly improves
the baseline model, we have performed Welch’s t-test (see
Supplementary Appendix G). We found that our model
significantly improves Triple-GAN and Bad-GAN with a
maximum p-value in order of le-5 for both SVHN and
CIFAR10 datasets. For the MNIST dataset, we have found
that for some results, our model’s performance is not signif-
icantly different from the literature, such as the Bad-GAN
case with 100 labeled samples. This is because the MNIST
classification task is a relatively easy task, and the previ-
ous study has already achieved very good performance. The
small p-values for SVHN and CIFAR10 have demonstrated
that our model improves the baseline model significantly on
more complex datasets.

4.2 Image generation

UGAN is able to train a gG and a bG simultaneously
(see an evolution of the generated images in Supplementary
Appendix I). In Fig. 2a, we show the images generated by gG
and bG after training. Our g G is able to generate clear images
and meaningful samples conditioned on class labels, while
bG generates “bad” images that look like a fusion of samples
from different classes. We quantitatively evaluate generated
samples on CIFAR10 via the inception score following [34].
The value of gG generated samples is 4.19 = 0.07, while
that of bG generated samples is 3.31 +0.02. In addition, gG
retains Triple-GAN’s advantage in that it is able to disentan-
gle classes and styles. In Fig. 2a, the gG generated images
are sampled by varying the class label y in the horizontal axis
and the latent vectors z in the vertical axis. The latent vector
z encodes meaningful physical appearances, such as scale,
intensity, orientation, color, etc., while the label y controls
the semantics of the generated images. Furthermore, gG can
transition smoothly from one style to another with different
visual factors without losing the label information as shown
in Fig. 2b. This demonstrates that gG can learn meaning-
ful latent representations instead of simply memorizing the
training data.

4.3 Hyper-parameters sensitivity analysis

We perform hyper-parameter sensitivity analysis along with
some network architecture effects. We discover that the
hyper-parameters used in Triple-GAN and Bad GAN are
also good for UGAN. In fact, aside from batch size, we
use the same hyper-parameters across all three datasets, and
consistently achieve good results. UGAN is not sensitive to
the learning rate due to the usage of Adam optimization as
shown in Table 3. However, UGAN is quite sensitive to the
batch size in training. Our results indicate the noise induced
by mini-batch benefits the G, while it hurts the gG capa-
bility to model the true data distribution. We also find that
a weight-norm layer is important to ease GAN’s training.
UGAN doesn’t usually converge when the layer is taken out.
A smaller network architecture of C would not result in a
significant drop in the performance. We use a C with filter
size {32, 64, 96} and get 96.27% on SVHN n = 4000. For
details on how our hyper-parameters sensitivity analysis is
performed, we defer readers to Supplementary Appendix J.

4.4 Effectiveness of good and bad generators

As discussed in Sect. 4.1, UGAN achieves consistent
improvement across all the cases due to inheriting the best
properties of Triple-GAN and Bad GAN. In Fig. 3a, we
demonstrate a comparison of Validation Accuracy vs. Train-
ing Epochs for our implemented Triple-GAN, Bad GAN and
UGAN on SVHN n = 1000. Note that for Triple-GAN, we
trained it to 1000 epochs, but only show the first 400 epoch in
the figure. Qualitatively, we observe three separate training
phases:

1. InPhase I, the performance of Bad GAN and UGAN are
worse than Triple-GAN. We speculate this is due to the
fact that Triple-GAN C deals with a classification of K
classes, while Bad-GAN and UGAN, C deal with K + 1
classes.

2. InPhaseII, Bad GAN and UGAN start to surpass Triple-
GAN, which indicates bG generated samples start to
exert an effect on the classification boundary. UGAN also
performs better than Bad GAN in this phase thanks to
the adversarial game that requires C to produce reliable
pseudo labels for unlabeled data to fool D.

3. InPhaselll, we start to use g G generated samples to train
C. UGAN surpasses both Triple-GAN and Bad GAN by
a clear margin. From the perspective of C, gG generates
samples that are used to complement the lack of train-
ing data in SSL, bG generated samples are used to force
the decision boundary to lie in the correct place, and D
requires C to keep moving itself toward the true data dis-
tribution p(x)pc(y|x,y < K) = p(x,y). All of these
factors contribute to the final performance of UGAN.
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Table 1 Comparison with
state-of-the-art methods on three
benchmark datasets

Table 2 Test accuracy on
semi-supervised MNIST

Table 3 Initial learning rate
effect on model performance

Methods MNIST n = 100 (%) SVHN n = 1000 (%) CIFAR10 n = 4000 (%)
CatGAN [35] 98.09 £0.1 - 80.42 £ 0.46
ALI [6] - 92.58 +0.65 82.01 £1.62
VAT [26] 98.64 93.17 85.13

IT Model [16] - 94.57 £0.25 83.45 £0.29
I" Model [32] 99.11 £ 0.50 - 79.40 £ 0.47
Mean Teacher [36] - 96.05 +£0.19 84.27 £0.31
FM-GAN [34] 99.07 £ 0.07 91.89+1.3 81.37 £2.32
Triple-GAN [19] 99.09 £ 0.58 94.23 £0.17 83.01 £0.36
Bad-GAN [4] 99.21 £0.10 95.75 +£0.03 85.59 £ 0.30
UGAN 99.21 £ 0.08 96.49 £+ 0.09 85.66 £+ 0.06

Only methods without data augmentation are included. Results are averaged over 10 runs and shown in terms
of mean accuracy + SD

Model Test accuracy for a given number of labeled samples

20 (%) 50 (%) 100 (%) 200 (%)
FM-GAN [34] 83.23 £4.52 97.79 £ 1.36 99.07 £ 0.07 99.10 £ 0.04
Bad GAN [4] - - 99.21 £0.10 -
Triple-GAN [19] 95.19 +4.95 98.44 +£0.72 99.09 £+ 0.58 99.33 £0.16
Bad GAN® 88.38 +3.08* 96.24 +0.16 99.17 £0.03 99.20 +0.03
Triple-GAN® 95.93 £ 4.45% 98.68 +1.12 99.07 £ 0.46 99.17 £ 0.08
UGAN 97.34 £ 6.86% 98.92 +0.13 99.21 +0.08 99.35 +£0.05
Results are averaged over 10 runs and shown in terms of mean accuracy &+ SD
4Denotes hand selection of labeled data
"Denotes our implementation of the model
Learning rate lr =1e-2 lr =1e-3 Ir =5e—4 lr =3e—4
Accuracy 99.13% 99.18% 99.24% 99.18%

The experiments are done on MNIST n = 100. Despite the differences of the training loss in the initial stage,
the final results are not significant different after training 400 epochs

Validation Accuracy vs. Training Epochs

Validation Accuracy vs. Training Epochs
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Fig. 3 a Comparison of validation accuracy vs. training epochs on our implemented triple-GAN, Bad GAN and UGAN. The experiments are
performed on SVHN n = 1000. b UGAN validation accuracy vs. training epochs under various amounts of labeled data on MNIST
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Similar observations can also be found in Supplementary
Appendix K on MNIST and CIFAR10. Moreover, we hypoth-
esize that for fewer labeled data, gG plays an important role,
as gG is able to model the class-aware data distribution under
weak supervision and use them to complement the lack of
the training samples. While for larger labeled data, bG plays
a more important role by generating complementary sam-
ples and forcing the decision boundary to lie between the
data manifolds of different classes. Empirically, we show
our model’s validation accuracy under various amounts of
labeled data on MNIST in Fig. 3b. As can be seen, when we
push the number of labeled data to extremely low numbers,
the training curve becomes more like that in Triple-GAN,
i.e., a bump is shown clearly at epoch = 200 when we start
to use gG generated samples to train C. However, we do not
find a similar transition on SVHN and CIFARI10 (see Sup-
plementary Appendix K). One possible explanation is that
when we use too few labeled data, gG fails to model the
conditional distribution due to the complexity of SVHN and
CIFARI10. Note that we only used traditional techniques for
training the GAN. With recent advances in generating high-
quality images using GANs [3,23,25], our model may be
able to achieve further performance improvements on more
complex datasets with even fewer labeled data.

5 Limitation of the study

Here, we discuss some limitations of our work and provide
potential research directions that could help address these
limitations.

We note that we assume the marginal distribution p(y)
to be uniform, which is easy to sample for the generation
process. However, it is not always true for other applications
where p(y) is no longer uniform. In these cases, we expect
that the non-uniform label distribution has both effect on
good sample generation and classification. For good sample
generation, the generator will have difficulty capturing fea-
tures for the minority class. For classification, the classifier
tends to cheat by always predicting the majority class. These
problems are expected to be more sever when the dataset is
highly skewed. One potential future research direction is to
investigate how a non-uniform label distribution will affect
our model and how common data balancing methods such as
upsampling and data augmentation can provide help to it.

Another area for potential investigation is to generate
high-resolution, large-scale images, so that our model can
be used in more complex scenarios. In this paper, we have
only applied the model to relatively simple datasets with less
complexity, such as MNIST (28*28), SVHN (32%32) and
CIFAR10 (32%*32). Part of the reason is that the model in
the current form is not able to generate reliable image-label
pairs on large scale. With the advancement in high-resolution

large-scale image generation using GAN recently, we expect
that our model will be able to applied to much more complex
scenarios such as ImageNet classification, and pixel-wise
segmentation.

6 Conclusions

We have presented unified-GAN (UGAN), a new GAN
framework for semi-supervised learning. By learning from
good and bad samples through adversarial training, we have
demonstrated that our model performs better on image clas-
sification tasks across several benchmark datasets and under
arange of labeled training data. We envision that UGAN can
be used in a variety of scenarios, such as healthcare, where
obtaining labeled data can be expensive and time-consuming.
We also consider adapting UGAN to other types of data such
as text (e.g., improving SSL text categorization performance
for 20 newsgroups, Reuters, NY Times, Wiki, PubMed etc.).
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